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Abstract

Ext2 is fast, simple, robust, and fun to hack on.
However, it has fallen out of favor for one ma-
jor reason: if an ext2 file system is not cleanly
unmounted, such as in the event of kernel crash
or power loss, it must be repaired using fsck,
which takes minutes or hours to complete, dur-
ing which time the file system is unavailable.
In this paper, we describe some techniques for
reducing the average fsck time on ext2 file sys-
tems. First, we avoid running fsck in some
cases by adding a filesystem-wide dirty bit in-
dicating whether the file system was being ac-
tively modified at the time it crashed. The per-
formance of ext2 with this change is close to
that of plain ext2, and quite a bit faster than
ext3. Second, we propose a technique called
linked writes which uses dependent writes and
a list of dirty inodes to allow recovery of an ac-
tive file system by only repairing the dirty in-
odes and avoiding a full file system check.

1 Introduction

The Second Extended File System, ext2, was
implemented in 1993 by Remy Card, Theodore

T’so, and Stephen Tweedie, and for many years
was the file system of choice for Linux sys-
tems. Ext2 is similar in on-disk structure to the
Berkeley FFS file system [14], with the notable
exception of sub-block size fragments [2]. In
recent years, ext2 has been overtaken in popu-
larity by the ext3 [6, 16] and reiser3 [4] file sys-
tems, both journaling file systems. While these
file systems are not as fast as ext2 in some cases
[1], and are certainly not as simple, their recov-
ery after crash is very fast as they do not have
to run fsck.

Like the original Berkeley FFS, ext2 file sys-
tem consistency is maintained on a post hoc ba-
sis, by repair after the fact using the file system
checker, fsck [12]. Fsck works by traversing
the entire file system and building up a consis-
tent picture of the file system metadata, which
it then writes to disk. This kind of post hoc
data repair has two major drawbacks. One, it
tends to be fragile. A new set of test and repair
functions had to be written for every common
kind of corruption. Often, fsck had to fall back
to manual mode—that is, asking the human to
make decisions about repairing the file system
for it. As ext2 continued to be used and new
tests and repairs were added to the fsck code
base, this occurred less and less often, and now
most users can reasonably expect fsck to com-
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plete unattended after a system crash.

The second major drawback to fsck is total run-
ning time. Since fsck must traverse the entire
file system to build a complete picture of allo-
cation bitmaps, number of links to inodes, and
other potentially incorrect metadata, it takes
anywhere from minutes to hours to complete.
File system repair using fsck takes time pro-
portional to the size of the file system, rather
than the size of the ongoing update to the file
system, as is the case for journaling file sys-
tems like ext3 and reiserfs. The cost of the sys-
tem unavailability while fsck is running is so
great that ext2 is generally only used in niche
cases, when high ongoing performance is worth
the cost of occasional system unavailability and
possible greater chance of data loss.

On the other hand, ext2 is fast, simple, easy
to repair, uses little CPU, performs well with
multi-threaded reads and writes, and benefits
from over a decade of debugging and fine tun-
ing. Our goal is to find a way to keep these at-
tributes while reducing the average time it takes
to recover from crashes—that is, reducing the
average time spent running fsck. Our target
use case is a server with many users, infrequent
writes, lots of read-only file system data, and
tolerance for possibly greater chance of data
loss.

Our first approach to reducing fsck time is to
implement a filesystem-wide dirty bit. While
writes are in progress, the bit is set. After
the file system has been idle for some period
of time (one second in our implementation),
we force out all outstanding writes to disk and
mark the file system as clean. If we crash while
the file system is marked clean, fsck knows that
it does not have to do a full fsck. Instead, it
does some minor housekeeping and marks the
file system as valid. Orphan inodes and block
preallocation added some interesting twists to
this solution, but overall it remains a simple
change. While this approach does not improve

worst case fsck time, it does improve average
fsck time. For comparison purposes, recall that
ext3 runs a full fsck on the file system every 30
mounts as usually installed.

Our second approach, which we did not imple-
ment, is an attempt to limit the data fsck needs
to examine to repair the file system to a set of
dirty inodes and their associated metadata. If
we add inodes to an on-disk dirty inode list be-
fore altering them and correctly order metadata
writes to the file system, we will be able to cor-
rect allocation bitmaps, directory entries, and
inode link counts without rebuilding the entire
file system, as fsck does now.

Some consistency issues are difficult to solve
without unsightly and possibly slow hacks,
such as keeping the number of links consis-
tent for a file with multiple hard links during
an unlink() operation. However, they occur
relatively rarely, so we are considering combin-
ing this approach with the filesystem-wide dirty
bit. When a particular operation is too ugly to
implement using the dirty inode list, we sim-
ply mark the file system as dirty for the du-
ration of the operation. It may be profitable
to merely narrow the window during which a
crash will require a full fsck rather than to close
the window fully. Whether this can be done and
still preserve the properties of simplicity of im-
plementation and high performance is an open
question.

2 Why ext2?

Linux has a lot of file systems, many of which
have better solutions for maintaining file sys-
tem consistency than ext2. Why are we work-
ing on improving crash recovery in ext2 when
so many other solutions exist? The answer is
a combination of useful properties of ext2 and
drawbacks of existing file systems.
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First, the advantages of ext2 are simplicity, ro-
bustness, and high performance. The entire
ext2 code base is about 8,000 lines of code;
most programmers can understand and begin
altering the codebase within days or weeks. For
comparison, most other file systems come in
anywhere from 20,000 (ext3 + jbd) to 80,000
(XFS) lines of code. Ext2 has been in active
use since 1993, and benefits from over a decade
of weeding out bugs and repairing obscure and
seldom seen failure cases. Ext2 performance
is quite good overall, especially considering its
simplicity, and definitely superior to ext3 in
most cases.

The main focus of file systems development
in Linux today is ext3. On-disk, ext3 is al-
most identical to ext2; both file systems can be
mounted as either ext2 or ext3 in most cases.
Ext3 is a journalled file system; updates to the
file system are first written as compact entries
in the on-disk journal region before they are
written to their final locations. If a crash oc-
curs during an update, the journal is replayed
on the next mount, completing any unfinished
updates.

Our primary concern with ext3 is lower per-
formance from writing and sharing the journal.
Work is being done to improve performance,
especially in the area of multi-threaded writes
[9], but it is hard to compete in performance
against a file system which has little or no re-
strictions in terms of sharing resources or write
ordering. Our secondary concern is complexity
of code. Journaling adds a whole layer of code
to open transactions, reserve log space, and bail
out when an error occurs. Overall, we feel that
ext3 is a good file system for laptops, but not
very good for write-intensive loads.

The reiser3 [4] file system is the default file
system for the SuSE distribution. It is also a
journaling file system, and is especially good
for file systems with many small files because

it packs the file together, saving space. The per-
formance of reiser3 is good and in some cases
better than ext2. However, reiser3 was devel-
oped outside the mainstream Linux commu-
nity and never attracted a community developer
base. Because of this and the complexity of the
implementation, it is not a good base for file
system development. Reiser4 [4] has less de-
veloper buy-in, more code, worse performance
in many cases [1], and may not be merged into
the mainline Linux tree at all [3].

XFS is another journaling file system. It has
many desirable properties, and is ideal for ap-
plications requiring thousands or millions of
files in one directory, but also suffers from
complexity and lack of developer community.
Performance of more common case operations
(such as file create) suffers for the benefit of fast
look ups in directories with many entries [1].

Other techniques for maintaining file system
complexity are soft updates [13] and copy-on-
write [11]. Without a team of full-time pro-
grammers and several years to work on the
problem, we did not feel we could implement
either of these techniques. In any case, we did
not feel we could maintain the simplicity or the
benefits of more than a decade of testing of ext2
if we used these techniques.

Given these limitations, we decided to look
for “90% solutions” to the file system con-
sistency problem, starting with the ext2 code
base. This paper describes one technique we
implemented, the filesystem-wide dirty bit, and
one we are considering implementing, linked
writes.

3 The fsck program

Cutting down crash recovery time for an ext2
file system depends on understanding how the
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file system checker program, fsck works. After
Linux has finished booting the kernel, the root
file system is mounted read-only and the kernel
executes the init program. As part of normal
system initialization, fsck is run on the root file
system before it is remounted read-write and on
other file systems before they are mounted. Re-
pair of the file system is necessary before it can
be safely written.

When fsck runs, it checks to see if the ext2
file system was cleanly unmounted by reading
the state field in the file system superblock. If
the state is set as VALID, the file system is al-
ready consistent and does not need recovery;
fsck exits without further ado. If the state is
INVALID, fsck does a full check of the file sys-
tem integrity, repairing any inconsistencies it
finds. In order to check the correctness of al-
location bitmaps, file nlinks, directory entries,
etc., fsck reads every inode in the system, ev-
ery indirect block referenced by an inode, and
every directory entry. Using this information, it
builds up a new set of inode and block alloca-
tion bitmaps, calculates the correct number of
links of every inode, and removes directory en-
tries to unreferenced inodes. It does many other
things as well, such as sanity check inode fields,
but these three activities fundamentally require
reading every inode in the file system. Other-
wise, there is no way to find out whether, for
example, a particular block is referenced by a
file but is marked as unallocated on the block
allocation bitmap. In summary, there are no
back pointers from a data block to the indirect
block that points to it, or from a file to the direc-
tories that point to it, so the only way to recon-
struct reference counts is to start at the top level
and build a complete picture of the file system
metadata.

Unsurprisingly, it takes fsck quite some time
to rebuild the entirety of the file system meta-
data, approximately O(total file system size +
data stored). The average laptop takes several

minutes to fsck an ext2 file system; large file
servers can sometimes take hours or, on oc-
casion, days! Straightforward tactical perfor-
mance optimizations such as requesting reads
of needed blocks in sequential order and read-
ahead requests can only improve the situation
so much, given that the whole operation will
still take time proportional to the entire file sys-
tem. What we want is file system recovery time
that is O(writes in progress), as is the case for
journal replay in journaling file systems.

One way to reduce fsck time is to eliminate the
need to do a full fsck at all if a crash occurs
when the file system is not being changed. This
is the approach we took with the filesystem-
wide dirty bit.

Another way to reduce fsck time is to reduce
the amount of metadata we have to check in
order to repair the file system. We propose a
method of ordering updates to the file system
in such a way that full consistency can be re-
covered by scanning a list of dirty inodes.

4 Implementation of filesystem-
wide dirty bit

Implementing the fs-wide dirty bit seemed at
first glance to be relatively simple. Intuitively,
if no writes are going on in the file system, we
should be able to sync the file system (make
sure all outstanding writes are on disk), reset
the machine, and cleanly mount the unchanged
file system. Our intuition is wrong in two ma-
jor points: orphan inodes, and block prealloca-
tion. Orphan inodes are files which have been
unlinked from the file system, but are still held
open by a process. On crash and recovery, the
inode and its blocks need to be freed. Block
preallocation speeds up block allocation by pre-
allocating a few more blocks than were actually
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requested. Unfortunately, as implemented, pre-
allocation alters on-disk data, which needs to be
corrected if the file is not cleanly closed. First
we’ll describe the overall implementation, then
our handling of orphan inodes and preallocated
blocks.

4.1 Overview of dirty bit implementation

Our first working patch implementing the fs-
wide dirty bit included the following high-level
changes:

• Per-mount kernel thread to mark file sys-
tem clean

• New ext2_mark_*_dirty() func-
tions

• Port of ext3 orphan inode list

• Port of ext3 reservation code

The ports of the ext3 orphan inode list and
reservation code were not frivolous; without
them, the file system would be an inconsistent
state even when no writes were occurring with-
out them.

4.2 Per-mount kernel thread

The basic outline of how the file system is
marked dirty or clean by the per-mount kernel
thread is as follows:

• Mark the file system dirty whenever meta-
data is altered.

• Periodically check the state of the file sys-
tem.

• If the file system is clean, sync the file sys-
tem.

• If no new writes occurred during the sync,
mark the file system clean.

The file system is marked clean or dirty by up-
dating a field in the superblock and submitting
the I/O as a barrier write so that no writes can
pass it and hit the disk before the dirty bit is up-
dated. The update of the dirty bit is done asyn-
chronously, so as to not stall during the first
write to a clean file system (since it is a barrier
write, waiting on it will not change the order of
writes to disk anyway).

In order to implement asynchronous update of
the dirty bit in the superblock, we needed to
create an in-memory copy of the superblock.
Updates to the superblock are written to the in-
memory copy; when the superblock is ready to
be written to disk, the superblock is locked, the
in-memory superblock is copied to the buffer
for the I/O operation, and the I/O is submitted.
The code implementing the superblock copy is
limited to the files ext2/super.c and one
line in ext2/xattr.c.

One item on our to-do list is integration with
the laptop mode code, which tries to mini-
mize the number of disk spin-up and spin-down
events by concentrating disk write activity into
batches. Marking the file system clean should
probably be triggered by the timeout for flush-
ing dirty data in laptop mode.

4.3 Marking the file system dirty

Before any metadata changes are sched-
uled to be written to disk, the file system
must first be marked dirty. Ext2 al-
ready uses the functions mark_inode_

dirty(), mark_buffer_dirty(), and
mark_buffer_dirty_inode() to mark
changed metadata for write-out by the VFS
and I/O subsystems. We created ext2-specific
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versions of these functions which first mark
the file system dirty and then call the original
function.

4.4 Orphan inodes

The semantics of UNIX file systems allow an
application to create a file, open it, unlink the
file (removing any reference to it from the file
system), and keep the file open indefinitely.
While the file is open, the file system can not
delete the file. In effect, this creates a tem-
porary file which is guaranteed to be deleted,
even if the system crashes. If the system does
crash while the file is still open, the file sys-
tem contains an orphan inode—an inode which
marked as in use, but is not referenced by any
directory entry. This behavior is very conve-
nient for application developers and a real pain
in the neck for file system developers, who wish
they would all use files in tmpfs instead.

In order to clean up orphan inodes after a
crash, we ported the ext3 orphan inode list to
ext2. The orphan inode list is an on-disk singly
linked list of inodes, beginning in the orphan
inode field of the superblock. The i_dtime
field of the inode, normally used to store the
time an inode was deleted, is (ab)used as the
inode number of the next item in the orphan in-
ode list. When fsck is run on the file system,
it traverses the linked list of orphan inodes and
frees them. Fortunately for us, the code in fsck
that does this runs regardless of whether the file
system is mounted as ext2 or ext3.

Our initial implementation followed the ext3
practice of writing out orphan inodes immedi-
ately in order to keep the orphan inode list as
up-to-date as possible on disk. This is expen-
sive, and an up-to-date orphan inode list is su-
perfluous except when the file system is marked
clean. We modified the orphan inode code to
only maintain the orphan inode list in memory,

and write it out to disk on file system sync. We
will need to add a patch to keep fsck from com-
plaining about a corrupted orphan inode list.

4.5 Preallocated blocks

The existing code in ext2 for preallocating
blocks unfortunately alters on-disk metadata,
such as the block group free and allocated block
counts. One solution was to simply turn off
preallocation. Fortunately, Mingming Cao im-
plemented new block preallocation code for
ext3 which reserves blocks without touching
on-disk data, and is superior to the ext2 preal-
location code in several other ways. We chose
to port Mingming Cao’s reservation code to
ext2, which in theory should improve block
allocation anyway. ext2 and ext3 were sim-
ilar enough that we could complete the port
quickly, although porting some parts of the new
get_blocks() functionality was tricky.

4.6 Development under User-mode Linux

We want to note that the implementation of the
filesystem-wide dirty bit was tested almost en-
tirely on User-mode Linux [10], a port of Linux
that runs as a process in Linux. UML is well
suited to file system development, especially
when the developer is limited to a single lap-
top for both development host and target plat-
form (as is often the case on an airplane). With
UML, we could quickly compile, boot, crash,
and reboot our UML instance, all without wor-
rying about corrupting any important file sys-
tems. When we did corrupt the UML file sys-
tem, all that was necessary was to copy a clean
file system image back over the file containing
the UML file system image. The loopback de-
vice made it easy to mount, fsck, or otherwise
examine the UML file system using tools on the
host machine. Only one bug required running
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on a non-UML system to discover, which was
lack of support for suspend in the dirty bit ker-
nel thread.

However, getting UML up and running and
working for file system development was some-
what non-intuitive and occasionally baffling.
Details about running UML on recent 2.6 ker-
nels, including links to a sample root file sys-
tem and working .config file, can be found
here:

http://www.nmt.edu/~val/uml_tips.html

5 Performance

We benchmarked the filesystem-wide dirty bit
implementation to find out if it significantly im-
pacted performance. On the face of it, we ex-
pected a small penalty on the first write, due to
issuing an asynchronous write barrier the first
time the file system is written.

The benchmarks we ran were kuntar, postmark,
and tiobench [7]. Kuntar simply measures the
time to extract a cached uncompressed kernel
tarball and sync the file system. Postmark cre-
ates and deletes many small files in a directory
and is a metadata intensive workload. We ran it
with numbers = 10000 and transactions

= 10000. We also added a sync() system
call to postmark before the final timing mea-
surement was made, in order to measure the
true performance of writing data all the way to
the disk. Tiobench is a benchmark designed to
measure multi-threaded I/O to a single file; we
ran it mainly as a sanity check since we didn’t
expect anything to change in this workload. We
ran tiobench with 16 threads and a 256MB file
size.

The file systems we benchmarked were ext2,
ext2 with the reservations-only patch, ext2 with

reservations only with reservations turned off,
ext2 with the fs-wide bit patch and reserva-
tions, ext3 with defaults, and ext3 with data=
writeback mode. All file systems used 4KB
blocks and were mounted with the noatime
option. The kernel was 2.6.16-mm1. The ma-
chine had two 1533 MHZ AMD Athlon proces-
sors and 1GB of memory. We recored elapsed
time, sectors read, sectors written, and kernel
ticks. The results are in Table 1.

The results are somewhat baffling, but overall
positive for the dirty bit implementation. The
times for the fs-wide dirty bit are within 10%
of those of plain ext2 for all benchmarks ex-
cept postmark. For postmark, writes increased
greatly for the fs-wide dirty bit; we are not sure
why yet. The results for the reservations-only
versions of ext2 are even more puzzling; we
suspect that our port of reservations is buggy or
suboptimal. We will continue researching the
performance issues.

We would like to briefly discuss the noatime
option. All file systems were mounted with the
noatime option, which turns off updates to
the “last accessed time” field in the inode. We
turned this option off not only because it would
prevent the fs-wide dirty bit from being effec-
tive when a file system is under read activity,
but also because it is a common technique for
improving performance. noatime is widely
regarded as the correct behavior for most file
systems, and in some cases is shipped as the
default behavior by distributions. While correct
access time is sometimes useful or even critical,
such as in tracing which files an intruder read,
in most cases it is unnecessary and only adds
unnecessary I/O to the system.

6 Linked writes

Our second idea for reducing fsck time is to or-
der writes to the file system such that the file
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ext2 ext2r ext2rnor ext2fw ext3 ext3wb
kuntar secs 20.32 21.03 19.06 18.87 20.99 32.02

read 5152 5176 5176 5176 168 168
write 523272 523272 523288 523304 523256 544160
ticks 237 269 357 277 413 402

krmtar secs 9.79 10.92 9.99 10.90 55.64 9.74
read 20874 20842 20874 20874 20866 20874
write 5208 5176 5208 5960 36296 10560
ticks 61 61 62 61 7943 130

postmark secs 33.98 49.34 42.93 50.46 43.48 41.82
read 2568 2568 2568 2568 56 48
write 168312 168392 168392 240720 260704 173936
ticks 641 650 838 674 1364 1481

tiobench secs 37.48 35.22 33.68 33.57 35.16 36.69
read 32 32 32 32 24 112
write 64 64 64 72 136 136
ticks 441 450 456 463 452 463

kuntar: expanding a cached uncompressed kernel tarball and syncing
krmtar: rm -rf on cold untarred kernel tree, sync
postmark: postmark + sync() patch, numbers = 10000, transactions = 10000
tiobench: tiobench: 16 threads, 256m size
ext2: ext2
ext2r: ext2, reservations
ext2rnor: ext2, reservations, -o noreservation option
ext2fw: ext2, reservations, fswide
ext3: ext3, 256m journal
ext3wb: ext3, 256m journal, data=writeback

Table 1: Benchmark results

system can repaired to a consistent state after
processing a short list of dirty inodes. Before an
operation begins, the relevant inodes are added
to an on-disk list of dirty inodes. During the
operation, we only overwrite references to data
(such as indirect blocks or directory entries)
after we have finished all updates that require
that information (such as updating allocation
bitmaps or link counts). If we crash half-way
through an operation, we examine each inode
on the dirty inode list and repair any consis-
tencies in the metadata it points to. For exam-
ple, if we were to crash half-way through allo-

cating a block, we would check if each block
were marked as allocated in the block alloca-
tion bitmap. If it was not, we would free that
block from the file (and all blocks that it points
to). We call this scheme linked writes—a write
erasing a pointer is linked or dependent on the
write of another block completing first.

Some cases are ambiguous as to what operation
was in progress, such as truncating and extend-
ing a file. In these cases, we will take the safest
action. For example, in an ambiguous trun-
cate/extend, we would assume a truncate opera-
tion was in progress, because if we were wrong,
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the new block would contain uninitialized data,
resulting in a security hole. It might be possi-
ble to indicate which operation was in progress
using other metadata, such as inode size, but
if that is not possible or would harm perfor-
mance, we have this option as a fail safe. The
difference between restoring one or the other of
two ambiguous operations is the difference be-
tween restoring the file as of a short time before
the crash versus restoring it as of after the com-
pletion of the operation in progress at the time
of crash. Either option is allowed; only calling
sync() defines what state the file is in on-disk
at any particular moment.

Some operations may not be recoverable only
by ordering writes. Consider removing one
hard link to a file with multiple hard links from
different directories. The only inodes on the
dirty inode list are the inode for the directory
we are removing the link from, and the file
inode—not the inodes for the other directories
with hard links to this file. Say we decrement
the link count for the inode, and then crash. In
the one link case, when we recover, we will
find an inode with link count equal to 0, and
a directory with an entry pointing to this in-
ode. Recovery is simple; free the inode and
delete the directory entry. But if we have mul-
tiple hard links to the file, and the inode has
a link count of one or more, we have no way
of telling whether the link count was already
decremented before we crashed or not. A so-
lution to this is to overwrite the directory en-
try with an invalid directory entry with a magic
record that contains the inode’s correct link
count which is only replayed if the inode has
not already been updated. This regrettably adds
yet another linked write to the process of delet-
ing an entry. On the other hand, adding or re-
moving links to files with link counts greater
than one is painful but blessedly uncommon.
Typically only directories have a link count
greater than one, and in modern Linux, direc-
tory hard links are not allowed, so a directory’s

link count can be recalculated simply by scan-
ning the directory itself.

Another problem is circular dependencies be-
tween blocks that need to be written out. Say
we need to write some part of block A to disk
before we write some part of block B. We up-
date the buffers in memory and mark them to
be written out in order A, B. But then some-
thing else happens, and now we need to write
some part of block B to disk before some part
of block A. We update the buffers in memory—
but now we can’t write either block A or block
B. Linked writes doesn’t run into this problem
because (a) every block contains only one kind
of metadata, (b) the order in which different
kinds of metadata must be written is the same
for every option. This is equivalent to the lock
ordering solution to the deadlock problem; if
you define the order for acquiring locks and ad-
here to it, you can’t get into a deadlock.

Ordinarily, writing metadata in the same order
according to type for all operations would not
be possible. Consider the case of creating a file
versus deleting it. In the create case, we must
write the directory entry pointing to the inode
before updating the bitmap in order to avoid
leaking an inode. In the delete case, we must
write the bitmap before we delete the entry to
avoid leaking an inode. What gets us out of
this circular dependency is the dirty inode list.
If we instead put the inode to be deleted on the
dirty inode list, then we can delete the direc-
tory entry before the bitmap, since if we crash,
the inode’s presence on the dirty inode list will
allow us to update the bitmap correctly. This al-
lows us to define the dependency order “write
bitmaps before directory entries.” The order of
metadata operations for each operation must be
carefully defined and adhered to.

When writing a buffer to disk, we need to be
sure it does not change in flight. We have
two options for accomplishing this: either lock
the buffer and stall any operations that need to
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write to it while it is in flight, or clone the buffer
and send the copy to disk. The first option is
what soft updates uses [13]; surprisingly per-
formance is quite good so it may be an option.
The second option requires more memory but
would seem to have better performance.

Another issue is reuse of freed blocks or inodes
before the referring inode is removed from the
dirty inode list. If we free a block, then reuse it
before the inode referring to it is removed from
the dirty list, it could be erroneously marked as
free again at recovery time. To track this, we
need a temporary copy of each affected bitmap
showing which items should not be allocated,
in addition to the items marked allocated in the
main copy of the bitmap. Overall, we occasion-
ally need three copies of each active bitmap in
memory. The required memory usage is com-
parable to that of journaling, copy-on-write, or
soft updates.

6.1 Implementing write dependencies

Simply issuing write barriers when we write
the first half of a linked write would be terribly
inefficient, as the only method of implement-
ing this operation that is universally supported
by disks is: (1) issue a cache flush command;
(2) issue the write barrier I/O; (3) wait for the
I/O to complete; (4) issue a second cache flush
command. (Even this implementation may be
an illusion; reports of IDE disks which do not
correctly implement the cache flush command
abound.) This creates a huge bubble in the I/O
pipeline. Instead, we want to block only the de-
pendent write. This can be implemented using
asynchronous writes which kick off the linked
write in the I/O completion handler.

6.2 Comparison of linked writes

Linked writes bears a strong resemblance to
soft updates [13]. Indeed, linked writes can

be thought of as soft updates from the oppo-
site direction. Soft updates takes the approach
of erring on the side of marking things allo-
cated when they are actually free, and then re-
covering leaked inodes and blocks after mount
by running a background fsck on the file sys-
tem. Linked writes errs on the side of mark-
ing things unallocated when they are still refer-
enced by the file system, and repairing incon-
sistencies by reviewing a list of dirty inodes.
Soft updates handles circular buffer dependen-
cies (where block A must be written out be-
fore block B and vice versa) by rolling back the
dependent data before writing the block out to
disk. Linked writes handle circular dependen-
cies by making them impossible.

Linked writes can also be viewed as a form
of journaling in which the journal entries are
scattered across the disk in the form of inodes
and directory entries, and linked together by
the dirty inode list. The advantages of linked
writes over journaling is that changes are writ-
ten once, no journal space has to be allocated,
writes aren’t throttled by journal size, and there
are no seeks to a separate journal region.

6.3 Reinventing the wheel?

Why bother implementing a whole new method
of file system consistency when we have so
many available to us already? Simply put, frus-
tration with code complexity and performance.
The authors have had direct experience with the
implementation of ZFS [8], ext3 [6], and ocfs2
[5] and were disappointed with the complexity
of the implementation. Merely counting lines
of code for reiser3 [4], reiser4 [4], or XFS [15]
incites dismay. We have not yet encountered
someone other than the authors of the original
soft updates [13] implementation who claims
to understand it well enough to re-implement
from scratch. Yet ext2, one of the smallest,
simplest file systems out there, continues to be
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the target for performance on general purpose
workloads.

In a sense, ext2 is cheating, because it does not
attempt to keep the on-disk data structures in-
tact. In another sense, ext2 shows us what our
rock-bottom performance expectations for new
file systems should be, as relatively little effort
has been put into optimizing ext2.

With linked writes, we hope for a file system a
little more complex, a lot more consistent, and
nearly the same performance as ext2.

6.4 Feasibility of linked writes implemen-
tation

We estimate that implementing linked writes
would take on the order of half the effort neces-
sary to implement ext3. Adjusting for program-
mer capability and experience (translation: I’m
no Kirk McKusick or Greg Ganger), we es-
timate that implementing linked writes would
take one fifth the staff-years required by soft
updates.

We acknowledge that the design of linked
writes is half-finished at best and may end up
having fatal flaws, nor do we expect our de-
sign to survive implementation without major
changes—“There’s many a slip ’twixt cup and
lip.”

7 Failed ideas

Linked writes grew out of our original idea
to implement per-block group dirty bits. We
wanted to restrict how much of the file sys-
tem had to be reviewed by fsck after a crash,
and dividing it up by block groups seemed to
make sense. In retrospect, we realized that the
only checks we could do in this case would

start with the inodes in this block group and
check file system consistency based on the in-
formation they point to. On the other hand,
given a block allocation bitmap, we can’t check
whether a particular block is correctly marked
unless we rebuild the entire file system by read-
ing all of the inodes. In the end, we real-
ized that per-bg dirty bits would basically be
a very coarse hash of which inodes need to be
checked. It may make sense to implement some
kind of bitmap showing which inodes need to
be checked rather than a linked list, otherwise
this idea is dead in the water.

Another idea for handling orphan inodes was to
implement a set of “in-memory-only” bitmaps
that record inodes and blocks which are al-
located only for the lifetime of this mount—
in other words, orphan inodes and their data.
However, these bitmaps would in the worst case
require two blocks per cylinder group of unre-
claimable memory. A workaround would be to
allocate space on disk to write them out under
memory pressure, but we abandoned this idea
quickly.

8 Availability

The most recent patches are available from:

http://www.nmt.edu/~val/patches.html

9 Future work

The filesystem-wide dirty bit seems worthwhile
to polish for inclusion in the mainline kernel,
perhaps as a mount option. We will continue to
do work to improve performance and test cor-
rectness.

Implementing linked writes will take a signifi-
cant amount of programmer sweat and may not
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be considered, shall we say, business-critical to
our respective employers. We welcome discus-
sion, criticism, and code from interested third
parties.
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Many thanks to all those who reviewed and
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was greatly reduced by being able to port the
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11 Conclusion

The filesystem-wide dirty bit feature allows
ext2 file systems to skip a full fsck when the
file system is not being actively modified dur-
ing a crash. The performance of our initial, un-
tuned implementation is reasonable, and will be
improved. Our proposal for linked writes out-
lines a strategy for maintaining file system con-
sistency with less overhead than journaling and
simpler implementation than copy-on-write or
soft updates.

We take this opportunity to remind file system
developers that ext2 is an attractive target for
innovation. We hope that developers rediscover
the possibilities inherent in this simple, fast, ex-
tendable file system.
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