
Enabling Docking Station Support for the Linux Kernel
Is Harder Than You Would Think

Kristen Carlson Accardi
Open Source Technology Center, Intel Corporation

kristen.c.accardi@intel.com

Abstract

Full docking station support has been a feature
long absent from the Linux kernel—for good
reason. From ACPI to PCI, full docking sta-
tion support required modifications to multiple
subsystems in the kernel, building on code that
was designed for server hot-plug features rather
than laptops with docking stations. This paper
will present an overview of the work we have
done to implement docking station support in
the kernel as well as a summary of the techni-
cal challenges faced along the way.

We will first define what it means to dock and
undock. Then, we will discuss a few varia-
tions of docking station implementations, both
from a hardware and firmware perspective. Fi-
nally, we will delve into the guts of the soft-
ware implementation in Linux—and show how
adding docking station support is really harder
than you would think.

1 Introduction and Motivation

It’s no secret that people have not been clam-
oring for docking station support. Most peo-
ple do not consider docking stations essential,
and indeed some feel they are completely un-
necessary. However, as laptops become thinner

and lighter, more vendors are seeking to replace
functionality that used to be built into the lap-
top with a docking station. Commonly, docking
stations will provide additional USB ports, PCI
slots, and sometimes extra features like built in
media card readers or Ethernet ports. Most ven-
dors seem to be marketing them as space saving
devices, and as an improved user experience for
mobile users who do not wish to manage a lot
of peripheral devices.

We embarked on the docking station project for
a few reasons. Firstly, we knew there were a
few members of the Linux community out there
who actually did use docking stations. These
people would hopefully post to the hotplug PCI
mailing lists every once in a while, wondering
if some round of I/O Hotplug patches would en-
able hot docking to work. Secondly, there was
a need to be able to implement a couple sce-
narios that dock stations provide a convenient
test case for. Many dock stations are actually
Peer-to-peer bridges with a set of buses and de-
vices located behind the bridge. Hot add with
devices with P2P bridges on them had always
been hard for us to test correctly due to lack of
devices. Also, the ACPI _EJD method is com-
monly used in AML code for docking stations,
but this method can also be applied to any hot-
pluggable tree of devices. Finally, we felt that
with the expanding product offerings for dock
stations, filling this feature gap would eventu-

10 • Enabling Docking Station Support for the Linux Kernel

ally become important.

2 Docking Basics

There are three types of docking that are de-
fined.

• Cold Docking/Undocking Laptop is
booted attached to the dock station.
Laptop is powered off prior to removal
from the dock station. This has always
been supported by Linux. The devices on
the dock station are enumerated as if they
are part of the laptop.

• Warm Docking/Undocking Laptop is
booted either docked or undocked. Sys-
tem is placed into a suspend state, and then
either docked or undocked. This may be
supported by Linux, assuming that your
laptop actually suspends. It depends really
on whether a driver’s resume routine will
rescan for new devices or not.

• Hot Docking/Undocking Laptop is
booted outside the dock station. Laptop is
then inserted into the dock station while
completely powered and operating. This
has recently had limited support, but only
with a platform specific ACPI driver.
Hotplugging new devices on the dock
station has never been supported.

Docking is controlled by ACPI. ACPI defines
a dock as an object containing a method called
_DCK. An example dock device definition is
shown in Figure 1.

_DCK is what ACPI calls a "control method".
Not only does it tell the OS that this ACPI ob-
ject is a dock, it also is used to control the iso-
lation logic on the dock connector.

Device (DOCK1) {
Name(_ADR, . . .)
Method(_EJ0, 0) {. . . }
Method(_DCK, 1) {. . . }

}

Figure 1: Example DSDT that defines a Dock
Device

When the user places their system into the
docking station, the OS will be notified with an
interrupt, and the platform will send a Device
Check notify. The notify will be sent to a no-
tify handler and then that handler is responsible
for calling the _DCK control method with the
proper arguments to engage the dock connec-
tor.

_DCK as defined in the ACPI specification
is shown in Figure 2. Assuming that _DCK
returned successfully, the OS must now re-
enumerate all enumerable buses (PCI) and also
all the other devices that may not be on enumer-
able buses that are on the dock.

Undocking is just like docking, only in reverse.
When the user hits the release button on the
docking station, the OS is notified with an eject
request. The notify handler must first execute
_DCK(0) to release the docking connector, and
then should execute the _EJ0 method after re-
moving all the devices that are on the docking
station from the OS.

The _DCK method is not only responsible for
engaging the dock connector, it seems to also
be a convenient place for system manufacturers
to do device initialization. This is all imple-
mentation dependent. I have seen _DCK meth-
ods that do things such as programming a USB
host controller to detect the USB hub on the
dock station, issuing resets for PCI devices, and
even attempting to modify PCI config space to
assign new bus numbers1 to the dock bridge.

1Highly unacceptable behavior

2006 Linux Symposium, Volume One • 11

This control method is located in the device object that represents the docking station
(that is, the device object with all the _EJx control methods for the docking station). The
presence of _DCK indicates to the OS that the device is really a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an OS
to prepare for docking before the bus is activated and devices appear on the bus [1].

Arguments:
Arg0

1 Dock (that is, remove isolation from connector)
0 Undock (isolate from connector)

Return Code:
1 if successful, 0 if failed.

Figure 2: _DCK method as defined in the ACPI Specification

The only way to know for sure what the _DCK
method does is to disassemble the DSDT.

3 Driver Design Considerations

There are platform specific drivers in the ACPI
tree. The ibm_acpi drier had previously
implemented a limited type of docking sta-
tion support that would only work on certain
ibm laptops. Essentially, this driver would
hard code the device name of the dock to find
the dock, and then would execute the _DCK
method without rescanning any of the buses or
inserting any of the non-enumerable devices. It
suffers from being platform specific, which is
not ideal. We wanted to make a generic solu-
tion that would work for most platforms.

We originally assumed that all dock stations
were the same: a dock bridge would be located
on the dock station, which was a P2P bridge,
and all devices would be located behind the P2P
bridge. The IBM ThinkPad Dock II is an ex-
ample of this type of implementation, shown
in Figure 4. The same driver (acpiphp) that
could hotplug any device that had a P2P bridge

Notebook Docking

PCI-PCI

Bridge

Secondary
PCI Bus

PCI Adapter

Card Slot

PCI Bus

USB USB 2.0 Hub

Controller

UltraBay
PCI

IDE Controller

PC Card

Controller

ICH

PC Card

Slot
PC Card

Slot

CRT, DVI, Serial, Parallel, Mouse, Keyboard, etc.

Figure 4: The IBM ThinkPad Dock II
c©2006, Noritoshi Yoshiyama, Lenovo Japan,

Ltd—Used by Permission

on it could be used to hotplug the dock station
devices, with the minor addition of needing to
execute the _DCK method prior to scanning for
new devices.

These were bad assumptions.

3.1 Variations in dock device definitions

The dock device definition for a few IBM
ThinkPads that I had available is shown in Fig-
ure 5. The physical device is a P2P bridge.

12 • Enabling Docking Station Support for the Linux Kernel

IBM_HANDLE(dock, root, "_SB.GDCK", /* X30, X31, X40 */
"_SB.PCI0.DOCK", /* 600e/x,770e,...,X20-21 */
"_SB.PCI0.PCI1.DOCK", /* all others */
"_SB.PCI.ISA.SLCE", /* 570 */

);

Figure 3: Defining a dock station in ibm_acpi.c

It appears to fit the ACPI definition of a stan-
dard PCI hotplug slot, in that it exists under the
scope of PCI0, it has an _ADR function, and it
is ejectable (has an _EJ0). It contains the _DCK
method, indication that it is a docking station as
well. This was our original view of the docking

T20,T30,T41, T42 look like this:
Device (PCI0)

Device (DOCK)
{

Name (_ADR, 0x00040000)
Method (_BDN, 0, NotSerialized)
Name (_PRT, Package (0x06)
Method (_STA, 0, NotSerialized)
Method (_DCK, 1, NotSerialized)
Method (_EJ0, . . .)

Figure 5: IBM T20, T30, T41, T42 DSDT

station.

Unfortunately for us, not all dock stations are
the same. Sometimes system manufactures cre-
ate a "virtual" device to represent the dock.
It simply calls methods under the "real" dock
bridge. In this case, the acpiphp driver will
not recognize the GDCK device as an ejectable
slot because it has no _ADR. In addition, it
will not recognize the "real" dock device as
an ejectable PCI slot because _EJ0 is not de-
fined under the scope of the Dock(), but in-
stead under the virtual device GDCK. An ex-
ample of this type of DSDT is shown in Fig-
ure 6. There are also dock stations that do not

Notebook Docking

PCI Express Adapter

Card Slot

PCI Express

USB USB 2.0 Hub

Controller

UltraBay

ICH

CRT, DVI, Ethernet , Modem , Mouse, Keyboard, etc.

LPC
Super I/O

Serial
Port

Parallel
Port

USB-IDE

Controller

USB Media

Controller

Media

Card Slot
Media

Card Slot

Figure 7: The Lenovo ThinkPad Advanced
Dock Station

c©2006, Noritoshi Yoshiyama, Lenovo Japan,
Ltd—Used by Permission

utilize a P2P bridge for PCI devices, such as
the Lenovo ThinkPad Advanced Dock Station,
shown in Figure 7. In addition, there are dock
stations that do not have any PCI devices on
them at all. This made using the ACPI PCI hot-
plug driver a bit nonsensical. However, the nor-
mal ACPI driver model also didn’t work, be-
cause ACPI drivers will only load if a device
exists. However, we decided to move the im-
plementation from the PCI hotplug driver into
ACPI, because there really was nowhere else to
put it.

In order to decouple the dock functionality
from the hotplug functionality, the dock driver
needs to allow other drivers to be notified upon
a dock event, and also to register individual hot-
plug notification routines. This way, the dock

2006 Linux Symposium, Volume One • 13

Scope (_SB)
Device(GDCK)

Method (_DCK, 1, NotSerialized)
{

Store (0x00, Local0)
If (LEqual (GGID (), 0x03))
{

Store (_SB.PCI0.LPC.EC.SDCK (Arg0), Local0)
}
If (LEqual (GGID (), 0x00))
{

Store (_SB.PCI0.PCI1.DOCK.DDCK (Arg0), Local0)
}
Return (Local0)

}
Method (_EJ0, 1, NotSerialized)

. . .
Device (PCI1)

Device (DOCK)
{

Name (_ADR, 0x00030000)
Name (_S3D, 0x02)
Name (_PRT, Package (0x06)

Figure 6: Alternative dock definition

driver can just handle the dock notifications
from ACPI, and individual subsystems/drivers
can handle how to hotplug new devices. In the
case of PCI, acpiphp can still handle the de-
vice insertion, but it will not be used if there are
no PCI devices on the dock station.

4 Driver Implementation Details

The driver is located in drivers/acpi/
dock.c. It makes a few external functions
available to drivers who are interested in dock
events.

4.1 External Functions

int is_dock_device(acpi_

handle handle)

This function will check to see if an ACPI
device referenced by handle is a dock
device. This means that the device either
is a dock station, or a device on the dock
station.

int register_dock_

notifier(struct notifier_

block *nb)

Sign up for dock notifications. If a
driver is interested in being notified when
a dock event occurs, it can send in a
notifier_block and be called right
after _DCK has been executed, but before
any devices have been hotplugged.

14 • Enabling Docking Station Support for the Linux Kernel

int unregister_dock_

notifier(struct notifier_

block *nb)

Remove a driver’s notifier_block.

acpi_status register_

hotplug_dock_device (acpi_

handle, acpi_notify_

handler, void *)

Pass an ACPI notify handler to the dock
driver, to be called when a dock event
has occurred. This allows drivers such as
acpiphp which need to re-enumerate
buses after a dock event to register their
own routine to handle this activity.

acpi_status unregister_

hotplug_dock_device(acpi_

handle handle)

Remove a notify handler from the dock
station’s hotplug list.

4.2 Driver Init

At init time, the dock driver walks the ACPI
namespace, looking for devices which have de-
fined a _DCK method.

/∗ look for a dock station ∗/
acpi_walk_namespace(

ACPI_TYPE_DEVICE,

ACPI_ROOT_OBJECT, ACPI_UINT32_MAX,

find_dock, &num, NULL);

If we find a dock station, then we create a pri-
vate data structure to hold a list of devices de-
pendent on the dock station, and also hotplug
notify blocks.

We can detect devices dependent on the dock
by walking the namespace looking for _EJD
methods. _EJD is another method defined by
ACPI, that is associated with devices that have
a dependency on other devices. From the spec:

This object is used to specify the
name of a device on which the device,
under which this object is declared,
is dependent. This object is primar-
ily used to support docking stations.
Before the device indicated by _EJD
is ejected, OSPM will prepare the de-
pendent device (in other words, the
device under which this object is de-
clared) for removal [1].

So, to translate, all devices that are behind a
dock bridge should have an _EJD method de-
fined in them that names the dock.

Drivers or subsystems can register for dock no-
tifications if they control a device dependent on
the dock station. Drivers use the is_dock_
device() function to determine if they are
a device on a dock station. This allows for
re-enumeration of the subsystem after a dock
event if it is necessary. In the case of PCI de-
vices, the acpiphp driver is modified to de-
tect not only ejectable PCI slots, but also PCI
dock bridges or hotpluggable PCI devices. If
it does find one of these devices, then it will
request that the dock driver notify acpiphp
whenever a dock event occurs. When a system
docks, the acpiphp driver will treat the event
like any other PCI hotplug event, and rescan the
appropriate bus to see if new devices have been
added.

4.3 Dock Events

At driver init time, the dock driver registers
an ACPI event handler with the ACPI subsys-
tem. When a dock event occurs, the dock
driver event handler will be called. A dock
is a ACPI_NOTIFY_BUS_CHECK event type.
First, the event handler will make sure that we
are not already in the middle of docking. This
check is needed, because I found on some dock

2006 Linux Symposium, Volume One • 15

stations/laptop combos that false dock events
were being generated by the system—probably
due to a faulty physical connection. We ignore
these false events. It is also necessary to ensure
that the dock station is actually present before
performing the _DCK operation. This is ac-
complished by the dock_present() func-
tion. dock_present() just executes the
ACPI _STA method. _STA will report whether
or not the device is present.

if (!dock_in_progress(ds) &&
dock_present(ds)) {

begin_dock() just sets some state bits to in-
dicate that we are now in the middle of handling
a dock event.

begin_dock(ds);

dock() will execute the _DCK method with the
proper arguments.

dock(ds);

We confirm that the device is still present and
functioning after the _DCK method.

if (!dock_present(ds)) {
printk(KERN_ERR PREFIX

"Unable to dock!\n");
break;

}

We notify all drivers who have registered with
the register_dock_notifier() func-
tion. This allows drivers to do anything that
they want prior to handling a hotplug notifi-
cation. This can be important if _DCK does
something that needs to be undone. For exam-
ple, on the IBM T41, the _DCK method will
clear the secondary bus number for the parent
of the dock bridge2. This makes it a bit hard
for acpiphp to scan buses looking for new de-
vices. acpiphp can register a function that is

2also highly unacceptable

called by the notifier_call_chain that
will clean up this mistake prior to calling the
hotplug notification function.

notifier_call_chain(
&dock_notifier_list, event,
NULL);

Drivers or subsystems that need to be notified
so that devices can be hotplugged can register
a hotplug notification function with the dock
driver by using the register_hotplug_
dock_device() function. hotplug_
devices() just walks the list of hotplug no-
tification routines and calls each one of them in
the order that it was received.

hotplug_devices(ds, event);

We clear the dock state bits to indicate that we
are finished docking.

complete_dock(ds);

Now we alert userspace that a dock event has
occurred. This event should be sent to the acpid
program. If a userspace program is ever written
or modified to care about dock events, they can
use acpid to get those events.

if (acpi_bus_get_device(
ds→handle, &device))

acpi_bus_generate_event(
device, event, 0);

Undocking is mostly just the reverse of dock-
ing. An undock is a ACPI_NOTIFY_EJECT_
REQUEST type. Once again, we must not be
in the middle of handling a dock event, and the
dock device must be present in order to handle
the eject request properly.

if (!dock_in_progress(ds) &&
dock_present(ds)) {

Because undocking may remove the acpi_
device structure that we need to send dock

16 • Enabling Docking Station Support for the Linux Kernel

events to userspace, we send our undock noti-
fication to the acpid prior to actually executing
_DCK.

if (acpi_bus_get_device(
ds→handle, &device))

acpi_bus_generate_event(
device, event, 0);

We also must call all the hotplug routines to
notify them of the eject request. This is im-
portant to do prior to executing _DCK, since
_DCK will release the physical connection and
may make it impossible for clean removal of
some devices. Finally, we can call undock(),
which simply executes the _DCK method with
the proper arguments.

hotplug_devices(ds, event);
undock(ds);

The ACPI spec requires that all dock stations
(i.e. objects which define _DCK) also define an
_EJ0 routine. This must be called after _DCK
in order to properly undock. What this routine
actually does is system dependent.

eject_dock(ds);

At this point, a call to _STA should indicate that
the dock device is not present.

if (dock_present(ds))
printk(KERN_ERR PREFIX

"Unable to undock!\n");

The design of the driver was intentionally kept
strictly to handling dock events. For this rea-
son, this is the only thing of interest that this
driver does.

5 Conclusions

Dock stations make excellent test cases for hot-
plug related kernel code. Attempting to hot-
plug a device which can be a PCI bridge with

a tree of devices under it exposed some inter-
esting problems that apply to other devices be-
sides dock stations. Right now we require the
use of the pci=assign-buses parameter, mainly
because the BIOS may not reserve enough bus
numbers for us to insert a new dock bridge and
other buses behind it. I found a couple prob-
lems with how bus numbers are assigned dur-
ing my work which required patches to the PCI
core. In many ways the problems that are faced
with implementing hot dock are directly appli-
cable to hotplugging on servers. Therefore, it is
valuable work to continue, even if only 3 peo-
ple in the world still use a docking station. We
do believe that docking station usage will rise
as system vendors create more compelling uses
for them.

Dock station hardware implementations can re-
ally vary. It’s very common to have a P2P
bridge located on the dock station, with a tree of
devices underneath it, however, it isn’t the only
implementation. Because of this, it’s important
to handle docking separately from any hotplug
activity, so that all the intelligence for hotplug
can be handled by the individual subsystems or
drivers rather than in one gigantic dock driver.
I have only implemented changes to allow one
driver to hotplug after a dock, but more drivers
or subsystems may be modified in the future.

I have very limited testing done at this point,
and every time a new person tries the dock
patches, the design must be modified to handle
yet another hardware implementation. As us-
age increases, I expect that the implementation
described in this paper will evolve to something
which hopefully allows more and more laptop
docking stations to "just work" with Linux.

References

[1] Advanced Configuration and Power

2006 Linux Symposium, Volume One • 17

Interface specification. www.acpi.info,
3.0a edition.

[2] PCI Hot Plug specification.
www.pcisig.com, 1.1 edition.

[3] PCI Local Bus specification.
www.pcisig.com, 3.0 edition.

[4] PCI-to-PCI Bridge specification.
www.pcisig.com, 1.2 edition.

[5] Jonathan Corbet, Alessandro Rubini, and
Greg Kroah-Hartman. Linux Device
Drivers. O’Reilly,
http://lwn.net/Kernel/LDD3/.

18 • Enabling Docking Station Support for the Linux Kernel

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

