
A Reliable and Portable Multimedia File System

Joo-Young Hwang, Jae-Kyoung Bae, Alexander Kirnasov,
Min-Sung Jang, Ha-Yeong Kim

Samsung Electronics, Suwon, Korea
{jooyoung.hwang, jaekyoung.bae, a78.kirnasov}@samsung.com

{minsung.jang, hayeong.kim}@samsung.com

Abstract

In this paper we describe design and imple-
mentation of a database-assisted multimedia
file system, named as XPRESS (eXtendible
Portable Reliable Embedded Storage System).
In XPRESS, conventional file system metadata
like inodes, directories, and free space infor-
mation are handled by transactional database,
which guarantees metadata consistency against
various kinds of system failures. File sys-
tem implementation and upgrade are made easy
because metadata scheme can be changed by
modifying database schema. Moreover, us-
ing well-defined database transaction program-
ming interface, complex transactions like non-
linear editing operations are developed easily.
Since XPRESS runs in user level, it is portable
to various OSes. XPRESS shows streaming
performance competitive to Linux XFS real-
time extension on Linux 2.6.12, which indi-
cates the file system architecture can provide
performance, maintainability, and reliability al-
together.

1 Introduction

Previously consumer electronics (CE) devices
didn’t use disk drives, but these days disks are

being used for various CE devices from per-
sonal video recorder (PVR) to hand held cam-
corders, portable media players, and mobile
phones. File systems for such devices have re-
quirements for multimedia extensions, reliabil-
ity, portability and maintainability.

Multimedia Extension Multimedia extensions
required for CE devices are non-linear editing
and advanced file indexing. As CE devices
are being capable of capturing and storing A/V
data, consumers want to personalize media data
according to their preference. They make their
own titles and shares with their friends via in-
ternet. PVR users want to edit recorded streams
to remove advertisement and uninterested por-
tions. Non-linear editing system had been only
necessary in the studio to produce broadcast
contents but it will be necessary also for con-
sumers. Multimedia file system for CE devices
should support non-linear editing operations ef-
ficiently. File system should support file index-
ing by content-aware attributes, for example the
director and actor/actress of a movie clip.

Reliability On occurrence of system fail-
ures(e.g. power failures, reset, and bad blocks),
file system for CE devices should be recovered
to a consistent state. Implementation of a reli-
able file system from scratch or API extension
to existing file system are difficult and requires
long stabilization effort. In case of appending

58 • A Reliable and Portable Multimedia File System

multimedia API extension (e.g. non-linear edit
operations), reliability can be a main concern.

Portability Conventional file systems have
dependency on underlying operating system.
Since CE devices manufacturers usually use
various operating systems, file system should
be easily ported to various OSes.

Maintainability Consumer devices are diverse
and the requirements for file system are slightly
different from device to device. Moreover, file
system requirements are time-varying. Main-
tainability is desired to reduce cost of file sys-
tem upgrade and customization.

In this paper, we propose a multi-media file sys-
tem architecture to provide all the above re-
quirements. A research prototype named as
“XPRESS”(eXtensible Portable Reliable Em-
bedded Storage System) is implemented on
Linux. XPRESS is a user-level database-
assisted file system. It uses a transactional
Berkeley database as XPRESS metadata store.
XPRESS supports zero-copy non-linear edit
(cut & paste) operations. XPRESS shows per-
formance in terms of bandwidth and IO la-
tencies which is competitive to Linux XFS.
This paper is organized as follows. Archi-
tecture of XPRESS is described in section 2.
XPRESS’s database schema is presented in sec-
tion 3. Space allocation is detailed in section 4.
Section 5 gives experimental results and discus-
sions. Related works are described in section 6.
We conclude and indicate future works in sec-
tion 7.

2 Architecture

File system consistency is one of important file
system design issue because it affects overall
design complexity. File system consistency
can be classified into metadata consistency and

data consistency. Metadata consistency is to
support transactional metadata operations with
ACID (atomicity, consistency, isolation, dura-
bility) semantics or a subset of ACID. Typical
file system metadata consist of inodes, directo-
ries, disk’s free space information, and free in-
odes information. Data consistency means sup-
porting ACID semantics for data transactions
as well. If a data transaction to update a portion
of file is aborted due to some reasons, the data
update is complete or data update is discarded
at all.

There have been several approaches of imple-
menting file system consistency; log structured
file system [11] or journaling file system [2].
In log structured file system, all operations are
logged to disk drive. File system is structured
as logs of consequent file system update op-
erations. Journaling is to store operations on
separate journal space before updating the file
system. Journaling file system writes twice (to
journal space and file system) while log struc-
tured file system does write once. However
journaling approach is popular because it can
upgrade existing non-journaling file system to
journaling file system without losing or rewrit-
ing the existing contents.

Implementation of log structured file system or
journaling is a time consuming task. There
have been a lot of researches and implemen-
tation of ACID transactions mechanism in
database technology. There are many stable
open source databases or commercial databases
which provide transaction mechanism. So we
decide to exploit databases’ transaction mech-
anism in building our file system. Since we
aimed to design a file system with performance
and reliability altogether, we decided not to
save file contents in database. Streaming per-
formance can be bottlenecked by database if
file contents are stored in db. So, only meta-
data is stored in database while file contents are
stored to a partition. Placement of file contents

2006 Linux Symposium, Volume One • 59

on the data partition is guided by multimedia
optimized allocation strategy.

Storing file system metadata in database makes
file system upgrades and customization much
easier than conventional file systems. XPRESS
handles metadata thru database API and is not
responsible for disk layout of the metadata. File
system developer has only to design high level
database schema and use well defined database
API to upgrade existing database. To upgrade
conventional file systems, developer should
handle details of physical layout of metadata
and modify custom data structures.

XPRESS is implemented in user level because
user level implementation gives high portabil-
ity and maintainability. File system source
codes are not dependent on OS. Kernel level
file systems should comply with OS specific
infrastructures. Linux kernel level file system
compliant to VFS layer cannot be ported eas-
ily to different RTOSes. There can be a over-
head which is due to user level implementa-
tion. XPRESS should make system calls to
read/write block device file to access file con-
tents. If file data is sparsely distributed, context
switching happens for each extent. There was
an approach to port existing user level database
to kernel level[9] and develop a kernel level
database file system. It can be improved if us-
ing Linux AIO efficiently. Current XPRESS
does not use Linux AIO but has no significant
performance overhead.

Figure 1 gives a block diagram of XPRESS file
system. XPRESS is designed to be independent
of database. DB Abstraction Layer (DBAL) is
located between metadata manager and Berke-
ley DB. DBAL defines basic set of interfaces
which modern databases usually have. SQL or
complex data types are not used. XPRESS has
not much OS dependencies. OSAL of XPRESS
has only wrappers for interfacing block device
file which may be different across operating
systems.

Figure 1: Block Diagram of XPRESS File Sys-
tem

There are four modules handling file system
metadata; superblock, directory, inode, and al-
loc modules. Directory module implements the
name space using a lookup database (dir.db)
and path_lookup function. The function
looks up the path of a file or a directory through
recursive DB query for each token of the path
divided separated by ’/’ character. The flow-
ing is the simple example for the process of this
function. Superblock module maintains free in-
odes. Inode module maintains the logical-to-
physical space mappings for files. Alloc mod-
ule maintains free space.

In terms of file IO, file module calls inode mod-
ule to updates or queries extents.db and
reads or writes file contents. The block de-
vice file corresponding to the data partition (say
“/dev/sda1”) is opened for read/write mode
at mount time and its file descriptor is saved
in environment descriptor, which is referred
to by every application accessing the partition.
XPRESS does not implement caching but relies

60 • A Reliable and Portable Multimedia File System

on Linux buffer cache. XPRESS supports both
direct IO and cached IO. For cached IO, the
block device file is opened without O_DIRECT
flag while opened with O_DIRECT in case of
direct IO.

Support for using multiple partitions concur-
rently, XPRESS manages mounted partitions
information using environment descriptors. A
environment descriptor has information about a
partition and its mount point, which is used for
name space resolution. Since all DB resources
(transaction, locking, logging, etc) correspond-
ing to a partition belongs to a DB environment
and separate logging daemon is ncessary for
separate environment, a new logging daemon
is launched on mounting a new partition.

3 Transactional Metadata Manage-
ment

3.1 Choosing Database

As the infrastructure of XPRESS, database
should conform to the following requirements.
First, it should have transactional operation
and recovery support. It is important for im-
plementing metadata consistency of XPRESS.
Second, it should be highly concurrent. Since
file system is used by many threads or pro-
cesses, database should support and have high
concurrency performance as well. Third, it
should be light-weight. Database does not have
to support many features which are unneces-
sary for file system development. It only has to
provide API necessary for XPRESS efficiently.
Finally, it should be highly efficient. Database
implemented as a separate process has cleaner
interface and maintainability; however library
architecture is more efficient.

Berkeley DB is an open source embed-
ded database that provides scalable, high-

performance, transaction-protected data man-
agement services to applications. Berkeley DB
provides a simple function-call API for data
access and management. Berkeley DB is em-
bedded in its application. It is linked directly
into the application and runs in the same ad-
dress space as the application. As a result, no
inter-process communication, either over the
network or between processes on the same ma-
chine, is required for database operations. All
database operations happen inside the library.
Multiple processes, or multiple threads in a
single process, can all use the database at the
same time as each uses the Berkeley DB li-
brary. Low-level services like locking, transac-
tion logging, shared buffer management, mem-
ory management, and so on are all handled
transparently by the library.

Berkeley DB offers important data manage-
ment services, including concurrency, transac-
tions, and recovery. All of these services work
on all of the storage structures. The library pro-
vides strict ACID transaction semantics, by de-
fault. However, applications can relax the isola-
tion or the durability. XPRESS uses relaxed se-
mantics for performance. Multiple operations
can be grouped into a single transaction, and
can be committed or rolled back atomically.
Berkeley DB uses a technique called two-phase
locking to support highly concurrent transac-
tions, and a technique called write-ahead log-
ging to guarantee that committed changes sur-
vive application, system, or hardware failures.

If a BDB environment is opened with a recov-
ery option, Berkeley DB runs recovery for all
databases belonging to the environment. Re-
covery restores the database to a clean state,
with all committed changes present, even af-
ter a crash. The database is guaranteed to be
consistent and all committed changes are guar-
anteed to be present when recovery completes.

2006 Linux Symposium, Volume One • 61

DB unit key data structure secondary index
super partition partition number superblock data RECNO -

dir partition parent INO/file name INO B-tree INO (B tree)
inode partition INO inode data RECNO -

free space partition PBN length B-tree length(B tree)
extents file file offset PBN/length B-tree -

Table 1: Database Schema, INO: inode number, RECNO: record number, PBN: physical block
number

3.2 Database Schema Design

XPRESS defines five databases to store file sys-
tem metadata and their schema is shown in Ta-
ble 1. Each B-tree database has a specific key-
comparison function that determines the order
in which keys are stored and retrieved. Sec-
ondary index is used for performance accelera-
tion.

Superblock DB The superblock database,
super.db, stores file system status and in-
ode bitmap information. As overall file sys-
tem status can be stored in just one record,
and inode bitmap also needs just a few records,
this database has RECNO structure, and does
not need any secondary index. Super database
keeps a candidate inode number, and when a
new file is created, XPRESS uses this inode
number and then replaces the candidate inode
number with another one selected after scan-
ning inode bitmap records.

Directory DB The dir database, dir.db,
maps directory and file name information to in-
ode numbers. The key used is a structure with
two values: the parent inode number and the
child file name. This is similar to a standard
UNIX directory that maps names to inodes. A
directory in XPRESS is a simple file with a spe-
cial mode bit. As XPRESS is user-level file sys-
tem, it does not depend on Linux VFS layer. As
a result it cannot use directory related caches

of Linux kernel (i.e., dentry cache), instead,
database cache will be used for that purpose.

Inode DB The inode database, inode.db,
maps inode numbers to the file information
(e.g., file size, last modification time, etc.).
When a file is created, a new inode record is
inserted into this database, and when a file is
deleted, the inode record is removed from this
database. XPRESS assigns inode numbers in
an increasing order and upper limit on the num-
ber of inodes is determined when creating the
file system. It will be possible to make sec-
ondary indices for inode.db for efficiency
(e.g., searching files whose size is larger than
1M). But currently no secondary index is used.

Free Space DB The free-space database,
freespace.db, manages free extents of the par-
tition. Initially free-space database has one
record whose data is just one big extent which
means a whole partition. When a change in
file size happens this database will update its
records.

Extents DB A file in XPRESS consists of sev-
eral extents of which size is not fixed. The ex-
tents database, extents.db, maps file offset
to physical blocks address of the extent includ-
ing the file data. As this database corresponds
to each file, its life-time is also same with that
of a file. The exact database name is identified
with an inode number; extents.db is just
database file name. This database is only dy-
namically removable while all other databases

62 • A Reliable and Portable Multimedia File System

are going on with the file system.

3.3 Transactional System Calls

A transaction is atomic if it ensures that all the
updates in a transaction are done altogether or
none of them is done at all. After a trans-
action is ether committed or aborted, all the
databases for file system metadata are in con-
sistent. In multi-process or multi-thread envi-
ronment, concurrent operation should be pos-
sible without any interference of other opera-
tions. We can say this property isolated. An
Operation will have already been committed to
the databases or is in the transaction log safely
if the transaction is committed. So the file sys-
tem operations are durable which means file
system metadata is never lost.

Each file system call in XPRESS is protected
by a transaction. Since XPRESS system calls
are using the transactional mechanism provided
by Berkeley DB, ACID properties are enabled
for each file system call of XPRESS. A file sys-
tem call usually involves multiple reads and up-
dates to metadata. An error in the middle of
system call can cause problems to the file sys-
tem. By storing file system metadata in the
databases and enabling transactional operations
for accessing those databases, file system is
kept stable state in spite of many unexpected
errors.

An error in updating any of the databases dur-
ing a system call will cause the system call,
which is protected by a transaction, to be
aborted. There can be no partially done system
calls. XPRESS ensures that any system call is
complete or not started at all. In this sense, a
XPRESS system call is atomic.

Satisfying strict ACID properties can cause per-
formance degradation. Especially in file sys-
tem, since durability may not be strict condi-

tion, we can relax this property for better per-
formance. XPRESS compromises durability
by not syncing the log on transaction commit.
Note that the policy of durability applies to all
databases in an environment. Flushing takes
place periodically and the cycle of flushing can
be configurable. Default cycle is 10 seconds.

Every XPRESS system call handles three types
of failures; power-off, deadlock, and unex-
pected operation failure. Those errors are han-
dled according to cases. In case of power-off
we are not able to handle immediately. After
the system is rebooted, recovery procedure will
be automatically started. Deadlock may occur
during transaction when the collision between
concurrent processes or threads happened. In
this case, one winning process access database
successfully and all other processes or threads
are reported deadlock. They have to abort
and retry their transactions. In case of unex-
pected operation failure, on-going transaction
is aborted and system calls return error to its
caller.

3.4 Non-linear Editing Support

Non-linear editing on A/V data means cutting
a segment of continuous stream and inserting a
segment inside a stream. This is required when
users want to remove unnecessary portion of a
stream; for example, after recording two hours
of drama including advertisement, user wants
to remove the advertisement segments from the
stream. Inserting is useful when a user wants
to merge several streams into one title. These
needs are growing because consumers capture
many short clips during traveling somewhere
and want to make a title consisting of selected
segments of all the clips.

Conventional file systems does not consider
this requirement, so to support those opera-
tions, a portion of file should be migrated. If

2006 Linux Symposium, Volume One • 63

front end of a file is to be cut, the remain-
ing contents of the file should be copied to a
new file because the remaining contents are not
block aligned. File systems does assume block
aligned starting of a file. In other words, they
do not assume that a file does not start in the
middle of a block. Moreover, a block is not
assumed to be shared by different files. This
has been general assumptions about had disk
file system because disk is a block based device
which means space is allocated and accessed in
blocks. The problem is more complicated for
inserting. A file should have a hole to accom-
modate new contents inside it and the hole may
not be block-aligned. So there can be breaches
in the boundaries of the hole.

We solve those problems by using byte-
precision extents allocation. XPRESS allows
physical extent not aligned with disk block size.
After cutting a logical extent, the physical ex-
tents corresponding to the cut logical extent can
be inserted into other file. Implementation of
those operations involves updating databases
managing the extents information. Data copy
is not required for the editing operations, only
extents info is updated accordingly.

4 Extent Allocation and Inode
Management

In this section, the term “block” refers to the al-
location unit in XPRESS. The block size can be
configurable at format time. For byte-precision
extents, block size is configured to one byte.

4.1 Extent Allocation

There were several approaches for improving
contiguity of file allocation. Traditionally (FAT,
ext2, ext3) disc free space was handled by

means of bitmaps. Bit 0 at position n of the
bitmap designates, that n-th disc block is free
(can be allocated for the file). This approach
has several drawbacks; searching for the free
space is not effective and bitmaps do not explic-
itly provide information on contiguous chunks
of the free space.

The concept of extent was introduced in order
to overcome mentioned drawbacks. An extent
is a couple, consisting from block number and
length in units of blocks. An extent represents
a contiguous chunk of blocks on the disk. The
free space can be represented by set of corre-
sponding extents. Such approach is used for
example in XFS (with exception of real-time
volume). In case of XFS the set of extents is
organized in two B+ trees, first sorted by start-
ing block number and second sorted by size of
the extent. Due to such organization the search
for the free space becomes essentially more ef-
ficient compared to the case of using bitmaps.

One way to increase the contiguity comes from
increasing the block size. Such approach is es-
pecially useful for real time file systems which
deal with large video streams in combination
with idea of using special volume specifically
for these large files. Similar approach is uti-
lized in XFS for real-time volume. Another
way to improve file locality on the disc is preal-
location. This technique can be described as an
allocation of space for the file in advance before
the file is being written to. Preallocation can be
accomplished whether on application or on the
file system level. Delayed allocation can also
be used for contiguous allocation. This tech-
nique postpones an actual disc space allocation
for the file, accumulating the file contents to
be written in the memory buffer, thus providing
better information for the allocation module.

XPRESS manages free space by using ex-
tents. Allocation algorithm uses two databases:
freespace1.db and freespace2.db,

64 • A Reliable and Portable Multimedia File System

which collect the information on free ex-
tents which are not occupied by any files
on the file system. The freespace1.db
orders all free extents by left end and the
freespace2.db, which is secondary in-
dexed db of freespace1.db, orders all free
extents by length. Algorithm tries to allocate
entire length of req_len as one extent in the
neighborhood of the last_block. If it fails,
then it tries to allocate maximum extent within
neighborhood. If no free extent is found within
neighborhood, it tries to allocate maximum free
extent in the file system. After allocating a
free extent, neighborhood is updated and it
tries the same process to allocate the remain-
ing, which iterate until entire requested length
is allocated. Search in neighborhood is accom-
plished in left and right directions using two
cursors on freespace1.db. The neighbor-
hood size is determined heuristically propor-
tional to the req_len.

Pre-allocation is important for multi-threaded
IO applications. When multiple IO threads
try to write files, the file module tries to pre-
allocate extents enough to guarantee disk IO ef-
ficiency. Otherwise, disk blocks are fragmented
because contiguous blocks are allocated to dif-
ferent files in case that multiple threads are al-
locating simultaneously. Pre-allocation size of
XPRESS is by default 32Mbytes which may
be varying according to disk IO bandwidth.
On file close, unused spaces among the pre-
allocated extents are returned to free space
database, which is handled by FILE module of
XPRESS.

4.2 Inode Management

File extents are stored in extents.db. Each
file extent is represented by logical file offset
and corresponding physical extent. Both offset
and physical extent are specified with byte pre-
cision in order to provide facilities for partial

Figure 2: Logical to physical mapping

truncation that is truncation of some portion of
the file from a specified position of the file with
byte precision.

Let us designate a logical extent starting from
the logical file offset a mapped to a physical
extent [b,c] as [a,[b,c]] for explanations in the
following. A logical file interval may contain
some regions which do not have physical im-
age on the disc; such regions are referred as
holes. The main interface function of the IN-
ODE module is xpress_make_segment_
op(). The main parameters of the function
are type of the operation (READ, WRITE and
DELETE) and logical file segment, specified
by logical offset and the length.

extents.db is read on file access to con-
vert a logical segment to a set of physical ex-
tents. Figure 2 shows an example of seg-
ment mapping. Logical segment [start, end]
corresponds to following set of physical ex-
tents; {[start,[e,f]], [a,[g,h]], [b,[]], [c,[f,g]],
[d,[i,k]]}, where the logical extent [b,c] is a file
hole. In case of read operation to extents.
db, the list of physical extents is retrieved and
returned to the file module.

When specified operation is WRITE and speci-
fied segment contains yet unmapped area - that
is writing to the hole or beyond end of file is
accomplished, then allocation request may be
generated after aligning the requested size to
the block size since as was mentioned alloca-
tion module uses blocks as units of allocation.
In Figure 3, blocks are allocated when writing
the segment [start,end] of the file.

2006 Linux Symposium, Volume One • 65

Figure 3: Block allocation details

Figure 4: Throughput with 1 thread

Xpress allows to perform partial file truncate
operation as well, as cut and paste operation.
First operation removes some fragment of the
file, while the latter also inserts the removed
file portion into specified position of another
file. On partial truncate operation, a truncated
logical segment is left as a hole. On cut op-
eration, logical segment mapping is updated to
avoid hole. On paste operation, mapping is up-
dated to avoid overwriting as well.

5 Experimental Results

Test platform is configured as following. Target
H/W : Pentium4 CPU 1.70GHz with 128MB
RAM and 30GB SAMSUNG SV3002H IDE
disk
Target O/S : Linux-2.6.12
Test tools : tiotest(tiobench[1]), rwrt

XPRESS consistency semantic is metadata
journaling and ordered data writing which is

Figure 5: Throughput with 4 threads

similar to XFS file system and ext3 with or-
dered data mode. Hence we chose XFS and
ext3 as performance comparison targets. As
XFS file system provides real-time sub-volume
option, we also used it as one of compari-
son targets. By calling it XFS-RT, we will
distinguish it from normal XFS. tiotest is
threaded I/O benchmark tool which can test
disk I/O throughput and latency. rwrt is a ba-
sic file I/O application to test ABISS (Adaptive
Block IO Scheduling System)[3]. It performs
isochronous read operations on a file and gath-
ers information on the timeliness of system re-
sponses. It gives us I/O latencies or jitters of
streaming files, which is useful for analyzing
streaming quality. We did not use XPRESS’s
I/O scheduling and buffer cache module be-
cause we can get better performance with the
Linux’s native I/O scheduling and buffer cache.

IO Bandwidth Comparison
Figure 4 and Figure 5 show the results of I/O
throughput comparison for each file system.
These two tests are conducted with tiotest
tool whose block size option is 64KB which
means the unit of read and write is 64KB. In
both cases, there is no big difference between
all file systems.

IO Latency Comparison
We used both tiotest and rwrt tool to mea-
sure I/O latencies in case of running multiple

66 • A Reliable and Portable Multimedia File System

Figure 6: MAX latency with 1 thread

Figure 7: MAX latency with 4 threads

concurrent I/O threads. The rwrt is dedi-
cated for profiling sequential read latencies and
tiobench is used for profiling latencies of write,
random write, read, and random read opera-
tions.

Figure 6 and Figure 7 show the maximum I/O
latencies for each file system obtained from
tiotest. The maximum I/O latency is a
little low on XPRESS file system. In terms
of write latency, XPRESS outperforms others
while maximum read latencies are similar.

To investigate read case more, we conducted
the rwrt with the number of threads from 1
to 8 and measure the read latencies for each
read request. Each process tries its best to
read blocks of a file. The results of these
tests include the latencies of each read request
whose size is 128Kbyte. Table 2 shows the

File System Average Std Dev Max
2 threads

Ext3 8.47 26.03 512
XFS 8.62 25.15 239

XFS-RT 8.96 25.66 260
XPRESS 8.62 24.93 262

4 threads
Ext3 17.9594 72.70 877
XFS 17.8389 72.70 528

XFS-RT 18.7506 74.33 524
XPRESS 17.8467 71.79 413

8 threads
Ext3 36.38 166.47 1144
XFS 36.35 166.86 1049

XFS-RT 38.34 171.39 1023
XPRESS 36.33 166.38 923

Table 2: Read Latencies Statistics. All are mea-
sured in milliseconds.

statistics of the measured read latencies for 2,
4, and 8 threads. The average latencies are
nearly the same for all experimented file sys-
tems. XPRESS show slightly smaller standard
deviation than others and improvement regard-
ing the maximum latencies. Please note that
XPRESS maximum latency is 413 milliseconds
while the max latency of XFS-RT is 524 mil-
liseconds.

Jitters during Streaming at a Constant Data
Rate
The jitters performance is important from
user’s point of view because it leads to a low
quality video streaming. We performed rwrt
tool with ABISS I/O scheduling turned off. The
rwrt is configured to read a stream with a
constant specified data rate, say 3MB/sec or
5MB/sec. Table 3 shows jitter statistics for
each file system when running single thread
with 5MB/sec rate, four concurrent threads at
5MB/sec rates, and six concurrent threads at
3MB/sec rates, respectively. The results of
these tests include the jitters of each read re-

2006 Linux Symposium, Volume One • 67

File System Average Std Dev Max
1 thread (5MB/s)

Ext3 3.97 2.44 43
XFS 3.91 2.03 46

XFS-RT 3.94 1.79 25
XPRESS 3.89 1.92 40

4 threads (each 5MB/sec)
Ext3 18.00 41.72 694
XFS 15.67 30.25 249

XFS-RT 19.22 34.63 267
XPRESS 17.93 38.83 257

6 threads (each 3MB/sec)
Ext3 24.80 48.43 791
XFS 23.81 42.20 297

XFS-RT 26.57 43.48 388
XPRESS 23.66 45.31 337

Table 3: Jitter Statistics. All are measured in
milliseconds.

quest whose size is 128Kbyte. Mean values of
experimented file systems are nearly the same.
XPRESS, XFS, and XFS-RT show the similar
standard deviation of jitters which is much less
than that of ext3.

Metadata and Data Separation
Metadata access patterns are usually small re-
quests while streaming accesses are continuous
bulk data transfer. By separating metadata and
data partitions on different media, performance
can be optimized according to their workload
types. XPRESS allows metadata to be placed
in separate partition which can be placed on
another disk or NAND flash memory. Table 4
summarizes the effect of changing the db par-
tition. This is test for extreme case since we
used ramdisk, which is virtual in-memory disk,
as a separate disk. However, we can identify
the theoretical possibility of performance en-
hancement from this test. According to the re-
sult, the enhancement happens mainly on write
test by 11%. We expect using separate parti-
tion will reduce latencies significantly, which

configuration write read
same disk 25.20 27.82

separate disk 28.20 28.53

Table 4: Placing metadata on ramdisk and data
on a disk. All are measured in MB/s.

are not shown here.

Non-linear Editing
To test cut-and-paste operation, we prepared
two files each of which is of 131072000 bytes,
then cut the latter half (= 65,536,000 bytes)
of one file and append it to the other file. In
XPRESS, this operation takes 0.274 seconds.
For comparison, the operation is implemented
on ext3 by copying iteratively 65536 bytes,
which took 3.9 seconds. The performance gap
is due to not copying file data but updating file
system metadata (extents.db and inode.
db). In XPRESS, the operation is atomic trans-
action and can be undone if it fails during the
operation. However our implementation of the
operation on ext3 does not guarantee atomicity.

6 Related Works

Traditionally file system and database has been
developed separately without depending on
each other. They are aimed for different pur-
poses; file system is for byte streaming and
database is for advanced query support. Re-
cently there is a growing needs to index files
with attributes other than file name. For exam-
ple, file system containing photos and emails
need to be indexed by date, sender, or sub-
jects. XML document provides jit(just-in-
time) schema to support contents based index-
ing. Conventional file system is lack of in-
dexing that kind of new types of files. There
has been a few works to implement database
file systems to enhance file indexing; BFS[5],

68 • A Reliable and Portable Multimedia File System

GnomeStorage[10], DBFS[6], kbdbfs[9], and
WinFS[7]. Those are not addressing streaming
performance issues. For video streaming, data
placement on disk is important. While con-
ventional database file systems resorts to DB
or other file systems for file content storage,
XPRESS controls placement of files content by
itself.

Compared to custom multimedia file systems
(e.g. [12], [8], [4]), XPRESS has a well-defined
file system metadata design and implementa-
tion framework and file system metadata is pro-
tected by transactional databases. Appending
multimedia extensions like indexing and non-
linear editing is easier. Moreover since it is im-
plemented in user level, it is highly portable to
various OSes.

7 Conclusions and Future Works

In this paper we described a novel multime-
dia file system architecture satisfying stream-
ing performance, multimedia extensions (non-
linear editing), reliability, portability, and
maintainability. We described detailed design
and issues of XPRESS which is a research pro-
totype implementation. In XPRESS, file sys-
tem metadata are managed by a transactional
database, so metadata consistency is ensured
by transactional DB. Upgrade and customiza-
tion of file system is easy task in XPRESS be-
cause developers don’t have to deal with meta-
data layout in disk drive. We also implement
atomic non-linear editing operations using DB
transactions. Cutting and pasting A/V data
segments is implemented by extents database
update without copying segment data. Com-
pared to ext3, XFS, and XFS real-time sub-
volume extension, XPRESS showed competi-
tive streaming performance and more determin-
istic response times.

This work indicates feasibility of database-
assisted multimedia file system. Based on
the database and user level implementation, it
makes future design change and porting easy
while streaming performance is not compro-
mised at the same time. Future works are appli-
cation binary compatibility support using sys-
tem call hijacking, appending contents-based
extended attributes, and encryption support.
Code migration to kernel level will also be
helpful for embedded devices having low com-
puting power.

References

[1] Threaded i/o tester.
http://sourceforge.net/
projects/tiobench/.

[2] M. Cao, T. Tso, B. Pulavarty,
S. Bhattacharya, A. Dilger, and
A. Tomas. State of the art: Where we are
with the ext3 filesystem. In Proceeding
of Linux Symposium, July 2005.

[3] Giel de Nijs, Benno van den Brink, and
Werner Almesberger. Active block io
scheduling system. In Proceeding of
Linux Symposium, pages 109–126, July
2005.

[4] Pallavi Galgali and Ashish Chaurasia.
San file system as an infrastructure for
multimedia servers. http:
//www.redbooks.ibm.com/
redpapers/pdfs/redp4098.pdf.

[5] Dominic Giampaolo. Practical File
System Design with the Be File System.
Morgan Kaufmann Publishers, Inc.,
1999. ISBN 1-55860-497-9.

[6] O. Gorter. Database file system.
Technical report, University of Twente,
aug 2004. http://ozy.student.

2006 Linux Symposium, Volume One • 69

utwente.nl/projects/dbfs/
dbfs-paper.pdf.

[7] Richard Grimes. Revolutionary file
storage system lets users search and
manage files based on content, 2004.
http://msdn.microsoft.com/
msdnmag/issues/04/01/WinFS/
default.aspx.

[8] R. L. Haskin. Tiger Shark — A scalable
file system for multimedia. IBM Journal
of Research and Development,
42(2):185–197, 1998.

[9] Aditya Kashyap. File System
Extensibility and Reliability Using an
in-Kernel Database. PhD thesis, Stony
Brook University, 2004. Technical
Report FSL-04-06.

[10] Seth Nickell. A cognitive defense of
associative interfaces for object
reference, Oct 2004. http://www.
gnome.org/~seth/storage/
associative-interfaces.pdf.

[11] Mendel Rosenblum and John K.
Ousterhout. The design and
implementation of a log-structured file
system. ACM Transactions on Computer
Systems, 10(1):26–52, 1992.

[12] Philip Trautman and Jim Mostek.
Scalability and performance in modern
file systems.
http://linux-xfs.sgi.com/
projects/xfs/papers/xfs_
white/xfs_white_paper.%html.

70 • A Reliable and Portable Multimedia File System

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

