
Towards a Highly Adaptable Filesystem Framework for
Linux

Suparna Bhattacharya
Linux Technology Center
IBM Software Lab, India
suparna@in.ibm.com

Dilma Da Silva
IBM T.J. Watson Research Center, USA

dilmasilva@us.ibm.com

Abstract

Linux R© is growing richer in independent gen-
eral purpose file systems with their own unique
advantages, however, fragmentation and diver-
gence can be confusing for users. Individual
file systems are also adding an expanding num-
ber of options (e.g. ext3) and variations (e.g.
reiser4 plugins) to satisfy new requirements.
Both of these trends indicate a need for im-
proved flexibility in file system design to ben-
efit from the best of all worlds. We explore
ways to address this need, using as our basis,
KFS (K42 file system), a research file system
designed for fine-grained flexibility.

KFS aims to support a wide variety of file struc-
tures and policies, allowing the representation
of a file or directory to change on the fly to
adapt to characteristics not well known a priori,
e.g. list-based to tree-based, or small to large
directory layouts. It is not intended as yet an-
other file system for Linux, but as a platform
to study trade-offs associated with adaptability
and evaluate new algorithms before incorpora-
tion on an established file system. We hope
that ideas and lessons learnt from the experi-
ence with KFS will be beneficial for Linux file
systems to evolve to be more adaptable and for
the VFS to enable better building-block-based
code sharing across file systems.

1 Introduction

The Linux 2.6 kernel includes over 40 filesys-
tems, about 0.6 million lines of code in total.
The large number of Linux filesystems as well
as their sheer diversity is a testament to the
power and flexibility of the Linux VFS. This
has enabled Linux to support a wide range of
existing file system formats and protocols. In-
terestingly, this has also resulted in a growing
number of new file systems that have been de-
veloped for Linux. The 2.5 development series
saw the inclusion of four(ext3, reiserFS, JFS,
and XFS) general purpose journalling filesys-
tems, while in recent times multiple cluster
filesystems have been submitted to the mainline
kernel, providing users a slew of alternatives to
choose from. Allowing multiple independent
general purpose filesystems to co-exist has also
had the positive effect of enabling each to in-
novate in parallel within its own space making
different trade-offs and evolving across multi-
ple production releases. New file systems have
a chance to prove themselves out in the real
world, letting time pick the best one rather than
standardize on one single default filesystem[6].

At the same time, the multiplicity of filesystems
that essentially address very similar needs also
sometimes leads to unwarranted fragmentation
and divergence from the perspective of users



88 • Towards a Highly Adaptable Filesystem Framework for Linux

who may find themselves faced with complex
administrative choices with associated lock-in
to a file system format chosen at a certain point
in time. This is probably one reason why
most users tend to simply adopt the default
file system provided by their Linux distribution
(i.e. ext3 or reiserfs), despite the availability of
possibly more advanced filesystems like XFS
and JFS, which might have been more suitable
for their primary workloads. Each individual
filesystem has been evolving to expand its ca-
pabilities by adding support for an increasing
number of options and variations, to satisfy new
requirements, and make continuous improve-
ments while also maintaining compatibility.

We believe that these trends point to a need for
a framework for a different kind of flexibility
in file system design for the Linux kernel, one
that allows continuous adaptability to evolv-
ing requirements, but reduces duplicate effort
while providing users the most appropriate lay-
out and capabilities for the workload and file
access patterns they are running.

This work has two main goals: (1) to inves-
tigate how far a design centered on support-
ing dynamic customization of services can help
to address Linux’s needs for flexible file sys-
tems and (2) to explore performance benefits
and trade-offs involved in a design for flexibil-
ity.

The basis of our exploration is the HFS/KFS
research effort started a decade ago. In the
Hurricane File System (HFS), the support for
dynamic alternatives for file layout were mo-
tivated by the scalability requirements of the
workloads targetted by the Hurricane operating
system project. The K42 File System (KFS)
built on the flexibility basis of HFS, expand-
ing it by encorporating the architectural prin-
ciples in the K42 Research Operating System
project. While KFS was designed as a sepa-
rate filesystem of its own, in this work we ex-
plore what it would take to apply similar tech-

niques to existing filesystems, where such fine-
grained flexibility was not an original design
consideration. We also update KFS to work
with Linux 2.6, aiming at carrying out exper-
imental work that can provide concrete infor-
mation about the impact of KFS’s approach on
addressing workload-specific performance re-
quirements.

The rest of the paper is organized as fol-
lows: Section 2 illustrates how adaptability
is currently held in Linux filesystems; Sec-
tion 3 presents the basic ideas from KFS’s de-
sign; Section 4 discusses KFS’s potential as an
adaptable filesystem framework for Linux and
Section 5 describes required future work to en-
able this vision. Section 6 concludes.

2 Adaptability in Linux filesystems

2.1 Flexibility provided by the VFS layer

The Linux Virtual File System (VFS) [24] is
quite powerful in terms of the flexibility it pro-
vides for implementing filesystems, whether
disk-based filesystems, network filesystems or
special purpose pseudo filesystems. This flex-
ibility is achieved by abstracting key filesys-
tem objects, i.e. the super block, inode and file
(for both files and directories) including the ad-
dress space mapping, the directory entry cache,
and methods associated with each of these ob-
jects. It is possible to allow different inodes in
the same filesystem to have different operation
vectors. This is used, for example, by ext3 to
support different journalling modes elegantly,
by some types of stackable/filter filesystems
to provide additional functionality to an exist-
ing filesystem, and even for specialized access
modes determined by open mode, e.g. execute-
in-place support. Additionally, the inclusion of
extended attributes support in the VFS methods



2006 Linux Symposium, Volume One • 89

allows customizable persistent per-inode state
to be maintained, which can be used to specify
variations in functional behavior at an individ-
ual file level.

The second aspect of flexibility ensues from
common code provided for implementation
of various file operations, i.e. generic rou-
tines which can be invoked by filesystems
or wrapped with additional filesystem-specific
code. The bulk of interfacing between
the VFS and the Virtual Memory Manager
(VMM), including read-ahead logic, page-
caching and access to disk blocks for block-
device-based filesystems, happens in this man-
ner. Some of these helper routines (e.g.
mpage_writepages()) accept function pointers
as arguments, e.g. for specifying a filesystem
specific getblock() routine, which also allows
for potential variation of block mapping and
consistency and allocation policies even within
the same filesystem.

Another category of helper routines called
libfs [4] is intended for simplifying the task
of writing new virtual filesystems, though cur-
rently targeted mainly at stand-alone virtual
filesystems developed for special-purpose in-
terfacing between kernel and user space, as an
alternative to using ioctls or new system calls.

2.2 Flexibility within individual filesystems

Over time, the need to satisfy new requirements
while maintaining on-disk compatibility to the
extent possible has led individual filesystems
to incorporate a certain degree of variability
within each filesystem specific implementation,
using mount options, fcntls/ioctls, file attributes
and internal layering. In this sub-section we
cover a few such examples. While we limit this
discussion to a few disk-based general purpose
filesystems, similar approaches apply to other
filesystem types as well.

We do not presently consider file systems that
are not intended to be part of the mainline
Linux kernel tree.

2.2.1 Ext3 options and backward compati-
bility

One of the often cited strengths of the ext3
filesystem is its high emphasis on backwards
and forwards compatibility and dependability,
even as it continues evolving to incorporate
new features and enhancements. This has been
achieved through a carefully designed compati-
bility bitmap scheme [22], the use of mount op-
tions and tune2fs to turn on individual features
per filesystem, conversion utilities to ease mi-
gration to new incompatible features (e.g. us-
ing resize2fs-type capability), and per-file flags
and attributes that can be controlled through the
chattr command.

Three compatibility bitmaps in the super block
determine if and how an old kernel would
mount a filesystem with an unknown feature
bit marked in each of these bitmaps: read-write
(COMPAT), read-only (RO_COMPAT), and in-
compatible (INCOMPAT)). For safety reasons,
though, the filesystem checker e2fsck takes the
stringent approach of not touching a filesystem
with an unknown feature bit even if it is in the
COMPAT set, recommending the usage of a
newer version of the utility instead. Backward
compatibility with an older kernel is useful
during a safe revert of an installation/upgrade
or in enabling the disk to be mounted from
other Linux systems for emergency recovery
purposes. For these reasons interesting tech-
niques have been used in the development of
features like directory indexing [16] making in-
terior index nodes look like deleted directory
entries and clearing directory-indexing flags
when updating directories in older kernels to
ensure compatibility as far as possible. Simi-
lar considerations are being debated during the



90 • Towards a Highly Adaptable Filesystem Framework for Linux

design of file pre-allocation support to avoid
exposing uninitialized pre-allocated blocks if
mounted by an older kernel. With the inclusion
of per-inode compatibility flags, the granularity
of backward compatibility support can be nar-
rowed down to a per-file level. This may be
useful during integration of extent maps.

The use of mount options and tune2fs makes it
possible for new, relatively less established or
incompatible features to be turned on option-
ally with explicit administrator knowledge for
a few production releases before being made
the default. Also, in the future, advanced fea-
ture sets may be bundled into a higher level
group that signifies a generational advance of
the filesystem [23]. Mount options are also
used for setting consistency policies (i.e. jour-
nalling mode) on a per filesystem basis. Ad-
ditionally, ext3 makes use of persistent file at-
tributes (through the introduction of the chattr
command), in combination with the ability to
use different operation vectors for different in-
odes, to allow certain features/policies (e.g. full
data journalling support for certain log files,
preserving reservation beyond file close for
slow-growing files) to be specified for individ-
ual files.

2.2.2 JFS and XFS

Although JFS [20] does not implement compat-
ibility bitmaps as ext3 does, its on-disk layout
is scalable, and backward compatibility has not
been much of an issue. The on-disk directory
structure was changed shortly after JFS was
ported from OS/2 R© to Linux, causing a ver-
sion bump in the super block. Since then, there
has been no need to change the on-disk layout
of JFS. The kernel will still support the older,
OS/2-compatible, format.

JFS uses extent-based data structures and uses
40 bits to store block offsets and addresses. The

on-disk layout supports various block sizes, al-
though the kernel currently only supports a 4
KB block size. Without increasing the block
size, JFS can support files and partitions up to 4
petabytes in length. B+ trees are used to imple-
ment both the extent maps and directories. In-
odes are dynamically allocated as needed, and
extents of free inodes are reclaimed. JFS can
store file names in 16-bit unicode, translating
from the code page specified by the iocharset
mount option. The default is to do no transla-
tion.

JFS supports most mount options and chattr
flags that ext3 does. Journaling can be tem-
porarily disabled with the nointegrity mount
flag. This is primarily intended to speed up
the population of a partition, for instance, from
backup media, where recovery would involve
reformatting and restarting the process, with no
risk of data loss.

XFS [21] also has a scalable ondisk layout, uses
extent based structures, variable block sizes,
dynamic inode allocation and separate alloca-
tion groups. It supports an optional real-time
allocator suitable for media streaming applica-
tions.

2.2.3 Reiser4 plugins

Much like ext3 and JFS, the reiserfs v3 filesys-
tem included in the current Linux kernel uses
mount options and persistent inode attributes
(set via chattr) to provide new features and vari-
ability of policies. For example, the hash func-
tion for directories can be selected by a mount
option, as can some tuning of the block alloca-
tor, while tail-merging can be disabled on both
a per mount point or per inode basis. It supports
the same journalling modes as ext3.

The next generation of reiserfs, the reiser4
filesystem [15] (not yet in the mainline Linux



2006 Linux Symposium, Volume One • 91

kernel), includes an internal layering architec-
ture that is intended to allow for the develop-
ment for different kinds of plugins to make ex-
tensions to the filesystem without having to up-
grade/format to a new version. This approach
enables the addition of new features like com-
pression, support for alternate semantics, di-
rectory ordering, security schemes, block allo-
cation and consistency policies, and node bal-
ancing policies for different items. The stated
goal of this architecture is to enable and encour-
age developers to build plugins to customize
the filesystem with features desired by applica-
tions. From the available material at this stage,
it is not clear to us yet the extent to which plug-
ins are intended to address fine-grain flexibility
or dynamic changes of on-disk data representa-
tion beyond tail formatting and item merging in
dancing trees. Also, at a first glance our (possi-
bly mistaken) perception is that reiser4 flexibil-
ity support comes with the price of complexity:
the code base is large, and the interfaces appear
to be tied to reiser4 internals.

2.3 Limitations of current approaches

While there is a considerable amount of flexi-
bility within the existing framework, both at the
VFS level and within individual file systems,
there are some observations and issues emerg-
ing with the evolution of multiple new filesys-
tems and new generations of filesystems that
have been in existence for a while.

• Code commonality is supported at higher
levels but not for lower level data manip-
ulation, e.g. with the inclusion of extents
support for ext3 there would be over 5 B+
separate tree implementations across indi-
vidual filesystems.

• While the combination of per-inode oper-
ation vectors and persistent attribute flags

allows for flexibility at per inode level, and
alternate allocation schemes can poten-
tially be encapsulated in the get_blocks()
function pointer used for a given opera-
tion, there is no general framework to sup-
port different layouts for different files in
a cohesive manner, to move from an old
scheme to a new one in a modular fashion,
or supply different meta-data or data allo-
cation policies for a group of files, because
the inode representation is typically fixed
upfront.

• There is no framework for filesystems
to provide their building blocks for use
by other filesystems, for example even
though OCFS2 [5] chose to start with a lot
of code from ext3 as its base, this involved
copying source code and then editing it to
add all the function it needed for clustering
support and scalability. As a result, exten-
sions like 64-bit and extents support from
OCFS2 can not be applied back as exten-
sions to ext3 as an option. Because of its
long history of simplicity and dependabil-
ity, ext2/3 is often the preferred choice for
basing experimentation for advanced ca-
pabilities [9], so the ability to specialize
behaviour starting from a common code
base is likely to be useful.

• Difficulty with making changes to the on-
disk format for an existing file system re-
sults in implementers getting locked into
supporting a change once made, and hence
requires very careful consideration and
make take years into real deployment es-
pecially for incompatible features. Even
compatible features on ext2/3 are incom-
patible with older filesystem checkers.



92 • Towards a Highly Adaptable Filesystem Framework for Linux

3 Overview of KFS

KFS builds on the research done by the Hurri-
cane File System (HFS) [14, 13, 12]. HFS was
designed for (potentially large-scale) shared-
memory multiprocessors, based on the prin-
ciple that, in order to maximize performance
for applications with diverse requirements, a
file system must support a wide variety of file
structures, file system policies, and I/O inter-
faces. As an extreme example, HFS allows
a file’s structure to be optimized for concur-
rent random-access write-only operations by 10
threads, something no other file system can do.
HFS explored its flexibility to achieve better
performance and scalability. It proved that its
flexibility came with little processing or I/O
overhead. KFS took HFS’s principles further
by eliminating global data structures or poli-
cies. KFS runs as a file system for the K42 [10]
and Linux operating systems.

The basic aspect of KFS’s enablement of fine-
grained customization is that each virtual or
physical resource instance (e.g., a particular
file, open file instance, block allocation map)
is implemented by a different set of (C++) ob-
jects. The goal of this object-oriented design is
to allow each file system element to have the
logical and physical representation that better
matches its size and access pattern characteris-
tics. Each element in the system can be ser-
viced by the object that best fits its require-
ments; if the requirements change, the compo-
nent representing the element in KFS can be re-
placed accordingly. Applications can achieve
better performance by using the services that
match their access patterns, scalability, and
synchronization requirements.

When a KFS file system is mounted, the blocks
on disk corresponding to the superblock are
read, and a SuperBlock object is instantiated to
represent it. A BlockMap object is also instanti-
ated to represent block allocation information.

Another important object instantiated at file
system creation time is the RecordMap, which
keeps the association between file system ele-
ments, their object type, and their disk location.
In many traditional Unix file systems, this as-
sociation is fixed and implicit: every file or di-
rectory corresponds to an inode number; inode
location and inode data representation is fixed
a priori. Some file systems support dynamic
block allocation for inodes and a set of alter-
native inode representations. In KFS, instead
of trying to accommodate new possibilities for
representation and dynamic policies incremen-
tally, we take the riskier route of starting with
a design intended to support change and diver-
sity of representations. KFS explores the im-
pact of an architecture centered on supporting
the design and deployment of evolving alter-
native representations for file system resources.
The goal is to learn how far this architecture
can go in supporting flexibility, and what are
the trade-offs involved in this approach.

An element (file or directory) in KFS is rep-
resented in memory by two objects: one pro-
viding a logical view of the object (called Log-
ical Server Object, or LSO), and one encap-
sulating its persistent characteristics (Physical
Server Object, or PSO).

Figure 1 portrays the scenario where three files
are instantiated: a small file, a very large file,
and a file where extended allocation is being
used. These files are represented by a common
logical object (LSO) and by PSO objects tai-
lored for their specific characteristics: PSOs-
mall, PSOextent, PSOlarge. If the small file
grows, the PSOsmall is replaced by the appro-
priate object (e.g., PSOlarge). The RecordMap
object is updated in order to reflect the new ob-
ject type and the (potential) new file location on
disk.

KFS file systems may spawn multiple disks.
Figure 2 pictures a scenario where file X is
being replicated on the two available disks,



2006 Linux Symposium, Volume One • 93

PSOsmall PSOlarge

SuperBlock

BlockMap

LSO

RecordMap

LSO LSO

PSOextent

Figure 1: Objects representing files with different size and access pattern characteristics in KFS.

while file Y is being striped on the two disks
in a round-robin fashion, and file Z is also be-
ing replicated, but with its content being com-
pressed before going to disk.

In the current KFS implementation, when a file
is created the choice of object implementation
to be used is explicitly made by the file system
code based on simplistic heuristics. Also, the
user could specify intended behavior by chang-
ing values on the appropriate objects residing
on /proc or use of extended attributes to provide
hints about the data elements they are creating
or manipulating.

As the file system evolves, compatibility with
“older” formats is kept as long as the file sys-
tem knows how to instantiate the object type to
handle the old representation.

The performance experiments with KFS for
Linux 2.4 indicate that KFS’s support for flexi-
bility doesn’t result in unreasonable overheads.
KFS on Linux 2.4 (with an implementation of
inode and directory structures matching ext2)
was found to run with a performance similar
to ext2 on many workloads and 15% slower
on some. These results are described in [18].
New performance data is being made available
at [11] as we tune KFS’s integration with Linux
2.6.

There are two ongoing efforts on using KFS’s

flexible design to quickly prototype and eval-
uate opportunities for alternative policies and
data representation:

• Co-location of meta-data and data: a pro-
totype of directory structure for embed-
ding file attributes in directory entries
where we extend the ideas proposed in [8]
by doing meta-data and block allocation
on a per-directory basis;

• Local vs global RecordMap structure: al-
though KFS’s design tried to avoid the use
of global data structures, its initial proto-
type implementation has a single object
(one instance of the RecordMap class) re-
sponsible for mapping elements onto type
and disk location. As our experimenta-
tion progressed, it became clear that this
data structure was hindering scalability
and flexibility, and imposing performance
overhead due to lack of locality between
the RecordMap entry for a file and its
data. Our current design explores asso-
ciating different RecordMap objects with
different parts of the name space.

More information about KFS can be found at
[18, 7].



94 • Towards a Highly Adaptable Filesystem Framework for Linux

X1

X1

X2

X2

X3

X3

Y1

Y2

Y3

Y4

Z1 Z2 Z3

Z2 Z3

File X File Y File Z

LSO LSO LSO

PSOreplicated PSOstriped
PSOcompr

PSOreplicated

Disk 1

Disk 2 Z1

Figure 2: KFS objects and block allocation for files X (replicated; blocks X1, X2, X3), Y (striped;
blocks Y1, Y2, Y3, Y4), and Z (compressed and replicated; blocks Z1, Z2, Z3).

4 Learnings from KFS towards an
adaptable filesystem framework
for Linux

What possibilities does the experience with
KFS suggest towards addressing some of the
concerns discussed in section 2.3? Intuitively,
it appears that the ideas originating from HFS,
and developed further in KFS, of a bottom-
up building-block-based, fine-grained approach
to flexibility for experimenting with special-
ized behaviour and data organization on a per-
element basis, could elegantly complement the
current VFS approach of abstracting higher lev-
els of commonality that allows an abundance
of filesystems. While KFS was developed as
a separate filesystem, we do not believe that
adding yet another filesystem to Linux is the
right answer. Instead developing simple meth-
ods of applying KFS-like flexibility to existing
filesystems incrementally, while possibly non-
trivial, may be a promising approach to pursue.

4.1 Switching formats

While many of the file systems mentioned in
Section 2 (ext2/3, reiserfs, JFS, XFS, OCFS2)
are intended to be general-purpose file systems,
each appears to have its own sweet-spot usage
scenarios or access patterns that sets it apart
from the rest. Various comparison charts [1, 17,
19] exist that highlight the strengths and weak-
nesses of these alternatives to enable adminis-
trators to make the right choice for their sys-
tems when they format their disks at the time
of first installation. However, predicting the
nature of workloads ahead of time, especially
when mixed access patterns may apply to dif-
ferent files in the same filesystem at different
times, is difficult. Unlike configuration options
or run-time tunables, switching a choice of on-
disk format on a system is highly disruptive and
resoure consuming. With an adaptable frame-
work that can alter representations on a per-
element basis in response to significant changes
in access patterns, living with a less than opti-
mal solution as a result of being locked into a



2006 Linux Symposium, Volume One • 95

given on-disk filesystem representation would
no longer be necessary.

We have described earlier (section 3) that in
KFS it is possible to create new formats and
work with them, with other formats being si-
multaneously active as well. This is possi-
ble due to (1) the association between a Log-
ical Storage Object (LSO) and its associated
Physical Storage Object (PSO) is not fixed,
and (2) the implementation of local rather than
global control structures for different types of
resource allocation. We plan to experiment
with abstracting this mechanism so that it can
be used by existing filesystems, for example
for upgrading to new file representations like
64-bit and extents support in ext3 including the
new multi-block allocator implementation from
Alex Tomas [2]. We would like to compare
the results with the current approach in ext3
for achieving the format switch, which relies
on per-inode flags and alternate inode operation
vectors.

4.2 Evaluation of alternate layouts and
policies

The ability to switch formats and layout poli-
cies enables KFS to provide a platform for de-
termining optimal layout and allocation poli-
cies for a filesystem through ongoing experi-
mentation and comparative evaluation. Typi-
cally, layout decisions are very closely linked
to the particular context in which the file system
is intended to be used, e.g. considering under-
lying media, nature of application workloads,
data access patterns, available space, filesys-
tem aging/fragmentation, etc. With the mech-
anisms described in the previous sub-section in
place, we intend to demonstrate performance
advantages over the long run from being able
to choose and switch from alternative repre-
sentations, for example from a very small file
oriented representation with data embedded

within the inode, to direct, indirect block map-
ping, to extents maps based on file size, distri-
bution and access patterns.

4.3 Assessment of overheads imposed by
flexibility

It is said that any problem in computer science
can be solved by adding an extra level of in-
direction. The only problem is that indirec-
tions do not come for free, especially if it in-
volves extra disk seeks to perform an opera-
tion. It is for this reason that ext2/3, for ex-
ample, attempts to allocate indirect blocks con-
tiguously with the data blocks they map to, and
why support for extended attributes storage in
large inodes has been demonstrated to deliver
significant performance gains for Samba work-
loads [3] compared to storage of attributes in a
separate block. This issue has been a primary
design consideration for KFS. The original
HFS/KFS effort has been specifically concep-
tualized with a view towards enabling high per-
formance and scalability through fine-grained
flexibility, rather than with an intent of adding
layers of high level semantic features.

Initial experiments with KFS seem to indicate
that the benefits of flexibility outweigh over-
heads, given a well-designed meta-data caching
mechanism and right choice of building blocks
where indirections go straight to the most ap-
propriate on-disk objects when a file element
is first looked up. The ability to have entirely
different and variable-sized “inode” represen-
tations for different types of files amortizes the
cost across all subsequent operations on a file.
It remains to be verified whether this is proved
to be valid on a broad set of workloads and
whether the same argument would apply in the
context of adding flexibility to existing filesys-
tems without requiring invasive changes.

Would the reliance on C++ in KFS be concern
for application to existing Linux filesystems?



96 • Towards a Highly Adaptable Filesystem Framework for Linux

Inheritance has proven to be very useful dur-
ing the development of per-element specializa-
tion in KFS, as it simplified coding to a great
extent and enabled workload-specific optimiza-
tions. However, being able to move to C with
a minimalist scheme may be a desirable goal
when working with existing filesystems in the
linux kernel.

4.4 Ability to drop experimental layout
changes easily

As described in section 2.3, the problem of
being stuck with on-disk format changes once
made necessitates a stringent approach towards
adoption of layout improvements which may
result in years of lead time into actual deploy-
ment of state-of-the-art filesystem enhance-
ments.

In KFS, as we add new formats, we can still
work with old ones for compatibility, but the
old ones can be kept out of the mainstream im-
plementation. The code is activated when read-
ing old representations, and we can on the fly
“migrate” to the new format as we access it, al-
beit at a certain run-time overhead.

This does not however address the issue of han-
dling backward compatibility with older ker-
nels. Perhaps it would make sense to include
a compatibility information scheme at a per-
PSO level, similar to the ext2/3 filesystem’s su-
perblock level compatibility bitmaps. For ex-
ample, in the situation where we are able to ex-
tend a given PSO type to a new scheme in a
way that is backward compatible with the ear-
lier PSO type (e.g. as in case of the directory in-
dexing feature), we would like to indicate that
so that an older kernel does not reject it.

5 Future work

Section 4 has discussed ongoing work on KFS
that, in the short term, may result in useful
insights for achieving an adaptable filesystem
framework for Linux. In this section we dis-
cuss new work to be done that is essential to
realizing this adaptable framework.

5.1 Adaptability in the filesystem checker
and tools

With adaptable building blocks and support for
multiple alternate formats as part of a per ele-
ment specialization, it follows that file-system
checker changes would be required to be able
to recognize, load, and handle new PSOs as
well as perform some level of general consis-
tency checks based on the indication of location
and sizes common to all elements, and pars-
ing the record map(s). As with existing filesys-
tem checkers, backward compatibility remains
a tricky issue. The PSO compatibility scheme
discussed earlier could be used to flag situ-
ations where newer versions of tools are re-
quired. Likewise, other related utilities like
low-level backup utilities (e.g dump), migra-
tion tools, defragmenter, debugfs, etc would
need to be dynamically extendable to handle
new formats.

5.2 Address the problem of sharing granu-
lar building blocks across filesystems

KFS was not originally designed with the in-
tent of enabling building-block sharing across
existing file systems. However, given poten-
tial benefits in factoring core ext2/3 code, data-
consistency schemes and additional capabili-
ties (e.g. clustering), as well as extensions to
libfs beyond its current limited scope of ap-
plication, it is natural to ask whether KFS-
type constructs could be useful in this context.



2006 Linux Symposium, Volume One • 97

Could the same principles that allow per ele-
ment flexibility through building block compo-
sition be taken further to enable abstraction of
these building blocks in a way that not tightly
tied to the containing filesystem? Design issues
that may need to be explored in order to evalu-
ate the viability of this possibility include figur-
ing out how a combination of PSOs, e.g. alter-
nate layouts and alternate consistency, schemes
could be built efficiently in the context of an
existing filesystem in a manner that is reusable
in the context of another filesystem. The ef-
fort involved in trying to refactor existing code
into PSOs may not be small; a better approach
may be to start this with a few simple building
blocks and use the framework for new building
blocks created from here on.

5.3 Additional Issues

Another aspect that needs further exploration is
whether the inclusion of building blocks and as-
sociated specialization adds to overall testing
complexity for distributions, or if the frame-
work can be enhanced to enable a systematic
approach to be devised to simplify such verifi-
cation.

6 Conclusions

We presented KFS and discussed that the expe-
rience so far indicates that KFS can be a pow-
erful approach to support flexibility of services
in a file system down to a per-element granu-
larity. We also argued that the approach does
not come with unacceptable performance over-
heads, and that it allows for workload-specific
optimizations. We believe that the flexibility
in KFS makes it a good prototype environ-
ment for experimenting with new file system
resource management policies or file represen-
tations. As new emerging workloads appear,

KFS can be useful to the Linux community
by providing evaluation results for alternative
representations and by advancing the applica-
tion of different data layouts for different files
within the same filesystem, determined either
statically or dynamically in response to chang-
ing access patterns.

In this paper we propose a new exploration of
KFS: to investigate how its building-block ap-
proach could be abstracted from KFS’s imple-
mentation to allow code sharing among file sys-
tems, providing a library-like collection of al-
ternative implementations to be experimented
with across file systems. We do not have yet
evidence that this approach is feasible, but as
we improve the integration of KFS (originally
designed for the K42 operating system) with
Linux 2.6 we hope to have a better understand-
ing of KFS’s general applicability.

Acknowledgements

We would like to thank Dave Kleikamp for
contributing the section on JFS flexibility, and
Christoph Hellwig for his inputs on XFS.

Orran Krieger started KFS based on his expe-
rience with designing and implementing HFS.
He has been a steady source of guidance and
motivation for KFS developers, always avail-
able for in-depth design reviews that improved
KFS and made our work more fun. We thank
him for his insight and support.

We would like to thank Paul McKenney, Val
Henson, Mingming Cao, and Chris Mason for
their valuable review feedback on early drafts
of this paper, and H. Peter Anvin and Mel Gor-
man for helping us improve our proposal. This
paper might never have been written but for
insightful discussions with Stephen Tweedie,
Theodore T’so, and Andreas Dilger over the



98 • Towards a Highly Adaptable Filesystem Framework for Linux

course of the last year. We would like to thank
them and other ext3 filesystem developers for
their steady focus on continuously improving
the ext3 filesystem, devising interesting tech-
niques to address conflicting goals of depend-
ability vs state-of-the-art advancement. Finally
we would like to thank the linux-fsdevel com-
munity for numerous discussions over years
which motivated this paper.

This work was partially supported by DARPA
under contract NBCH30390004.

Availability

KFS is released as open source as part of
the K42 system, available from a public CVS
repository; for details refer to the K42 web
site: http://www.research.ibm.com/
K42/.

Legal Statement

Copyright c© 2006 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and OS/2 are trademarks or registered trade-
marks of International Business Machines Corpora-
tion in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in
the United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provied “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] Ray Bryant, Ruth Forester, and John
Hawkes. Filesystem performance and
scalability in linux 2.4.17. In USENIX
Annual Technical Conference, 2002.

[2] M. Cao, T.Y. Tso, B. Pulavarty,
S. Bhattacharya, A. Dilger, and
A. Tomas. State of the art: Where we are
with the ext3 filesystem. In Proceedings
of the Ottawa Linux Symposium(OLS),
pages 69–96, 2005.

[3] Jonathan Corbet. Which filesystem for
samba4? http:

//lwn.net/Articles/112566/.

[4] Jonathan Corbet. Creating linux virtual
file systems. http:
//lwn.net/Articles/57369/,
November 2003.

[5] Jonathan Corbet. The OCFS2 filesystem.
http:

//lwn.net/Articles/137278/, May
2005.

[6] Alan Cox. Posting on linux-fsdevel.
http://marc.theaimsgroup.com/

?l=linux-fsdevel&m=

112558745427067&w=2, September
2005.

[7] Dilma da Silva, Livio Soares, and Orran
Krieger. KFS: Exploring flexilibity in file
system design. In Proc. of the Brazilian
Workshop in Operating Systems,
Salvador, Brazil, August 2004.



2006 Linux Symposium, Volume One • 99

[8] Greg Ganger and Frans Kaashoek.
Embedded inodes and explicit gruopings:
Exploiting disk bandwith for small files.
In Proceedings of the 1997 Usenix
Annual Technical Conference, pages
1–17, January 1997.

[9] Val Henson, Zach Brown, Theodore
Ts’o, and Arjan van de Ven. Reducing
fsck time for ext2 filesystems. In
Proceedings of the Ottawa Linux
Symposium(OLS), 2006.

[10] The K42 operating system, http:
//www.research.ibm.com/K42/.

[11] Kfs performance experiments.
http://k42.ozlabs.org/Wiki/

KfsExperiments, 2006.

[12] O. Krieger and M. Stumm. HFS: A
performance-oriented flexible filesystem
based on build-block compositions. ACM
Transactions on Computer Systems,
15(3):286–321, 1997.

[13] Orran Krieger. HFS: A Flexible File
System for Shared-Memory
Multiprocessors. PhD thesis, Department
of Electrical and Computer Engineering,
University of Toronto, 1994.

[14] Orran Krieger and Michael Stumm. HFS:
A flexible file system for large-scale
multiprocessors. In Proceedings of the
DAGS/PC Symposium (The Second
Annual Dartmouth Institute on Advanced
Graduate Studies in Parallel
Computation), 1993.

[15] Namesys. Reiser4. http:
//www.namesys.com/v4/v4.html,
August 2004.

[16] Daniel Phillips. A directory index for
ext2. In 5th Annual Linux Showcase and
Conference, pages 173–182, 2001.

[17] Justin Piszcz. Benchmarking File
Systems Part II.

[18] Livio Soares, Orran Krieger, and
Dilma Da Silva. Meta-data snapshotting:
A simple mechanism for file system
consistency. In SNAPI’03 (International
Workshop on Storage Network
Architecture and Parallel I/O), pages
41–52, 2003.

[19] John Troy Stepan. Linux File Systems
Comparative Performance. Linux
Gazette, January 2006.
http://linuxgazette.net/122/

TWDT.html.

[20] IBM JFS Core Team.

[21] SGI XFS Team. XFS: a
high-performance journaling filesystem.

[22] Stephen Tweedie and Theodore Y Ts’o.
Planned extensions to the linux ext2/3
filesystem. In USENIX Annual Technical
Conference, pages 235–244, 2002.

[23] Stephen C Tweedie. Re: Rfc: mke2fs
with dir_index, resize_inode by default,
March, 2006.

[24] Linux kernel sourcecode vfs
documentation. file Documentaion/
filesystems/vfs.txt.



100 • Towards a Highly Adaptable Filesystem Framework for Linux



Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


