Probing the Guts of Kprobes

Ananth Mavinakayanahalli, Prasanna Panchamukhi, Jim Keniston
IBM Linux Technology Center

ananth@in.ibm.com,

prasanna@in.ibm.com,

jkenisto@us.ibm.com

Anil Keshavamurthy

Intel Open Source Technology Center

anil.s.keshavamurthy@intel.com
Masami Hiramatsu

Hitachi Systems Development Laboratory

hiramatu@sdl.hitachi.co.jp

Abstract

Kernel Probes (kprobes) can insert probes into
a running kernel for purposes of debugging,
tracing, performance evaluation, fault injec-
tion, etc. A user-defined handler is run when
a probepoint is hit. From the barebones im-
plementation in Linux 2.6.9, kprobes has un-
dergone a number of improvements—support
for colocated probes, function-return probes,
reentrant probes, and the like. Handlers are
now executed without any locks held, lead-
ing to lower overhead compared to the earlier
“single spinlock serialization” method. Other
enhancements are on the anvil—the kprobe
“booster” series, userspace probes and watch-
point probes, to name a few. This paper will
trace the developments in kprobes and also
touch upon the current state of the aforemen-
tioned enhancements.

1 Introduction

Kernel probes (kprobes) is a simple,
lightweight kernel instrumentation mecha-
nism, which provides a facility to execute a
user-defined handler when a probepoint! is
hit. Since making its first appearance in the
LinuxTM kernel in linux-2.6.9-rc2, Kkprobes
has proved to be an invaluable tool for kernel
hackers, providing a facility to dynamically
insert printk () s or counters into a running
kernel, thus reducing the burden of having to
statically compile a new kernel, just for instru-
mentation purposes. Additionally, kprobes has
been extensively used for kernel tracing [9],
performance evaluation, fault-injection, etc.
Several tools (e.g., SystemTap [4]) now use the
kprobes infrastructure as a base.

Kprobes has evolved from its first appearance.
A number of new features have been added:
support for colocated probes, function-return
probes, lockless handler execution, and lately,
the kprobe-boosters.

I'The probepoint is the point of instrumentation—the
text address where the kprobe is registered.

102 e Probing the Guts of Kprobes

This paper gives a brief history of kprobes, then
delves into the basics. It then goes on to cover
functional and performance enhancements that
have been done, concluding with a brief report
on the works in progress.

2 A brief history

Kprobes finds its beginnings in IBM®’s
DProbes [1, 5, 8]. DProbes included, in addi-
tion to the basic probing mechansim, a Reverse
Polish Notation (RPN) interpreter, a probe
manager, a Dynamic Probe Event Handler
(DPEH), and a DProbes C Compiler (DPCC).
On Rusty Russell’s suggestion, the essential
portions of the kernel probing mechanism and
interfaces were abstracted out from DProbes,
so probe handlers could be implemented as
simple C functions that would run in the con-
text of the kernel, when compiled in as a ker-
nel module (or even compiled into the kernel).
This minimal infrastructure could then live in
the mainline kernel and other facilities could be
built around it.

Thus, kprobes was born.

3 Kprobes basics

Kprobes works by modifying the program text
by replacing the instruction at the probepoint
with a breakpoint instruction. The instruction
originally at the probepoint is copied to a sep-
arate scratch area, where it is suitable to be
single-stepped out-of-line.” While the instruc-
tion size is known on RISC architectures, on
CISC, the size of program text copied out to the

2Single-stepping out-of-line allows us to leave the
breakpoint instruction in place, so that the probepoint is
never missed, even on an SMP system.

scratch area is heuristically set to the maximum
instruction size for that architecture.

The kprobes infrastructure in kernel is divided
into architecture-agnostic and architecture-
specific files. This design lends itself to easy
porting to other architectures.

Kprobes makes use of the notifier mechanism
in the kernel to hook the kernel exception han-
dlers. For example, on the 1386 architecture,
kprobes is notified of int3 (breakpoint) traps,
debug (single-step) traps and page faults. Since
these are typically the exceptions that are of in-
terest to a kernel debugger, the notifier chain
put in place by kprobes can be used by the
debuggers, too. However, the kprobes noti-
fier 1s registered with the highest possible pri-
ority so as to ensure that it is the first to be
invoked upon an exception hit. This is neces-
sary since kprobes run transparent to the user,
in contrast to a kernel debugger, which typi-
cally needs user intervention.

From a user’s point of view, the important fields
in struct kprobe are:

e addr: Text address where the kprobe is
to be registered. The user must supply this
field.

e pre_handler: User-defined routine
that runs just before the instruction at the
probepoint executes.

e post_handler: User-defined routine
that runs just after the instruction at the
probepoint executes.

e fault handler: User-defined routine
that runs in case of a fault during:

— Execution of the instruction at the
probepoint.

— Execution of the user-defined han-
dlers at the time of a kprobe hit.

2006 Linux Symposium, Volume Two e 103

It is important that the handlers that are not be-
ing used in the context of a particular probe, be
set to NULL.

3.1 Kprobe registration

A call to register_kprobe () triggers the
kprobe registration process. The caller typi-
cally supplies the probepoint and the handlers
to be run on the probepoint hit. Insertion of
a kprobe is not allowed on sections of kernel
code that are part of the kprobe infrastructure,
nor on other kernel code used by kprobes (the
exception handlers, for instance). A request to
register a kprobe in these text areas fails with
—ETINVAL.

Control is then passed to the architecture spe-
cific helpers. These helpers run the required
sanity checks to ensure that architectural re-
strictions are adhered to. (For example, cer-
tain instructions are unsafe to probe.) In ad-
dition, the original instruction at the probepoint
is copied to a known scratch area, which is suit-
able to be single-stepped out of line.

The text at the probepoint is then replaced with
the breakpoint opcode for that architecture. The
icaches are then flushed so the change in pro-
gram text is seen consistently on the other pro-
CesSOrs.

Some points of note:

e Except for PowerPC® and for 1A64,
kprobes makes no attempt to verify that
the probepoint is at an instruction bound-
ary.

e Certain architectures (such as x86_64,
1386, and PowerPC) have incorporated
NO_EXECUTE support in the kernel.
The kprobe object, where the instruction
would normally be stored, is typically not

on an executable page. So for these ar-
chitectures, the kprobes infrastructure al-
locates (using module_alloc ()) and
tracks scratch pages that have execute sup-
port, which are used to store a copy of the
instruction at each probepoint.

3.2 Handler execution

Kprobes is notified first upon a breakpoint hit.
Looking up the hash list of registered kprobes
confirms whether the breakpoint hit was a re-
sult of a registered kprobe. It is possible that
the exception was not a result of a kprobe hit
(some other debugger could have inserted the
breakpoint), in which case kprobes returns con-
trol to the notifier infrastructure, so other regis-
tered notifiers can be invoked. In the absence of
any subsequent notifiers or if the other notifiers
don’t recognize the breakpoint as one of theirs,
the default kernel exception handler takes over.

The kprobes status flags are set appropriately
and the user-defined pre_handler is called. The
pre_handler is where the kprobe user can gather
the desired information, before the probed in-
struction is executed. Depending on the re-
turn value from the pre_handler, the instruction
pointer (in struct pt_regs) is set to the
copy of the original instruction at the probe-
point location, and appropriate flags are set to
single-step out-of-line.

Control returns to kprobes after the instruction
copy is single-stepped. The post_handler is
called if the kprobe has one associated with it.
Here the kprobe user can gather information
just after the probed instruction is executed.

Certain instructions change the execution flow
(e.g., relative calls, returns, and branches).
Since the instruction at the probepoint is exe-
cuted out-of-line, instructions that depend on
the instruction pointer at the time of execution,

104 e Probing the Guts of Kprobes

need fixing up. (For x86_64 instructions that
use rip-relative addressing, the instruction copy
itself must be modified.) Such fixups are done
transparent to the user, the flags are restored to
their original states and the instruction pointer
is set to the instruction immediately following
the probepoint.

It is essential that the user-defined pre_ (and
post_) handlers are error-free: that the handlers
don’t cause another exception (page_fault or
otherwise). In case a fault does happen dur-
ing the kprobe handler execution, the kprobe_
fault_handler () is invoked. If the kprobe
user has a fault_handler defined, it is given a
chance to rectify the fault—especially if it is a
fault deliberately induced by the user, for pur-
poses of fault injection and the like. In case
the user fault_handler isn’t able to handle the
fault, kprobes tries to fix it up on a best-effort
basis.> If the referenced page is not memory
resident, the function will return —-EFAULT. In
cases where the fixup isn’t sufficient, the sys-
tem fault handler kicks in, resulting, possibly,
in a system crash.

Work is currently in progress to make the
kprobe fault handling more robust—in partic-
ular, to protect the system from faults caused
by erroneous handlers.

Preemption is disabled for the whole duration
of kprobe processing, from the time kprobes
is notified of the probepoint hit until the
post_handler executes and any fault handling is
complete.

3.3 Kprobe unregistration

Kprobe unregistration (triggered by calling
unregister_kprobe ()) entails putting

3 As of writing this paper, kprobe excetption recovery
is limited to a call to fixup_exception(). This enables a
handler to safely call a fixup-enabled function, such as
__copy_from_user_inatomic().

the original instruction back at the probepoint
location, flushing all icaches and removing the
kprobe entry in the hash list. In case a sepa-
rate scratch area is used for out-of-line single-
stepping, it is returned to the free pool, so it can
be reused.

In order to facilitate portability of kprobe mod-
ules, certain opaque datatypes are defined.
These are aliased to appropriate architecture
specific datatypes. Here is an example:

i386:
typedef u8 kprobe_opcode_t;

PowerPC:
typedef unsigned int kprobe_opcode_t;

ia64:
typedef struct kprobe_opcode {

bundle_t bundle;
} kprobe_opcode_t;

4 Functional enhancements

The initial prototype had a few restrictions:

At most one kprobe at an address

Global spinlock to serialize execution of
all kprobe handlers

No handling of reentrant probes

e No support for function-return probes

These restrictions have now been remedied as
is described in the following sections.

4.1 Jumper probes

In many a debug activity, there is a need to
record or inspect arguments passed to a func-
tion. Jumper probes (jprobes, in short) satisfy

2006 Linux Symposium, Volume Two e 105

Program text

addr

Program text

pre_handler()

l

register_kprobe()
insn

insn

N

A 4

post_handler()

Figure 1: Kprobe flow of control

this need. To access the arguments of function
foo (), jprobes requires the user to implement
foo’ (), a mirror function® of foo (). Using
the underlying kprobes infrastructure, jprobes
ensures that foo’ () is given control before
foo (), so the user can inspect or gather func-
tion arguments in runtime. Control is then re-
turned to foo (), where normal execution con-
tinues.

4.1.1 The guts of jprobes

Jprobes is built on the kprobe infrastructure
(In fact, struct jprobe has a struct
kprobe embedded in it.) register_
jprobe () triggers registration of a jprobe.
The user supplies the entry point of the function
to be probed as well as the mirror prototype that
will be run before the function executes.

The in-kernel jprobes infrastructure pro-
vides two architecture-specific helpers
“Both foo () and foo’ () have the same function

prototype.

that are aliased as the kprobe’s pre and
break_handlers. Upon the breakpoint hit, the
set jmp_pre_handler () first saves the
function argument space before transferring
control to the mirrored function. This is neces-
sary, since, by ABI definition, the callee owns
the function argument space and could over-
write it as a result of tail-call optimization. The
pt_regs are also saved and the instruction
pointer is modified to point to the user-supplied
mirror function. By returning a non-zero value,
the set jmp_pre_handler () tells kprobes
to just return from the exception without any
further processing (setting up single-step, for
instance). Thus, the mirror function executes
upon return from the breakpoint exception.

The mirror function must call jprobe_
return () once the user is done record-
ing or inspecting the function arguments.
jprobe_return () is a placeholder for
the architecture-specific breakpoint instruc-
tion on most architectures—ia64 is a notable
exception—which again drives us into the
kprobes exception handler.

106 e Probing the Guts of Kprobes

Though this exception entry isn’t due to a
kprobe hit, the kprobe state variables indicate
that a kprobe is in process, indicating the possi-
bility of this being a return from a jprobe. The
clincher is the presence of a break_handler as-
sociated with the kprobe in process. So, the
break_handler () is called.

The longjmp_break_handler () now
gets control and does basic sanity checks and
then restores the saved argument space and the
saved pt_regs. Upon successful return from
the longjmp_break_handler (), execu-
tion continues as it would following a normal
kprobe hit.

unregister_jprobe () does nothing
more than unregistering the associated kprobe.

4.1.2 Overhead as compared to kprobes

Jprobes cause two breakpoint exceptions and
a single-step exception, in addition to copying
the pt_regs and the argument space. The
overhead of a jprobe is therefore about 1.5
times that of a normal kprobe. Additionally,
any kprobe optimization will benefit jprobes
too.

4.2 Colocated probes

A fundamental restriction with the legacy
kprobes code was that one could have at most
one kprobe or one jprobe at any given probe-
point. Features such as function-return probes
require a probe at the entry to a function. This
would mean that no other probe could be in-
serted at that function entry and this restriction
had to be remedied. Another requirement was
that the overloading of kprobes at the same lo-
cation had to happen transparently to the user.
This implied that no new interfaces could be in-
troduced.

The concept of an “aggregate kprobe” (ap) was
invented. An ap is a kprobe with special pre-
defined handlers. When a second kprobe is
registered at a particular probepoint (so that
we have pl and p2 probing the same address),
kprobes creates an ap and puts pl and p2 on the
ap’s list. The ap then replaces pl in the hash
list.

When a breakpoint associated with multi-
ple kprobes is hit, the aggregate_pre_
handler () is invoked. This walks the list
of registered kprobes at the location, invoking
the individual pre_handlers in turn. Similarly,
the aggregate_post_handler () takes
care of invoking the individual post_handlers.
Kprobes keeps track of which kprobe’s han-
dler is currently being run, so that only
its fault_handler is invoked if its associated
pre_/post_handler generates a fault.

It is thus possible to have any number of
kprobes at a given probepoint, along with at
most one jprobe (due to the way jprobes work).

4.3 Function-return probes

A function-return probe (hereafter referred to
simply as a “return probe”) fires when a speci-
fied function returns. Such probes can be useful
for function-boundary tracing, function timing,
or tracking a function’s return values. Return
probes are currently implemented for the 1386,
x86_64, 1a64, and PowerPC architectures.

The register_kretprobe () func-
tion takes as its sole argument a pointer to
struct kretprobe. This object specifies
the entry address of the function to be probed,
the handler to be executed, and a value called
maxactive, which is discussed later in this
section.

A return probe is implemented as follows:

2006 Linux Symposium, Volume Two e 107

e When register_kretprobe() is
called, kprobes establishes a probepoint at
the entry point of the probed function.

e When the probed function is called, this
entry probepoint is hit, and a special han-
dler, pre_handler_kretprobe (),
is run. Each architecture’s ABI defines
where the return address can be found
upon entry to a function. For example, for
1386 and x86_64, it’s atop the stack; for
ia64 and PowerPC, it’s in a particular reg-
ister. pre_handler_kretprobe ()
saves a copy of the return address and
replaces it with the address of a special
piece of code called the kretprobe_
trampoline ().

e When the probed function executes a re-
turn instruction, control passes to kprobes
via the kretprobe_trampoline ().
Kprobes runs the user-specified handler
associated with the return probe, then con-
tinues execution at the “real” (saved) re-
turn address.’

4.3.1 Return-probe instances

There may be multiple instances of the same
function running (“active”) at the same time:

e On an SMP system, several CPUs may
be executing the same function simultane-
ously.

e A function may be recursive.

e A function may yield the CPU via pre-
emption, by taking a mutex or semaphore,
or by calling schedule () explicitly.

SWhen the handler runs, the return value of the func-
tion is available to the user-specified handler in one of
the CPU registers—for example, regs—>eax for 1386
or regs—>gpr [3] for PowerPC.

Another task may subsequently enter the
same function.

Kprobes needs to keep track of the “real” return
address of every active instance of every return-
probed function. The object used to track
this information is struct kretprobe_
instance (rpi for short). pre_handler_
kretprobe (), which saves the return ad-
dress, runs in an environment where it can-
not sleep, so it cannot allocate rpis as
they are needed. Therefore, register_
kretprobe () pre-allocates all the rpis that
are to be used for that particular return probe.
Since kprobes cannot determine how many in-
stances of a function might become active, we
rely on the user’s knowledge of the function.

Before calling register_kretprobe (),
the caller sets the maxactive member of
struct kretprobe accordingly. Kprobes
documentation [2] in the Linux source tree pro-
vides guidelines for setting maxactive. It’s not
a disaster if maxactive is set too low; some
probes will simply be missed. The nmissed
field in struct kretprobe accumulates a
count of such misses.

Support for a pool of “spare” rpis, which may
be shared by all return probes in an instru-
mentation module, is being contemplated—
the aim being to keep nmissed low with-
out over-allocating rpis, even in cases where
maxactive cannot be accurately estimated.

4.3.2 Implications of return-address re-
placement

The above-described implementation has sev-
eral implications:

e An rpi must hang around until its function
returns, even if the corresponding return
probe has been unregistered.

108 e Probing the Guts of Kprobes

foo()

bar()

~~

~

I

< normal return
\

~~

bar()

~

~~

~

return with
a kretprobe
on bar()

kretprobe_trampoline()

just a "nop" with a

kprobe on it

Figure 2: Return-probe flow of control

e Probing functions such as schedule ()
or do_exit () that return in strange
ways (or not at all) will yield results that
are valid, but perhaps unexpected to users
unfamilar with how return probes work.

e When a task exits, kprobes must recycle
any rpi objects associated with functions
in that task that won’t return. To stream-
line this operation, rpis are hashed by task
pointer.

e Since data structures associated with re-
turn probes are constantly changing (as
functions are called and return), locking
cannot be solely by task, or solely by
probe. Currently, all operations on return-
probe data structures are guarded by a sin-
gle global lock.

e When a task has one or more
return-probed functions active,
stack traces will typically report
kretprobe_trampoline () rather

than the actual return address for the
probed functions.

4.3.3 Overhead of return probes

The overhead of a return probe is approxi-
mately the same as that of a jprobe. Register-
ing an entry kprobe and matching return probe
yields about the same overhead as the return
probe alone.

4.4 Robust handling of reentrant probes

A general usage scenario for kprobes is one
where a user writes a simple handler to gather
the required data. This could sometimes in-
volve a call to another kernel function.

Imagine a use-case where we have a kprobe on
foo (). In the handler of this kprobe, if the
user calls bar () and if bar () has a kprobe
on it, we have a case of reentry. Another poten-
tial cause is a kprobe on an asynchronous rou-
tine (such as an IRQ handler), which can po-
tentially be triggered during the processing on

2006 Linux Symposium, Volume Two e 109

a kprobe.®

Ideally, no other kprobe must be hit during a
kprobe processing. Since this cannot realis-
tically be enforced, there should be a grace-
ful recovery mechanism. This required a few
changes:

e Adding a kprobe state to indicate reentry

e Adding a counter to struct kprobe to track
the number of reentries

e Adding an auxiliary structure to store state
variables and flags of the kprobe that was
being processed at the time of reentry.

The variable current_kprobe tells if we
are in the midst of processing a kprobe. If
it is not NULL, we have reentered due to an-
other kprobe hit. In that case, the kprobe_
status is set to indicate reentry and a
counter nmissed in structkprobe is in-
cremented to indicate it to the user. The
state variables of the kprobe previously un-
der process is saved in the auxiliary struc-
ture (called struct prev_kprobe) and
the pre_handler is bypassed so that recursive
reentries are avoided. Similar checks in the
kprobe_post_handler () ensure that the
post_handler for the reentered probe is by-
passed. After the reentered kprobe’s instruc-
tion is single-stepped, kprobes uses data in the
auxiliary structure to continue processing of the
original kprobe.

5 Performance enhancements

Though DProbes used per-CPU tracking and
pre-probe locking, to keep matters simple, the

®Most architectures run kprobes with interrupts en-
abled. An exception is 1386.

legacy kprobes code used a single spinlock to
serialize kprobe execution. Also, a single set of
variables were used to track the kprobe being
processed, its state, the processor flags at the
time of exception, etc. This obviously did not
scale well.

Among the alternatives that were considered
were read-write locks and (better still) RCU [3,
7]. All the alternatives required independent
tracking of the kprobe and its state on a per-
CPU basis. This resulted in the creation of
a kprobe control block (struct kprobe_
ct1blk).

5.1 Tracking kprobes on a per-CPU basis

A kprobe_ctlblk is a per-CPU structure,
which is used to track the status of the kprobe
in process, the processor flags at the time of
exception, a copy of the pt_regs at the
time of jprobe invocation and, for the reen-
try case, some housekeeping information about
the probe that was being processed at the time
of reentry. Depending on the architecture,
struct kprobe_ctlblk can contain ad-
ditional elements. The 1386 variant is shown
below:

/* per—CPU kprobe control block =*/

struct kprobe_ctlblk {

unsigned long kprobe_status;

unsigned long kprobe_old_eflags;

unsigned long kprobe_saved_eflags;

long *jprobe_saved_esp;

struct pt_regs Jjprobe_saved_regs;
kprobe_opcode_t Jjprobes_stack [MAX_STACK_SIZE];
struct prev_kprobe prev_kprobe;

bi

struct prev_kprobe {

struct kprobe =xkp;

unsigned long status;
unsigned long old_eflags;
unsigned long saved_eflags;
bi

Additionally, current_kprobe was made
per-CPU and tells what kprobe is currently be-
ing processed on the CPU. It is is explicitly

110 e Probing the Guts of Kprobes

start

kprobe hit

pre_handler()

post_handler()
single_step out-of-line

end

pre_handler()/asynchronous event

single_step out-of-ine —Jp

kprobe done

post_handler()/
asynchronous event

Asynchronous event
could be a kprobe on
an irg handler

Figure 3: Kprobes state machine

set to NULL if no kprobe is currently active
on the given CPU. current_kprobe is es-
pecially useful as it provides a quick and easy
way to test if an exception induced entry into
kprobe infrastructure is indeed due to a legiti-
mate kprobe activity. It also provides an easy
way to handle reentrancy.

5.2 Locking changes to use RCU

With per-CPU tracking out of the way, a lock-
ing scheme had to be worked out that would
take advantage of it. A straightforward change
would be to modify the serializing spinlock to
a rwlock. The write lock could then be held
during kprobe registration and unregistration
while handlers could run with the read lock
held. This approach was prototyped [6] and
later discarded as there was a better approach—
use RCU.

RCU requires that the write side be atomic
while the read side can execute in a lock-free
manner. Depending on the usage model, the
RCU consumer has to use appropriate locking
to ensure write-side atomicity.

Kprobes imposes the following restrictions:

e Handlers cannot block.

e Handlers run with preemption disabled.

synchronize_sched () 1is therefore a
tailor-made solution for the update side, as
it guarantees that all non-preemptive sections
have completed. In addition, a mutex ensures
serialization during hash-list updates.

With RCU, the hash lookup, which is a read-
only operation, can be lock-free. This, how-
ever, brings a restriction that handlers have to
be reentrant.

With these changes, multiple kprobes (same or
different) can run in parallel, leading to a great
improvement in scalability when compared to
the earlier method.

6 The kprobe booster series

Kprobe and kretprobe (return-probe) boost-
ers improve the performance of kprobes by
eliminating exceptions, where possible. They
can significantly reduce probepoint overhead,
which can be important when probing time-
sensitive or frequently executed code paths.

6.1 Kprobe-booster

As described in Section 3, in classic kprobes,
a probepoint hit involves two exceptions, a
breakpoint and a single-step. The former is es-
sential, in order to break into kernel execution,
but the latter may not be. Recall the steps that
occur when an instruction is single-stepped out-
of-line:

1. Kprobes single-steps a copy of the instruc-
tion, and the resulting trap returns control
to kprobes.

2. The kprobe’s post_handler, if any, is run.

3. After Step 1, the instruction pointer, return
address, or other value may be wrong be-
cause of the difference in address between
the instruction copy and the original in-
struction. Kprobes fixes things up as nec-
essary.

4. Kprobes returns from the trap, and execu-
tion continues at the instruction following
the probed instruction.

2006 Linux Symposium, Volume Two e 111

Step 2 can be eliminated if the kprobe doesn’t
have a post_handler. For many instruction
types, no fixup is necessary and Step 3 can
be eliminated. Steps 1 and 4 can then be re-
placed by a single jump. This jump instruction
is simply appended to the buffer that contains
the copy of the probed instruction.

6.2 Kretprobe-booster

The classic kretprobe uses two kprobes for each
probe: one entry kprobe that saves the origi-
nal return address, and the other on the tram-
poline. The latter can be replaced with assem-
bly code which stores all registers, calls kret-
probe’s trampoline_handler (), restores
registers, and finally returns to the original re-
turn address saved by the entry kprobe.

The boosters don’t change existing kprobes
API. These features are currently prototyped
for 1386 and merged into 2.6.16-rc1-mmS5.

6.3 Implementation of the boosters

Kprobe booster involved the following steps:

e Addition of a tristate boostable flag:

— —1 means that the probe can’t be
boosted.

— 0 means that the probe can be
boosted, but isn’t ready to be
boosted.

— 1 means that the probe is ready to be
boosted (i.e., the appropriate branch
instruction has been appended).

e Identifying boostable instructions:

— Any instruction that refer to the ex-
ecution address (relative jump, call,
software interrupt, etc.), cannot be
boosted.

112 e Probing the Guts of Kprobes

— A machine-dependant corrolory:
Any instruction that has a hardware
side-effect (such as cpuid, wrmsr,
etc.), cannot be boosted, since they
may depend on the instruction
pointer.

The kprobe-booster classifies instructions
accordingly, setting boostable to 0 if the
instruction is boostable and to —1 if the
instruction isn’t boostable.

e Preparing to boost: If the probed instruc-
tion is boostable, the kprobe-booster must
adjust the execution address register trans-
parently as if the instruction has executed
in-line. For this adjustment, a “jump” in-
struction is inserted after the copied in-
struction.

The kprobe-booster uses information on
the first kprobe hit to determine the exact
location to insert the jump instruction. Af-
ter the first single-step is performed, the
execution address points the head of the
next instruction on the instruction buffer.
In the other words, this is the jump inser-
tion point. Thus the kprobe-booster in-
serts a jump which jumps to the original
address, and sets the boostable flag of the
kprobe to 1.

e Boosting the kprobe: On subsequent hits,
the kprobe is boosted if:

— Its boostable flag is 1.
— It does not have a post_handler.

— The kernel preemption is disabled.

The kretprobe-booster works by emulat-
ing the breakpoint on the kretprobe_
trampoline (). This is accomplished by
saving the registers on the stack and calling
the trampoline_handler (), which takes
care of calling the user-defined handler and
returning the rpi to the free list. Upon return

from the trampoline_handler () the
kretprobe-booster restores the saved registers,
puts the original return address back on stack,’
and returns to the normal execution flow.

7 Performance gains

7.1 Gains from kprobe locking changes

Locking changes—allowing handlers to run
lockless and in parallel—significantly im-
proved kprobes performance on SMP systems.
Figure 4 illustrates performance gains of us-
ing RCU and per-CPU tracking for kprobes
as compared to the legacy single-spinlock syn-
chronization method. (The test basically is the
result of a microbenchmark that drives CPUs
to a rendezvous point through an IPI and the
CPUs are made to spin in a loop calling a rou-
tine with a kprobe registered on it).

100000 T T

No‘kprobe —
Kprobes with asingle spinlock
Kprobeswith RCU ----%----
10000 i
38 1000]
=4
B
= :
[}
£
[= 10 | 1
1t i
0.1 L L I | L
2 4 6 8 10 12 14

Number of CPUs
Total probes hit = (65535 * no of CPUs)

Figure 4: Kprobes performance comparison

7Some trickery involved here—at this point, the loca-
tion where the return address has to be stored is occupied
by EFLAGS. So EFLAGS is copied into the CS slot to
make room for the return address. CS doesn’t need to be
recovered since we are always in the kernel context.

2006 Linux Symposium, Volume Two e 113

Kernel kp ip p | kp+r1p | jp+rp
2.6.16 (no booster) 0.57 | 1.00 | 0.92 | 0.99 1.40
2.6.16-mm?2 (with booster) | 0.26 | 1.05 | 0.45 0.86 1.30

Table 1: Booster gains on an Intel® PentiumTM M, 1495MHz system

7.2 Gains from the kprobe-booster patch-
set

Table 1 illustrates the gains from the kprobe-
booster patchset. All times in microseconds.

8 Work in progress
8.1 Userspace probes

Userspace probes (uprobes) provide a facility
to dynamically instrument userspace applica-
tions. Key design issues include the following:

e Should the uprobe infrastructure be in ker-
nel or userspace? What are the advan-
tages/disadvantages of both?

e Should the probes be visible system-wide?

e Should the probes be inserted on a per-
process or per-executable basis?

e If per-process, should it be inherited
across a fork ()?

An approach that uses some mm/vfs tricks to
insert probes on a system-wide basis was pro-
totyped [13]. This prototype provides a facility
to insert probes even on applications that are yet
to begin execution. Handlers run in the kernel
context. There has been some pushback from
the community to reconsider the approach.

At the time of this writing, a discussion was en-
suing on LKML [12] with regard to what the

most appropriate approach would be. A few
options have been thrown up, one of which is
to provide a system call interface (similar to
ptrace) for this purpose.

8.2 Watchpoint probes

Watchpoint probes provide a simple interface
for setting kernel-space watchpoints. Watch-
point probe mechanism uses the CPU’s hard-
ware debug registers to monitor data. At the
time of this writing, an early prototype for the
kernel watchpoint probe interface was avaliable
for 1386 [10, 11].

Many user-space debuggers, such as gdb, use
the ptrace interface to set the watchpoint probes
for local use. Typically, a user-space watch-
point is per-process, and so is set on a single
CPU at a time. A kernel watchpoint, on the
other hand, is set on all CPUs. Thus, there
is a need to provide a nonintrusive, flexible,
low-level facility for allocating debug registers.
This facility would provide a way to relinquish
global allocations when a more demanding user
comes along and needs more debug registers
for local use (or for a different kind of global
use). To be nonintrusive, a global user of de-
bug registers has to give them up when they are
used by ptrace, for example.

Work is in progress to provide a common low-
level mechanism that can be useful for ptrace
and other users of debug registers.

114 e Probing the Guts of Kprobes

9 Conclusions

Kprobes provides a simple, flexible,
lightweight, easy-to-use® mechanism for
creating ad hoc kernel instrumentation. As
the kprobes user community has grown,
there has been a demand for more ways
to probe (jprobes, return probes, userspace
probes, watchpoint probes), more flexibility
for kprobes-based instrumentation (colocated
probes, reentrant probes), and less overhead
in very probe-intensive situations (locking
changes, kprobe and kretprobe boosters). Most
of these features are now in the Linux kernel;
others are in the prototype stage.

8

10 Acknowledgements

The authors would like to acknowledge the
work of the DProbes team, including Richard
J. Moore, Suparna Bhattacharya, Vamsikrishna
S, Bharata Rao, Michael Grundy, Thomas
Zanussi, and others.

Special thanks to Maneesh Soni for his unre-
lenting support.

The authors wish to thank Roland McGrath,
Rusty Lynch, Hien Nguyen, Will Cohen,
and Andi Kleen for helping out at various
stages during the kprobes development; and
to acknowledge David Miller for his sparc64
kprobes port.

Thanks are due to all others in the Linux
Kernel community who have helped improve
the kprobes infrastructure through reviews,
patches, bug reports, and suggestions.

8Refer to [2] for usage examples.

11 Legal statements

Copyright (© IBM Corporation, 2006.
Copyright (©) 2006, Intel Corporation.
Copyright (¢) Hitachi, Ltd. 2006

This work represents the view of the authors and
does not necessarily represent the view of IBM, In-
tel, or Hitachi.

IBM and PowerPC are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Intel and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] DProbes. http:
//sourceware.org/systemtap/
kprobes/index.html.

[2] Documentation/kprobes.txt. In
the Linux Kernel sources.

[3] Documentation/RCU/ *. In the
Linux Kernel sources.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

SystemTap. http:
//sourceware.org/systemtap/.

Suparna Bhattacharya. Dynamic
Probes—Debugging by Stealth. In
Proceedings of Linux.Conf.Au, 2003.

Ananth N. Mavinakayanahalli. Kprobes:
Remove global kprobe_lock, July 2005.
http://sources.redhat.com/
ml/systemtap/2005-g3/
msg00182.html.

Paul McKenney and Dipankar Sarma et
al. Read Copy Update. In Proceedings of
the Ottawa Linux Symposium, 2002.

Richard J. Moore. A universal dynamic
trace for Linux and other operating
systems. In FREENIX, 2001.

Prasanna S. Panchamukhi. Kernel
debugging with Kprobes: Insert printk’s
into Linux kernel on the fly, August
2004. http://www—106.1ibm.com/
developerworks/library/
l-kprobes.html?ca=dgr-1nx%
w0 7Kprobe.

Prasanna S. Panchamukhi. Hardware
debug register allocation mechanism,
August 2005.
http://marc.theaimsgroup.
com/?1l=linux-kernel&m=
112539056208001&w=2.

Prasanna S. Panchamukhi. Lightweight
interface for kernel-space watchpoint
probes, August 2005.
http://marc.theaimsgroup.
com/?1=1linux-kernel&m=
112539056207779&w=2.

Prasanna S. Panchamukhi. [RFC]
Approaches to user-space probes, March
2006.
http://marc.theaimsgroup.

2006 Linux Symposium, Volume Two e 115

com/?l=1linux—-kernelé&m=
114344261621050&w=2.

Prasanna S. Panchamukhi. User space
probes support, March 2006.
http://marc.theaimsgroup.
com/?1l=1linux-kernel&m=
114283503327535&w=2.

116 e Probing the Guts of Kprobes

Proceedings of the
Linux Symposium

Volume Two

July 19th—-22nd, 2006
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

