
Design and Implementation to Support Multiple Key
Exchange Protocols for IPsec

Kazunori Miyazawa
Yokogawa Electric Corporation

kazunori.miyazawa@jp.yokogawa.com

Shoichi Sakane
Yokogawa Electric Corporation

sakane@tanu.org

Ken-ichi Kamada
Yokogawa Electric Corporation

ken-ichi.kamada@jp.yokogawa.com

Mitsuru Kanda
Toshiba Corporation

mitsuru.kanda@toshiba.co.jp

Atsushi Fukumoto
Toshiba Corporation

atsushi.fukumoto@toshiba.co.jp

Abstract

The racoon2 project has been developing an ap-
plication, the racoon2, which simultaneously
supports multiple key exchange protocols for
IPsec [6]. The racoon2 supports IKEv2 [1] and
KINK [11], and works on Linux, NetBSD, and
FreeBSD. This paper describes issues to sup-
port the multiple key exchange protocols on
those operating systems, and describes our ap-
proach. This paper also describes design and
implementation of the racoon2.

1 Background

IPsec provides security services in IP layer. To
use the services, we need to share IPsec SAs
between two entities. IPsec SA consists of a set
of security parameters such as IPsec protocol,
cipher algorithm, key and so on. There are two

methods to share IPsec SAs between two enti-
ties. One is manual configuration and the other
is automatic key exchange. Manual configura-
tion is basically used for a small static system or
debugging because of its scalability. Automatic
key exchange is used in a practical system.

We have used the Internet Key Ex-
change(IKEv1) [2] protocol to support
automatic key exchange. But it does not
clearly specify the ways to re-key and delete
SAs and dead peer detection. The vendors
have been extending it to support them and it
caused interoperability issues. Additionally, it
needs at least 6 messages to exchange IPsec
SAs. According to the background IETF IPsec
working group had discussed a successor of
IKEv1. The working group defines the Internet
Key Exchange version 2 (IKEv2) and IETF
published it in 2005 as a conclusion of the
discussion. IKEv2 reduces the messages to
exchange keys from 6 messages to 4 messages.
It also specifies to re-key and delete SAs and
to detect the dead peer and introduces more



144 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec

functionality.

KINK, Kerberised Internet Negotiation of
Keys, is another key exchange protocol. It is
defined at KINK working group in IETF. It uses
Kerberos to authenticate peers and establishes
IPsec SAs only using symmetric key cipher al-
gorithm. Therefore it is available for low-end
devices which can not calculate public key al-
gorithm in a practical period. KINK reuses the
encoding format of IKEv1 to represent infor-
mation of IPsec SA so that its payloads are sim-
ilar to IKEv1.

racoon is widely used as an implementation of
IKEv1 on Linux, NetBSD, FreeBSD and oth-
ers. racoon was developed originally by the
KAME project [5] as the implementation on
the BSDs. The IPsec-Tools project [4] did
porting it on Linux when Linux introduced
KAME compatible IPsec stack. The IPsec-
Tools project currently maintains and extends
it to support various functions.

The racoon2, a successor of racoon, however
introduced different architecture and configura-
tion model. The configuration includes IPsec
policy to supports the multiple key exchange
protocols. Because it tightly links the policy,
IPsec SAs, and the key exchange protocol, a
user can specify and easily prospect the re-
sults of the configuration. It accordingly breaks
backward compatibility of the configuration.

In this paper, we discuss issue to support the
multiple key exchange protocols in section 2.
We describe data structure and architecture of
the racoon2 in section 3. We show current sta-
tus and future works in section 4. We summa-
rize this paper in section 5.

2 Supporting the multiple key ex-
change protocols

We considered two kinds of architecture to im-
plement the multiple key exchange protocols
on Linux, NetBSD and FreeBSD operating sys-
tems. One is implementing all protocols into
single daemon. The other is implementing dae-
mons for each protocol.

We adopted the latter approach. Because sin-
gle daemon architecture consumes useless re-
sources when user want to use only one proto-
col. Additionally, it tends to reduce the modu-
larity so that it is possibly difficult to extend to
implement new protocols.

The current Linux kernel does not assume to
support multiple daemons which process each
key exchange protocol. It accordingly can not
keep the relationship between an IPsec policy
and a key exchange protocol. NetBSD and
FreeBSD can not keep the information either.
We had had a choice to change the kernels. We
however decided to solve the issue within the
user-land instead of changing the kernels be-
cause of the advantage of deployment of the
racoon2.

It is necessary to strictly manage the relation-
ship to get a daemon to process a key exchange
request based on a user configuration. Sepa-
ration of a IPsec policy and the key exchange
protocol configuration like racoon does causes
possibility of the application to use a different
protocol against a key exchange request.

Instead of separated the configuration of
racoon, the racoon2 configuration unifies and
includes IPsec policies, IPsec SAs and the key
exchange protocols. Using this configuration
model, user can clearly configure what proto-
col must be used against the IPsec policy. On
the other hand, user can not configure them sep-
arately like the usage of racoon.



2006 Linux Symposium, Volume Two • 145

As mentioned above, the kernel can not keep
the relationship because it does not have a field
of the key exchange protocol in IPsec policy
data structure, which is struct xfrm_policy on
the Linux. The daemon accordingly needs
to search the IPsec policy which triggers the
SADB_ACQUIRE message, when receiving it.

The PF_KEY [8] API of Linux, NetBSD and
FreeBSD contains extension derived from the
KAME implementation. The stack has IPsec
policy ID. In the Linux kernel the index of the
struct xfrm_policy corresponds it. The index is
assigned by the kernel and identifies the policy
uniquely. The kernel also returns the ID against
a request of installing an IPsec policy.

When there is no IPsec SA corresponding the
IPsec policy in the kernel, it acquires the IPsec
SA by sending a SADB_ACQUIRE message to
the daemons which listens to PF_KEY socket.
KAME extends SADB_ACQUIRE message to
contain the ID so that the daemon which re-
ceives the message can search the IPsec pol-
icy which triggers it. As mentioned above, the
racoon2 adopts unified configuration model.
The daemons can exactly search the original
configuration.

3 The racoon2

3.1 The racoon2 data structure

The data structure basically consists of selec-
tor, policy, ipsec, sa and remote. They are
linked by their identifiers. The current racoon2
directly uses this model as its configuration.

• selector contains parameters to select traf-
fic through the IPsec stack such as IP ad-
dresses, an upper layer protocol, port num-
bers and so on. selector points a policy as

its action. selector is pointed from remote
when it supports road-warriors. selector
represents simplex traffic so that there are
two selectors for an normal bidirectional
traffic. The IKE daemon uses the values in
selector as an IKEv2 Traffic selector pay-
load or an IKEv1 ISAKMP ID payload in
phase 2. In KINK protocol, it will be used
as a KINK_ISAKMP ID payload.

• sa contains information of an IPsec SA.
They are an IPsec protocol and candidates
of cipher algorithm.

• ipsec contains parameter to create IPsec
SA bundle. The information consists of
common values of bundled IPsec SAs
such as lifetime. The racoon2 restricts the
type of IPsec SA bundle like the table 3.1.
ipsec points more than one IPsec SA to
create bundle.

type of bundle the results packet
AH_ESP [IP][AH][ESP][Payload]
AH_IPCOMP [IP][AH][IPCOMP][Payload]
ESP_IPCOMP [IP][ESP][IPCOMP][Payload]
AH_ESP_IPCOMP [IP][AH][ESP][IPCOMP][Payload]

Table 1: The types of IPsec SA bundle

• policy contains parameter of action against
the traffic which matches the selector.
The action can be “discard”, “bypass” or
“auto_ipsec” to apply IPsec. policy also
contains mode of IPsec and end point’s
addresses if the mode is “tunnel”. a pol-
icy connects components of the racoon2
data structure. a policy points some ipsec
to make a proposal when the action is
“auto_ipsec”.

• remote contains parameter for the key ex-
change protocol. They are identifier of a
peer, the IP addresses, the authentication
information, algorithm and so on.



146 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec

A user can flexibly build configuration by link-
ing those components corresponding what user
want. For example, in case of that two types
of traffic shares a pair of IPsec SA whose pro-
posal is AH and ESP bundle or single ESP,
the configuration consists of the components
linked like figure 1

Figure 1: racoon2 data structure

An initiator can retrieve whole configuration
from selector. When it is a responder, it can
search a remote from peer’s identifier. If it
finds remote, it validates the peer and searches
the selector from IKEv2 Traffic Selector Pay-
load, ISAKMP ID Payload in IKEv1 phase 2
or KINK_ISAKMP ID Payload. In the case of
supporting road-warrior a responder uses link
to a selector from the remote because its ad-
dress can not be decided in advance.

An responder generates an IPsec policy for the
kernel with extracting a chain of selector, pol-
icy and ipsec. It generates an IPsec SA as a
result of the negotiation with proposals derived
from a chain of policy, ipsec and sa.

3.2 The racoon2 architecture

The racoon2 consists of 3 daemons. One is
spmd, which manages IPsec policy database.
Another is iked, which processes IKEv1 and
IKEv2 protocol. The other is kinkd, which
processes KINK protocol. iked and kinkd are
independent from each other. They commu-
nicate with spmd via PF_UNIX socket. The

kernel broadcasts a SADB_ACQUIRE mes-
sage to all daemons which listens to PF_KEY.
iked and kinkd accordingly receive the same
SADB_ACQUIRE message. The racoon2
adopts the unified configuration model and all
daemons read an identical configuration file to
share the parameter. The configuration file cur-
rently reflects the racoon2 data structure.

Figure 2: the racoon2 architecture

spmd reads selector, policy and ipsec from the
configuration files and installs IPsec policies
into the kernel via PF_KEY socket. The ker-
nel returns the message including IPsec policy
ID and spmd creates a mapping table of IPsec
policy ID and selector identifier. Because the
daemons on the architecture require the table,
spmd must run first.

iked processes IKEv1 and IKEv2 protocol. It
should be split to each protocol but iked pro-
cesses them because those protocols requires
same port numbers of UDP.

This is a process sequence when iked is an ini-
tiator of IKEv2.

1. The kernel hooks transmission of the traffic
which matches the IPsec policy.

2. The kernel sends a SADB_ACQUIRE message
including IPsec policy ID to the key exchange
daemons via PF_KEY socket.

3. iked receives the message and get IPsec policy
ID in the sadb_x_policy_id field.

4. iked requests the identifier of selector corre-
sponding the IPsec policy ID to spmd.



2006 Linux Symposium, Volume Two • 147

5. iked receives the selector identifier from spmd.
6. iked searches selector by the identifier and re-

trieves policy, remote, ipsec, sa.
7. iked validates the key exchange protocol in the

remote.
8. iked processes the acquire according to the

protocol in the remote such as IKEv2.

The responder processes are listed below when
iked is a responder of IKEv2. It depends on
whether remote includes peers IP address or
not.

When remote includes peers IP address, the
process like:

1. iked receives a IKE_SA_INIT message.
2. It searches remote by peer’s IP address.
3. It replies IKE_SA_INIT using algorithm in the

remote.
4. It receives IKE_AUTH from the peer.
5. It validates the peer by information in the re-

mote
6. It searches the selector by the Traffic Selector

payload in the message.
7. It finds the selector and retrieves policy, ipsec

and sa.
8. It processes the request and replies

IKE_AUTH

When the remote does not contain the peer’s IP
address, e.g. road-warrior scenario.

1. iked receives a IKE_SA_INIT message.
2. It searches remote by peer’s IP address
3. It replies the IKE_SA_INIT message using de-

fault algorithm since it can not find specific
configuration of the remote.

4. It receives the IKE_AUTH message from the
peer.

5. It searches remote by the ID payload in the
message and authenticates the peer.

6. It also searches selector or retrieves the link to
selector in the remote

7. It retrieves linked components, which are pol-
icy, ipsec and sa.

8. It processes the request and replies a
IKE_AUTH message.

kinkd is a daemon processing KINK proto-
col. The initiator process of kinkd is simi-
lar to iked. kinkd gets an identifier of the
selector from spmd by indicating a policy_id
in the sadb_x_policy_id field, and pro-
cesses the request acquired from the kernel. In
the responder process, kinkd always searches
the list of remote with the identifier of the
peer (principal name) because KINK protocol
uses Kerberos and kinkd can know the iden-
tifier of the peer. When it is a responder, to
get the selector, kinkd always uses an identi-
fier of selector in the remote of the configura-
tion. Therefore it currently does not search by
KINK_ISAKMP ID payload. After getting the
selector, it processes the request from the ini-
tiator with linked components.

4 Implementation and future
works

The racoon2 uses OpenSSL [10] library for its
cryptographic operation. It also uses MIT [9]
or Heimdal [3] kerberos library to implement
kinkd. Current implementation supports IKEv2
and KINK, and does not support IKEv1.

The racoon2 provides a library to support im-
plementing the daemons. The library provides

• configuration file interface
• PF_INET socket utility
• PF_KEYv2 socket utility
• loggin interface
• align differences of OS
• buffer and string utility

So far, the racoon2 provides enough functions
to support basic operation on IKEv2, such as



148 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec

Figure 3: libracoon

• IPsec SA negotiation with IPv4/IPv6 address
• exchange transport mode IPsec SAs with the

notification
• dead peer detection
• rekeying
• authentication with either pre-shared-key or

certificates
• COOKIE support

Although the racoon2 supports basic function-
ality on IKEv2, as of this writing, IKEv1 sup-
port is still under development. It is important
for backward compatibility and it is one of fu-
ture works. These items are future works of
IKEv2:

• improving NAT Traversal
• road-warrior support
• Traffic Selector negotiation
• internal address configuration

Both improving NAT Traversal and supporting
road-warrior are especially required for more
flexible operation. Both Mobile IPv6 support
and MOBIKE are big challenges although they
are not listed above. The racoon2 can not
work with MIPL-2.0 because MIPL-2.0 main-
tains IPsec policy by itself. We have a couple
of approaches to solve the issue. We, however,
need more consideration to decide what is the
best strategy.

Concerning KINK protocol, the racoon2 also
support enough functions for basic operation:

• IPsec SA negotiation with IPv4/IPv6 ad-
dress

• optimistic key negotiation
• 3-way key negotiation
• dead peer detection by epoch

There aren’t many features left regarding KINK
protocol. Kerberos User-to-User authentication
mode and KE payload support are a few of
them.

Additionally IETF has published new specifica-
tion of IPsec [7]. The current kernel conforms
to the previous specification of IPsec [6] and it
will be changed to conform to the new RFC.
We probably make the racoon2 coordinate with
IPsec stack conforming to the new RFC.

5 Summary

We described design and implementation of the
racoon2 to support multiple key exchange pro-
tocols. And we describe the racoon2 architec-
ture, its data structure and how it works briefly.
We also describe the features which have al-
ready supported and describe the future works.
The racoon2 already have enough functionality
on basic key exchange scenario, using IKEv2
and KINK protocols, and we have plan to im-
plement optional functions, including IKEv1
for backward compatibility.

References

[1] C. Kaufman, Ed. Internet key exchange
(ikev2) protocol. RFC4306, December
2005.

[2] D. Harkins and D. Carrel. Internet key
exchange (ike) protocol. RFC2409,
November 1998.

[3] Heimdal. Heimdal web page. http:
//www.pdc.kth.se/heimdal/.



2006 Linux Symposium, Volume Two • 149

[4] IPsec Tools. Ipsec tools web page.
http://www.ipsec-tools.
sourceforge.net/.

[5] KAME Project. Kame project web page.
http://www.kame.net.

[6] S. Kent and R. Atkinson. Security
architecture for the internet protocol.
RFC2401, November 1998.

[7] S. Kent and K. Seo. Security architecture
for the internet protocol. RFC4301,
December 2005.

[8] D. McDonald, C. Metz, and B. Phan.
Pf_key key management api, version 2.
RFC2367, July 1998.

[9] MIT Kerberos. Mit kerberos web page.
http:
//web.mit.edu/kerberos/www/.

[10] OpenSSL. Openssl web page.
http://www.openssl.org/.

[11] S. Sakane, K. Kamada, M. Thomas, and
J. Vilhuber. Kerberised internet
negotiation of keys (kink). RFC4430,
March 2006.



150 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


