
Ideas on improving Linux infrastructure for
performance on multi-core platforms

Maxim Alt
Intel Corporation

maxim.alt@intel.com

Abstract

With maturing compiler technologies, compile-
time analysis can be a very powerful tool for
optimizing and monitoring code on any ar-
chitecture. In combination with modern run-
time analysis tools and existing program inter-
faces to monitor hardware counters, we will
survey modern techniques for analyzing per-
formance issues. We propose using perfor-
mance counter data and sequences of perfor-
mance events to trigger event handlers in ei-
ther the application or the operating system. In
this way, sequence of performance events can
be your debugging breakpoint or a callback.
This paper will try to bridge the capabilities of
advanced performance monitoring with com-
mon software development infrastructure (de-
buggers, gcc, loader, process scheduler). One
proposed approach is to extend the run-time en-
vironment with an interface layer that will filter
performance profiles, capture sequences of per-
formance hazards, and provide summary data
to the OS, debuggers, or application.

With the introduction of hyper-threading tech-
nology several years ago, there were obvious
challenges to look beyond a single running pro-
cess to monitor and schedule compute intensive
processes on multi-threaded cores. Multi-level
memory hierarchy and scaling on SMP systems
complicated the situation even further, causing

essential changes in kernel scheduler and per-
formance tools. In the era of parallel and plat-
form computing, we rely less on single exe-
cution process performance—with each com-
ponent optimized by the compiler—and it be-
comes important to evaluate performance of the
platform as a whole. The new concept of per-
formance adaptive schedulers is one example
of intelligently maximizing the performance on
platform level of CMP systems. Performance
data at higher granularity and a concept of pro-
cessor efficiency per functionality can be ap-
plied to making intelligent decisions on process
scheduling in the operating system.

Towards the end, we will suggest particular im-
provements in performance and run-time tools
as a reflection of proposed approaches and tran-
sition to platform-level optimization goals.

1 Introduction

This paper introduces a series of ideas for
bringing together existing disparate technolo-
gies to improve tools for the detection and ame-
lioration of performance hazards.

About 20 years ago, an exceptionally thin 16-
bit real-time iRMX operating system had an
extremely simple but important built-in fea-
ture: when debugging race conditions in shared

40 • Ideas on improving Linux infrastructure for performance on multi-core platforms

memory at any point of run-time execution, a
developer could bring the system to a halt, set
an internal OS breakpoint at an address and the
operating system would halt whenever a value
was being written at the specified address. No
high level debugger was needed to debug race
conditions, nor were they capable.

With the introduction of hyper-threading tech-
nology, many software vendors started to ex-
periment with running their multi-threaded
software on hyper-threaded processors. With
the increase the number of processors, those
vendors expected to get good scaling after elim-
ination of synchronization and scheduling is-
sues. These issues are quite difficult to track,
debug, or find with Gdb or VTune analyzer.

The problem of debugging synchronization is-
sues in multi-threaded applications is growing
more important and more complex with the ad-
vent of parallelizing compilers and language
support for multithreading, such as OpenMP.
The compiler has knowledge of program se-
mantics, but does not generally have run-time
information. The OS is in a position to make
decisions based on run-time information, but
it doesn’t have the semantic information that
was available to the compiler, since it sees
only the binary. Further, any run-time analysis
and decision-making affects application perfor-
mance, either directly by using CPU time, or
indirectly by effects such as cache pollution.

Spin locks are an example of the kind of
construct for which higher-level information
would be helpful. The compiler can easily de-
tect spin lock constructs using simple pattern-
recognition. From the run-time perspective a
spin lock is a loop that repeatedly reads a shared
memory address and compares it to a loop-
invariant a value. A spin-lock is a useful syn-
chronization mechanism if the stall is not long.
For long stalls, it wastes a lot of processor
time. Typically, after spinning for some num-
ber of cycles, the thread will yield to let other

threads make progress. If the OS could iden-
tify which threads were waiting for a lock and
which threads held the lock, it could adjust pri-
orities to maximize throughput automatically.

Another relevant example of how a scheduler
might use performance data is not based on de-
bugging. Consider two processes running con-
currently: two floating point intensive loops,
where only one of which has long memory
stalls. Should the scheduling of the processes
alter? For example, two floating point inten-
sive loops with unknown memory latency or
two loops of unknown execution property or
two blocks of code of unknown programming
construct?

This question was raised by my colleagues in
[1] about 3 years ago, where it was discussed
how beneficial it would be if the OS scheduler
had built-in micro-architectural intelligence.

Another issue with debugging the performance
of an application using spin locks is that it typi-
cally doesn’t provide much insight to know that
the spin-lock library code is hot. The appli-
cation programmer needs to know which lock
is being held. That information can be gath-
ered from the address of the lock, but often it
is more useful to have a stack trace gathered
at the time the lock is identified as hot. This
requires sampling the return stack in the per-
formance monitor handler, not just the current
instruction pointer.

A process or a code block (hot block or block of
interest) can be characterized by performance
and code profiles, where the code profile is rep-
resented by a hierarchy of basic programming
constructs, and the performance profile is rep-
resented by execution path along with registers
image captured at any given point in time. In
this paper we will describe a set of new profile-
guided static and dynamic approaches for effi-
cient run-time decisions: debugging, analyzing
and scheduling.

2006 Linux Symposium, Volume One • 41

Please refer to Appendix A for an overview of
existing technologies, tools and utilities.

2 Bridging the Technlogies

I would like to explore extending the scope of
sampling-analysis hybrid tools for example by
profiling with helper threads[10.5].

This section will provide a series of examples
on how to combine building block components
to get useful sample-analyze schemas, which
could potentially turn into standalone tools:

- A Pintool doing Pronto. Given the non-
existent ability of Pin to sample performance
counters in optimize/analyze mode, a hybrid
tool when Pronto is based on a Pintool would
allow dynamic implementation of collecting
performance data via pintool instrumentation.
If sampling is needed then a sampling driver
can be initiated and called from a pintool using
PAPI. The PAPI interface allows you to start,
stop, and read the performance counters (e.g.
calls to PAPI_start and PAPI_stop using Pin’s
instrumentation interface). PAPI does require a
kernel extension. This idea may also be imple-
mented through a static HP’s Caliper tool1

- A Pintool to seek for hotspots. Hotspot analy-
sis can be done by defining “what it means to be
a hotspot” by a pintool, or statically by parsing
sampling data with scripts.

- A Pintool which uses performance feedback
data. Theoretically, a Pintool could be built
which uses performance data which has been
collected (perhaps by some other tool) on previ-
ous runs. Intel has a file format for storing per-
formance monitor unit data (“.hpi” files) which

1http://h21007.www2.hp.com/dspp/
tech/tech_TechSoftwareDetailPage_IDX/
1,1703,1174,00.html (currently available for
Itanium microarchitecture only)

are used by the compiler. Pintool reads events
and performance counters dynamically as it ex-
ecutes a binary.

- A Pintool to recognize event patterns. Se-
quitur can be used for static or dynamic anal-
ysis (with a certain performance overhead) for
complex grammars or in the context of this pa-
per, event sequences.

2.1 Performance Overhead of Sample-
analyze Workflow

Pintools instrumentation can be intrusive and
the overhead is dependent upon the particular
tool used. The generated code under pintool
is the only code that executes, and the origi-
nal code is kept for reference. Because instru-
mentation can perturb the performance behav-
ior of the application, it is desirable to be able
to collect performance data during an uninstru-
mented run, and use that data during a later in-
strumentation or execution run.

In addition, Sequitur performance for generic
grammars containing many symbols may be
extremely heavy2.

2.2 Developers’ Pain

As one could imagine, the multi-threaded ap-
plication developers who are debugging and
running on multi-core architectures need profil-
ing tools (such as VTune analyzer or EMON) to
be aware of the stack frame and the execution

2Incorporation of the Sequitur algorithm into your in-
strumentation is an essential part of the techniques de-
scribed in this paper. Due to the significant performance
overhead, Sequitur is not used in generic form, and re-
quires tailoring for particular usage cases with simplified
grammar. It helps to find performance hazards and se-
quences of events of interest, or these, which character-
izes the application process.

42 • Ideas on improving Linux infrastructure for performance on multi-core platforms

context. The tools also need to take into ac-
count procedure inlining. It would also be use-
ful if the simple data derived out of these tools
could be used by the run-time environment to
adapt the environment for better throughput.

In this section we would consider code exam-
ples known to cause much pain when debug-
ging or scheduling. Then, we will suggest ways
to adjust the Linux infrastructure to leverage
and integrate existing tools mentioned above to
address these painful situations.

2.3 Profile-guided Debugging

A very common example is when you pro-
file a multi-threaded application with frequent
inter-process communications and interlock-
ing. Many enterprise applications (web servers,
data base servers, application servers, telecom-
munication applications, distributed content
providers, etc.) suffer from complex synchro-
nization issues when scaled. While optimizing
such application with standard profiling tools,
it is common to observe most of the cycles
being spent in synchronization objects them-
selves. For example, wait for an object, idle
loops, spin loops on shared memory.

Whether the implementation of synchroniza-
tion objects is proprietary or via POSIX threads
[15], a hot spot is noted as entering/leaving the
critical section or locking/unlocking the shared
object. Deeper analysis of such hotspots usu-
ally shows there is not much to optimize fur-
ther on a micro-architectural level unless one
is trying to optimize the performance of glibc.
The real question is how to find out what ob-
jects actually originated a problematic idle or
spin time in a millions-of-code-lines applica-
tion with hundreds of locks? To track and in-
strument locks is not an easy task; it is similar
to tracking memory allocations. Standard de-
bugger techniques are not effective in identify-
ing the underlying application issue.

Spinlock (mutex_t *m) {
Int I;
For (i=0; I < spin_count; i++)

if (pthread_mutex_trylock(m) != EBUSY) return;
pthread_mutex_lock(m); //or sometimes Sleep(M)

}

Figure 1: Spin lock

spin_start:
pause
Test [mem], val ; pre-read to save the

; atomic op penalty
J Skip_xchg
Lock cmpxchg [mem], val ; shows bus serial-

; ization stall

Skip_xchg:
jnz spin_start

Figure 2: Spin Lock Loop

A standard adaptive spin lock implementation
looks similar to Figure 1 where inner spin lock
loop translates to instructions shown in Fig-
ure 2.

Let’s analyze what characterizes this code. One
obvious implication of using atomic operations
(for entering/leaving critical section it is atomic
add/dec) is that such operations serialize the
memory bus, which yields significant stalls due
to pipeline flush and cache line invalidation for
[mem].

The code in Figure 2 would generate similar
performance event patterns on most architec-
tures. Following are the properties which char-
acterize the code block profile:

• Very short loop (2–5 instructions)

• Very short loop containing nop or
rep nop (pause)

• Contains instruction with Lock prefix
yielding bus serialization

• Contains either xchg or dec or add in-
struction

2006 Linux Symposium, Volume One • 43

The performance event profile for this block
has the following properties:

• Likely branch misprediction at the ‘loop’
statement

• Very high CPI (cycles per instruction), as
there is no parallelism possible

• Data bus utilization ratio (> 50%)

• Bus Not Ready ratio (> 0.01)

• Burst read contribution to data bus utiliza-
tion (> 50%)

• Processor/Bus Writeback contribution to
data bus utilization (> 50%)

• Parallelization ratio (< 1)

• Microops per instruction retired (> 2)

• Memory requests per instruction (> 0.1)

• Modified data sharing ratio (> 0.1)

• Context switches is high

We can define the grammar which consists of:
loop length, loops with nops, locks, adds, dec,
xchg; misprediction branches, high CPI, con-
text switches, high data bus utilization.

It is necessary to quantify each of the perfor-
mance counters’ values (also called knobs) so
we could establish a trigger for potential per-
formance hazard. From the properties of spin
lock block we can define a rule for a block
to become the hot block or the block of inter-
est. Then, similar to hot stream data prefetch
example in Appendix A, we will use Sequitur
to detect hot blocks containing event sequences
within the defined grammar as you can see be-
low in Figure 5

In order to simplify the problem for the spin
lock detection, we may limit ourselves to the

analysis of only code profile, as the entire per-
formance profile is a direct result of having an
instruction with a ‘lock’ prefix (e.g. a ‘lock’
prefix on any instruction results in data bus se-
rialization, yielding known set of performance
stalls). The ‘spin lock’ code properties can
be dynamically obtained at run-time by instru-
mentation. We can use the Pin command line
knob facility to define a block’s heat. For ex-
ample these knobs may be:

• Matched number of samples to trigger the
hazard

• Number of consecutive samples

• Minimum and maximum length for hot
block

• Minimum spins to consider it hot

• Maximum number of instructions to con-
sider loop short

This technique3 would allow us to insert a
breakpoint on an event of performance hazard -
the hot spin lock according to user’s definition
of a performance concern. The debugger would
be able to stop and display stack frame of the
context when the given sequence of events had
occurred.4

The described dynamic mechanism (one of the
suggested “sample-analyze” workflows) de-
tects a block of interest and breaks the execu-
tion on a performance issue.

3For the spin lock profile, running the sampling along
pintool instrumented executable is safe and correct, since
main characteristics of spin lock could not be disrupted
by instrumented code shown above

4Ideas for a standalone profiling tool - Assume we
have an ability to improve an open source (PAPI-based)
or proprietary (VTune analyzer) profiling tool. Instead
of Int 3 insertion we could insert a macro operation to
dump a stack frame and register contents by the sampling
driver. The existing symbol table would allow track-
ing source-level performance hazards defined by the pin-
tool’s knobs.

44 • Ideas on improving Linux infrastructure for performance on multi-core platforms

// Run in optimize mode only - no need for sampling mode run

for (each basic block)
for (each instruction in block) {
if (Instruction is branch) {
target = TargetAddress(ins);
if (trace_start < target && target < address(ins) &&

(target - address < short loop knob)) {
Insert IfCall (trace_count--);
Insert ThenCall (spin_count++);
New grammar (knobs);

}
}

if ((instruction in block has lock prefix) &&
(instruction is either xchg, cmpxhg, add, dec)) {
if (grammar->AddEvent(address(ins)) &&

(block_heat++ > hot block knob)) {
Insert Interrupt 3; // for debugging the application

}
}

}

Figure 3: Pintool’s trace instrumentation pseudocode

For the static profiling schema we will modify
this workflow as follows:

On run-time side, as follows:

- Pintool instrumentation inserting software-
generated interrupts would stay the same as in
dynamic case. Pintool would read the informa-
tion about hot spin locks from static profiling
results (PGO) or pronto repository

-Allow the debugger to read pronto repository
directly. This data would contain pairs, such as
(ip address, number of times the IP is reached -
signifying the heat of the block)

On compile-time side:

- A newly developed pintool that would be sim-
ilar in functionality to PGO and profrun util-
ity without sampling. However this pintool
would contain same detection algorithm by the

Sequitur as described in Figure 3, which de-
tects hot spin locks according to user defined
knob values marking the heat. In this man-
ner, pronto_tool is virtually replaced with the
Sequitur. Upon detection of a hot block, the
pintool spills the pair (ip, frequency) into the
pronto repository.

- Due to unique code properties, the current
implementation of PGO and profrun utility al-
ready contain the needed information about
spin lock block’s code profile. We still need
to build a script which would replace analysis
tool pronto_tool and is based on parsing profile
data with the Sequitur. This mechanism would
extract event patterns matching our definition
of the spin lock block’s heat. The detected pair
(ip address, number of times this IP has been
reached until block became hot) is inserted into
profiling info, and subsequently passed to the
debugger

2006 Linux Symposium, Volume One • 45

This would summarize another suggestion on
a new standalone run-time tool that reads in the
profile data and use it to find hot locks, and then
tells the debugger the IP of those blocks so it
can stop there.

With our attempt to characterize code by its
performance profile, one may ask how adequate
the mapping between an actual code block and
its performance profile is. Would a sequence
of events spanned by performance properties
symbolize a spin lock code, or in other words,
how uniquely do code block properties define
the code itself? For performance debugging or
adaptation the functionality of a hot block itself
is not important. Rather, what important is it’s
algorithm mapping on the micro-architecture
and the stalls caused by this mapping. There-
fore, it is sufficient to accurately describe a per-
formance hazard and signal when its properties
have occurred.

2.4 Performance Adaptive Run-time
Scheduler

Consider running a high performance multi-
threaded application. Many computation and
memory intensive applications (rendering, en-
coding, signal processing, etc.) suffer from
complex scheduling issues when scaling on
modern multi-threaded and multi-processor
architectures. Often, the developers opti-
mize these applications by parallelizing single
threaded computation to run multiple threads.
In order to make the application run well in par-
allel, the developers perform functional decom-
position.5

Then, the OS scheduler takes over the de-
cision on how to schedule these functionally

5Functional decomposition is the analysis of the ac-
tivity of a system as the product of a set of subordinate
functions performed by independent subsystems, each
with its own characteristic domain of application.

decomposed threads onto the available hard-
ware. Since the OS scheduler is not aware of
micro-architecture, functional decomposition,
or OpenMP, parallelization often leads to per-
formance degradation. In order to analyze this
phenomenon there were many researches on in-
formed multi-threaded schedulers [12], symbi-
otic job scheduling for SMP [13], [14], and
MASA [1]. In this paper we will take an ap-
proach of bridging existing profiling tools and
advanced compiler technologies to take a step
further in solving this problem.

As an example, consider open source LAME
mp3 encoder6. It is clear that the applica-
tion is both computation and memory intensive,
where computation is mostly floating point.
Functional decomposition of hotspot function
lame_ecnode_mp3_frame() is equivalent to a
functional decomposition of L3psycho_anal()
function. All decomposed threads at any point
in time could unfold into a situation when run-
ning processes utilize similar resources on the
same physical core (e.g. threads are: floating
point intensive, floating point intensive, heavy
integer computations, heavy integer computa-
tions, long memory latency operations, long
memory latency operations).

As in the previous section, running a thread’s
profile consists of performance and code prop-
erties. Below, we will analyze such properties
and the knobs defining the heat:

Following is the structure of properties for
floating point operations intensive code block:

- Estimated functional imbalance originated by
compiler’s scheduler

- Estimated CPI by the compiler’s scheduler

- Outer loop iteration count

6http://lame.sourceforge.net/
download/download.html

46 • Ideas on improving Linux infrastructure for performance on multi-core platforms

You can see similar characteristics in integer
intensive and memory intensive code blocks.
These code block properties ignore possible
coding style inhibitors and are agnostic to some
optimization techniques (such as code motion).
Nested loops and non-inlined calls within a
loop are being merged into single region at the
run-time, since the block of interest in this case
would be an outer block encapsulating multiple
iterations to the same instruction pointer.

Event profile to determine performance proper-
ties for floating point intensive block:

- Balanced execution and parallelism – actual
cycles per instruction ratio

- Microops per instruction retired for very long
latency instructions (FP)

- FP assist and saturation event per retired
FLOPs

- Retired FLOPs per relative number to instruc-
tion retired

- Conversion operations RTDC per relative
number to instruction retired

- SSE instruction retired per instruction retired

Event profile for memory intensive block:

- Data bus utilization ratio (> 30%)

- Bus Not Ready ratio (> 0.001)

- Burst read contribution to data bus utilization
(> 30%)

- Processor/Bus Writeback contribution to data
bus utilization (> 30%)

- Microops per instruction retired (> 2) for re-
peat instructions

- Memory requests per instruction (> 0.1)

- Modified data sharing ratio (> 0.1)

In order to write a pintool for this topic, it is
necessary to be able to deliver some compile-
time derived data to the run-time. In par-
ticular, some code block characteristics can
be easily determined by the compiler’s sched-
uler: For example, CPI and other parallelism
metrics, scheduled memory operations, sched-
uled floating point operations, etc. Com-
pilers can output such information via ob-
ject code annotations, optimizer reports, or
post-compilation scripts that can strip required
statistic on the generated assembly code. The
recent changes in GCC’s vectorizer and op-
timizer include Tree SSA7. It is possible to
get the compiler scheduler’s reports using
--ftree-vectorizer-verbose com-
piler option. The code block properties derived
from the compiler scheduler’s data only needed
on hot blocks. However, the compiler does not
know which block is hot unless PGO or Pronto
was used.

On the run-time side, Pin has a disassembly en-
gine built-in. A pintool would be able to eas-
ily determine functional unit imbalance in a hot
block if it isn’t available from the compiler. As-
suming that Pin has the ability to retrieve some
compiler scheduler data, there are a few ways to
create a pintool to determine whether running
code has properties of floating point or mem-
ory intensive hot blocks:

For the compile time:

- A “2-model” compilation can usually do both:
determine and process hot block properties.
Generated assembly, PGO and Pronto reposi-
tory can be concurrently processed with a script
to extract the instruction level parallelism (ILP)
information per hot block

7Static Single Assignment for Trees [18]: new
GCC 4.x optimizer: http://gcc.gnu.org/
projects/tree-ssa/\#intro

2006 Linux Symposium, Volume One • 47

- Extend the code’s debug-info into information
containing ILP of basic blocks during compila-
tion. It is an estimated value, not based on run-
time performance. The scheduler’s compile-
time data could be passed through an exe-
cutable itself as a triple (start block address, end
block address, parallelism data). Pintool has an
extensive set of APIs that accesses debug info.

For the run-time:

- Instrument the binary with a pintool that
traces loops with a large number of counts (a
potential knob). Then, count the number of
floating point, memory and integer operations
in a loop.

- PGO and Pronto may also contain ILP related
ratios, which are derived from basic sampling
during profiling run (with PAPI interface). Ex-
tending the Pronto repository to carry paral-
lelism info can improve the ability of pintool’s
instrumentation analysis.

Additional run-time instrumentation can be
based on the performance profile of the hot
computational intensive blocks by running
sampling along with instrumentation.8

This schema shows the feasibility of obtain-
ing a process property. However, possible
performance overhead of sampling and pro-
cessing (even if it is incorporated in one
instrumentation-sampling step) may be too
heavy to make run-time decisions for the OS
scheduler.

Now we will analyze the data collection pro-
cess for the performance profile-aware OS
scheduler. First, let’s exclude 2-step models as
inappropriate schemas for OS scheduling. As-
sume the OS cannot contain low overhead con-
tinuous sampling, then, a pintool instrumenta-

8The unique performance profile reflecting compute
intensive block properties would not be disrupted by in-
strumentation performance overhead

tion embedded into a running process cannot be
extensive but can be discrete.

We will also assume that estimated ILP infor-
mation and compiler scheduler’s data can be
retrieved via debug information for each basic
block9. Instrumentation can count frequency
and count of each basic block determining the
estimated heat of the block.

On the run-time side, we would require imple-
mentation of one of the following: limited sam-
pling, processing of Pronto repository, or de-
composing compiler scheduler decision for the
length of one basic block. We propose that con-
text switch time might be an appropriate place
to insert this lightweight process.

Pin instrumentation can be done on a basic
block granularity with Pin itself setting up in-
strumentation calls, which is greatly improves
performance.

Thus, we are considering three approaches for
dynamic performance adaptive scheduler:

1. Annotation, no instrumentation. A lim-
ited lightweight instrumentation is done only
on the level of basic blocks. This instrumenta-
tion would not be based on performance coun-
ters, clock cycles or actual ILP info. This is
assuming some basic compiler scheduling data
can be incorporated in to an executable using
mechanisms similar to debug symbols. This
would provide an estimated code block profile.
As soon as a code block gets to a specified heat
(user pre-defined knob on loop iteration count),
the pintool triggers an internal OS scheduling
event carrying the code profile signature.

2. Limited sampling. As noted earlier, limited
sampling may be possible at the OS scheduler’s

9The Pronto data is mapped using debug info in
DWARF2 format. Some compiler-based info such
as predicted ratios IPC or FPU/ALU/SIMD utilization
could be added to pronto repository data derived from
pre-characterized hot blocks

48 • Ideas on improving Linux infrastructure for performance on multi-core platforms

checkpoint, such as context switch. This could
refine information obtained from item 1 above
and give more accurate data on actual ILP. A
single sampling iteration over basic block could
detect performance profile hazards based on
counters which are specific to compute inten-
sive blocks shown above. A trial sampling run
would last only during the length of a single it-
eration of the loop, assuming a context switch
had occurred several times during execution of
a large loop count.

3. Instrumentation under “2-compile” model.
Assuming ILP information can be incorporated
into the binary, we would use PGO or Pronto
mechanisms to generate actual sampling ratios
within the profile feedback repository. After a
training run we collect the profile information
which includes each basic block’s frequency
and count, along with its ILP info. Assuming
this information is available in the binary, this
would indicate to the OS scheduler the perfor-
mance properties of the running process. This
workflow would be enabled by a simple pin-
tool instrumentation that is analyzing each ba-
sic block’s information.

From the workflow above, there is an ob-
vious conclusion that the loader/linker has
to have certain abilities to map and main-
tain new information passed within the gener-
ated binary. Investigating the glibc code on
potential changes for loader/linker in elf/dl-
open.c, dl-sym.c and dl-load.c, we noted a
possibility of creating a number of loading
threads that could load libraries in paral-
lel. With _dl_map_object_from_fd() each of
the threads would retrieve various informa-
tion carried in the executable by link-time
procedure of locating symbols. In this way
hashing mechanism for objects with large
amount of symbols can be parallelized in
dl_lookup_symbol_x(), calling the expensive
hashing algorithm do_lookup_x(). However,
conducting this experiment any further is out

of scope for this paper.

It is appropriate to comment on describing
possible workflow combinations of “sampling-
analysis” of the static algorithm for the OS per-
formance adaptive scheduler. Due to the nature
of the usage model, the static algorithm may be
suitable for feasibility study or prototyping an
approach, but least likely used in real life and
therefore is not mentioned in this paper in de-
tail.

Each of the workflows discussed require certain
capabilities to be developed:

1. Sampling drivers are closed source but can
be distributed. The open source interface for
TB5 format analysis should be implemented by
PAPI or VTune Analyzer/SEP.

Most of the performance events required for
determining the code’s performance profile are
public.

2. Compiler (GCC). The performance anal-
ysis tool with basic profile feedback and vec-
torizer reports mechanisms already exist. The
following enhancements would be needed:

- The vectorizer reports must include compiler
scheduling information on parallelism.

- Mechanisms to incorporate compiler reports
per basic block in to a binary need to be devel-
oped.

- A utility which collects sampling data for pro-
file feedback needs to be developed based on
the PAPI interface.

3. Pronto repository and profrun utility.
These utilities currently exist as a part of Intel
Compiler, but are closed source because they
use the VTune TB5 file format. The following
enhancements would be needed:

- PAPI interface for profrun utility and Pronto
repository

2006 Linux Symposium, Volume One • 49

- Pronto using pintool instrumentation

4. Pin. The following enhancements would be
needed:

- API extensions to retrieve compiler scheduler
info that are embedded into a binary

- Compiler scheduler decomposition API (an
APIs that retrieve compiler’s scheduler infor-
mation, especially related to ILP)

- API ability to read Pronto repository from
memory or a file

- A ‘timer’ pintool to help development activi-
ties to track performance (via gettime())

- New pintool instrumentation libraries to pro-
vide description of hazardous performance
event sequences based on common code and
performance profiles

- New Pin APIs that can perform independent
sampling via PAPI interface to hide architecture
dependences, “A Pintool doing Pronto”

- For each pintool instrumentation to specify
a set of performance counters that may be af-
fected by instrumentation itself.10

5. Loader/linker. The loader can be easily
instrumented with the Pin interface relying on
IMG_ API set. Following enhancements would
be needed:

- Properly dispatch additional compiler’s
scheduler information embedded into binary,
similarly to the debug info

- For faster linking, improve the OS loader’s
speed by creating loading threads

10These performance counters or ratios may not be
present on your architecture with specified name but on
modern architectures assumed to have similar ones

6. VTune analyzer. Following enhancements
would be filed to Intel VTune development
team:

- Ability to recognize and sample pintool in-
strumented code.

- Capability to receive a signal from instru-
mented code in order to display and translate
process context and stack frame.

7. Debugger (GDB):

- Compile-time feedback: Enable reading basic
block ILP information along with debug infor-
mation incorporated by the compiler’s sched-
uler

- Run-time feedback: Enable reading Pronto
repository with (frequency, count) information
of the BBL. It may eliminate the need for pin-
tool instrumentation for the debugger.

- Consider scripting language to describe event
sequence and pintool instrumentation algo-
rithms.

8. OS Scheduler:

- Need to have the ability to retrieve process
profile signature which characterizes perfor-
mance and code constructs derived from run-
ning executable.

In order to test the feasibility of the sug-
gested tools without changes in the kernel, we
can write emulation application with the user
mode simplified scheduler’s algorithm by set-
ting affinity with process’s profile data.

- Have the option of signaling to the pintool in-
strumentation process that a context switch is
about to occur and start a lightweight instru-
mentation mechanism with non-intrusive sam-
pling for one iteration of a basic block. Pintool
may communicate with the OS scheduler via
ioctl, considering the events are coming from a
driver.

50 • Ideas on improving Linux infrastructure for performance on multi-core platforms

3 Conclusion

In this paper we surveyed ideas spanning sev-
eral technologies and tools developed by a
vast community during past 10 years. We
tried to bridge recent accomplishments in
mainstream compiler technology, performance
counters, pattern recognition algorithms, ad-
vanced binary instrumentation tools, debugging
approaches and advanced dynamic optimiza-
tion techniques. Many of these technologies
were also inherited from previous researches
on databases optimizations and compression al-
gorithms. Demonstrated complex workflows
incorporating “sample-analyze” technologies
into enhanced run-time Linux infrastructure
make another step towards advanced dynamic
optimizations, debugging and process schedul-
ing. Quantifying the significance and useful-
ness of the proposed approaches is a subject of
a separate research and experiments.

Please refer to Appendix B for potential appli-
cations of the suggested ideas.

4 Acknowledgements

I would like to thank my colleagues and high-
light their involvement in supplying important
supporting materials, thoughts and comments:

Siddha Suresh, Venkatesh Pallipadi: Intel,
Open Source Technology Center

John Piper, Anton Chernoff, Shalom Gold-
enberg: Intel, Dynamic Optimization Labs;

Robert Cohn, Harish Patil: Intel

Raymond Paik: Intel, Channel Product Group

5 Appendix A. Technology Back-
ground and Current Situation

Most modern micro-processors have a PMU—
virtual or physical performance monitoring unit
that contains hundreds or even thousands of
performance counters and events. Modern
micro-architectural profiling technology is di-
vided into two distinct steps: sampling and
analysis. The sampling mechanism records in-
struction pointers (IP) with performance coun-
ters as in (IP, frequency, count) or (IP, value).
The analysis processes sampling data on the
maximum time spent in repeated blocks (hot
blocks), possibly including: disassembly, map-
ping to the source code, affiliating to a function,
a process or a thread;

As the building blocks of the proposed work-
flow, it is important to overview existing tools
and technology. Some of these tools are Open
Source, some are proprietary or have a closed
source engine with a BSD-style license for free
distribution.

Sampling tools:

Well-known profiling tools and programming
interfaces (such as VTune analyzer, EMON,
PAPI, Compiler’s profile guided optimization
(PGO) with sampling) are usually system-wide
and process agnostic. Sampling tools can be at-
tached to any running process, but do not have
access to full run-time environment and func-
tionality context: thread storage, register val-
ues, loop count, frequency and stack.

Another type of sampling tool does not have
the concept of time and is built upon executed
instructions along the execution path. Such
tools are not aware of stalls and clock cycles,
but can sample executed instruction properties
such as instruction count, instruction operands,
branches, addresses, functions, images, etc.

2006 Linux Symposium, Volume One • 51

Pin [8], [17] can be considered as a “JIT” (just-
in-time) compiler, with the originating binary
execution intercepted at a specified granularity.
This execution is almost identical to the origi-
nal. Pin contains examples of instrumentation
tools like basic block profilers, cache simula-
tors, instruction trace generators, etc. It is easy
to derive new Pin-based tools using the exam-
ples as a template.

Analysis tools:

Well known analysis tools are compilers and
debuggers. Beyond actual code generation and
instruction scheduling, the compiler has the
ability to report on optimizations, scheduler
heuristics and decisions, and predicted perfor-
mance counter ratios (please refer to [5]). The
compiler can determine code profile and esti-
mate performance profile of any code block,
specifying execution balance across CPU units.

Some sampling tools such as VTune and
EMON incorporate data analysis within them.

There are advanced parts of a compiler’s op-
timizer which can be standalone tools that are
able to parse sampling files and extract profile
data.

Before moving onto another class of tools,
there are also more sophisticated data analy-
sis tools which work in formal language envi-
ronments. As Sequitur originated from com-
pression algorithms, it is capable of defining
a sequence of events as a grammar and trace
event samples on correct expression composi-
tion from given sequences of samples. The Se-
quitur algorithm description can be found in
[9]. The implementation of sequitur has pub-
lic versions.

Hybrid tools:

The series of following tools are a hybrid be-
tween sampling and analysis. Most require a

complex build model with up to 3-compilation
model process, (see Figure 5).

Profile-guided optimization (PGO for Intel
Compilers or Profile feedback for GCC) is
a part of many modern compilers [3], [4].
Currently, the PGO mostly samples executed
branches, calls, frequency and loop counts with
following output of the data in an intermedi-
ate format to the disk. The PGO analysis is
also a part of compiler’s optimizer, which is in-
voked with second compilation. It assists the
compiler’s scheduler to make better decisions
by using actual run-time data instead of heuris-
tics targeting probable application behavior.

As an extension of the PGO mechanism, a
tool incorporating a trace of run-time specific
events and samples (for instance, actual mem-
ory latency, cache misses) has been developed.
This mechanism can be considered as a bun-
dled sampling tool of profrun utility with anal-
ysis tool pronto_tool [6], [16], which we will
refer to as Pronto. Rather then just being a natu-
ral extension of PGO capabilities these tools are
standalone and not incorporated into the com-
piler. Architecture-wise, profrun is built upon
proprietary sampling drivers spilling the data
on the disk, which is called Pronto repository.
Profrun is currently incorporated in the Intel
Compiler package using Intel sampling drivers,
but conceptually can be based on open source
PAPI interface, see [7] for PAPI documenta-
tion. The pronto_tool reads and analyzes the
Pronto repository for various data representa-
tion. A typical output is shown in Figure 4.

A hybrid tool Pintools, based on Pin, is a crit-
ical component of this paper’s focus. Pintools
incorporate into a single executable targeted in-
strumentation and analysis. This is an imple-
mentation powered by Pin API callbacks pro-
viding instrumentation for any running image
at any granularity. Pintools mechanism can
be considered a generic binary instrumentation
template to create your own hybrid of sampling

52 • Ideas on improving Linux infrastructure for performance on multi-core platforms

$ profrun -dcache mark
$ pronto_tool -d 10 pgopti.hpi

PRONTO: Profiling module "mark":
PRONTO: Reading samples from TB5 file ’pgopti.tb5’
PRONTO: Reading samples for module at path: ’mark’

Dumping PRONTO Repository

Sample source 0: pgopti.tb5 UID: TYPE = TB5SAMP (54423553 414d5000
80ac9d3c 8f39c501 0043363d 8f39c501 00000000 00000000)

Module: "mark"
Event: "DCache miss": 35 samples
#0 : 1 samples: [0x00001c70] mark.c:main(20:14)

total latency=17 maximum latency= 17
[0:7]=0 [8:15]=0 [16:31]=1 [32:99]=0 [100:inf]=0

#1 : 5757 samples: [0x00001701] mark.c:main(23:21)
total latency= 43132 maximum latency= 366
[0:7]=4070 [8:15]=1668 [16:31]=18 [32:99]=0 [100:inf]=1

#29 : 5786 samples: [0x00001700] mark.c:main(23:42)
total latency= 40047 maximum latency= 439
[0:7]=5294 [8:15]=433 [16:31]=55 [32:99]=0 [100:inf]=4

Figure 4: pronto_tool output

and analysis implementations. Current Pin in-
strumentation capabilities can extract only pro-
files that are not related to actual clock cycles.
For example, taken branches, loop iterations
counts, calls, memory references, etc.

Other examples of more sophisticated pintools-
based technologies are helper threads [10.2]
and hot stream data prefetch [2].

Helper thread technology, or software-based
speculative pre-computation (SSP) was orig-
inated from complex database architectures
and based on compiler-based pre-execution
[10.1] to generate a thread that would prefetch
long latency memory accesses in runtime.
This is the 3-compilation model static tech-
nique. Its implementation is currently done
in Intel Compilers [16] with Pronto mecha-
nisms (option used for the first compilation

sources
Early

lowering
Apply profile data SSP transform transform

SSP-optimized
object
code

instrumented
executable Instrumented execution .dpi files

Third compilation

instrument
ed

object sources
Early

lowering
transform transform transform

First compilation
Add

counters
to each

optimized
object codesources

Early
lowering transform transform transform

Second compilation

Apply profile data

optimized
executable

Monitored execution
Using “profrun”

.hpi files
Dcache miss events

Figure 5: Helper Threads (SSP) build diagram

--prof-gen-sampling, for the second
--prof-use --ssp, and for the third with
--ssp). The workflow diagram is shown in
Figure 5.

As a dynamic equivalent to this technique, the

2006 Linux Symposium, Volume One • 53

Program
 image

Instrumented execution
With profiling

Analyze instrumentation mode: Run-1, Sampling on

Hot data
stream

Access,
stride

Prefetch
insertion

Sequitur Grammar Analyze
Data reference

sequence

New optimized
 image

Run-2, Sampling Off

Optimize instrumentation mode: Run-3

Figure 6: Hot data stream prefetch injection al-
gorithm

mechanism described in [7] incorporates Pin-
tool for dynamic instrumentation of memory
read bursts in the sampling mode; the Sequitur
for fast dynamic analysis of memory access
sequences with long latencies; and matching
mechanism for sequences that would benefit by
prefetching (called hot data streams detection
phase). Based on hot data streams, the Pin can
inject prefetching instructions as shown in Fig-
ure 6.

6 Appendix B. Usage Model Exam-
ples On Proposed Workflows

Here are some potential applications of pro-
file guided debugging and performance adap-
tive scheduling:

1. OS scheduling decisions may be based
on occurring patterns of hardware perfor-
mance events, event hazards detection or
platform resource utilization hazards:

Some event sequences can determine a
hazard, upon which the OS scheduler may
redefine priorities in the run queue and
affinity to a logical/physical CPU.

2. Hyper-threading and Dual Core. Immedi-
ate performance gains. If a recurring pat-
tern of utilization similar CPU resources
was detected, the thread affinity assigned
should distribute to run these threads on

different physical cores. This approach
expected to show immediate performance
gains on HT-enabled system on a series of
dedicated applications.

3. Independence of usage model while
adopting Dual-Core/Multi-Core. In order
to adopt DC/MC for maximizing the sys-
tem performance, a user should be aware
of system usage model. With perfor-
mance adaptive scheduling infrastructure,
the usage model alternation will become
less relevant for performance. In turn, it
may stimulate efficient adoption of multi-
core technology by application develop-
ers, since user awareness of usage model
will not affect extracting optimal perfor-
mance from the software.

4. Simplify software development schemes.
Background/foreground and process pri-
ority management based on performance
.

5. Hybrid of OpenMP & MPI for high per-
formance programming will be simpli-
fied. A performance-adaptive OS Sched-
uler will handle optimal scheduling depen-
dent on processor’s resource utilization for
each OpenMP thread.

6. Power utilization optimization and energy
control. Modern micro-architectures have
an extensive set of energy control related
performance counters. When power re-
strictions are enforced for a process execu-
tion, the number of stall cycles due to plat-
form resource saturation should be mini-
mized. The optimized scheduling for pro-
cesses on preventing such platform perfor-
mance hazards to occur should be handled
by OS scheduler.

7. Dynamic Capacity planning analysis. An-
alyzing profiling data logs per thread and

54 • Ideas on improving Linux infrastructure for performance on multi-core platforms

detection of certain event sequence haz-
ards may assist in identifying capacity re-
quirements for the application.

8. Out-of-order execution layer for stati-
cally scheduled codes, better utilization of
“free” CPU cycles and compensation for
possible compiler’s scheduler inefficien-
cies.

Having performance feedback based OS
scheduler will provide information with
additional granularity (on top of the com-
piler scheduler) for filling the empty cy-
cles generated by the compiler (or if
present, even during OOO execution on
x86).

9. Virtualization Technology. When a code
is running on virtual processing units, and
utilizing a virtual pool of resources, it is
important to provide optimal performance,
a dynamic code migration suggestion. The
assignment between virtual and physical
processing unit should be done based on
actual performance execution statistics. If
Linux is a “guest” OS, the presence of per-
formance adaptive scheduling mechanism
will allow the OS scheduler to be aware
of resource utilization across all the virtual
processes.

10. Profile-guided debugging proposal targets
most difficult areas of debugging - perfor-
mance debugging and scalability issues.
See [10].6 on examples on how to utilize
Helper Threads technology for memory
debugging. By combining principles of
Profile-Guided optimization and conven-
tional debugging mechanisms we showed
it is possible to architect a debugger’s ex-
tension to set a breakpoint at a perfor-
mance or power pattern occurrence. As
a result, variety of metrics for the perfor-
mance may be reflected in the debugging,
such as: ratio mips/watt, instruction level

parallelism. State-of-the-art debuggers al-
low users to manually define a breakpoint
on expressions which involve values ob-
tained from the memory during the appli-
cation execution. This approach assists
to extend the mechanisms to combine the
expression values received from CPU and
chipset performance counters in run-time.

Examples of possible breakpoints which
would be set by a user who debugs multi-
threaded applications are:

• Hazardous spin locks

• Shared memory race conditions

• Too long or too short object waits

• Heavy ITLB, Instruction or Trace
Cache misses

• Power consuming blocks; Floating
point intensive procedures

• Loops with extremely low CPIs; low
power blocks

• Long latency memory bus operations

• Irregular data structure accesses;
alignment issues during run-time

• Queue and pipeline flushes, unex-
pected long latency execution

• Opcode or series of opcodes being
executed

• Hyper-threading contentions or race
conditions

• OpenMP issues

There are already working applications with
Pin-based instrumentation for simulation and
performance prediction purposes. Extending
these simulation technologies [15], similar to
the PGD technique generating Interrupt 3, we
would be able to emit other interrupts, signals
and eventually generate an alternate sequence
of events.

2006 Linux Symposium, Volume One • 55

References

[1] “Enhancements for Hyper-Threading
Technology in the Operating Systems –
Seeking the Optimal Scheduling”, by
Jun Nakajima and Venkatesh Pallipadi,
Intel Corporation

[2] “Dynamic Hot Data Stream Prefetching
for General-Purpose Programs”, by
Trishul M.Chilimbi and Martin Hirzel,
Microsoft Research and University of
Coloroado

[3] Compiler for PGO (profile feedback)
and its repository data coverage:
http://gcc.gnu.org/
onlinedocs/gccint/
Profile-information.htm

[4] Compiler optimizer, gcc4.1:
http://gcc.gnu.org/

onlinedocs/gcc-4.1.0/gcc/

Optimize-Options.html

[5] Compiler for vectorization and reports:
http://www.gnu.org/software/

gcc/projects/tree-ssa/

vectorization.html

[6] Pronto repository content, Profrun and
pronto_tool – Intel Compiler tools,
based on 2-compile model:
http://www.intel.com/

software/products/compilers/

clin/docs/main_cls/index.htm

[7] PAPI: http://icl.cs.utk.edu/
papi/overview/index.html

[8] Pin & pintool: http:
//rogue.colorado.edu/pin;
Pin manual for x86:
http://rogue.colorado.edu/

pin/documentation.php;
Pin related papers: http://rogue.
colorado.edu/pin/papers.html

[9] Sequitur: For Sequitur Algorithm
description see:

[9.1] “Compression and explanation in
hierarchical grammars”, by Craig G.
Nevill-Manning and Ian H. Witten,
University of Waikato, New Zealand

[9.2] “Identifying Hierarchical Structure in
Sequences: A linear time algorithm”,
Craig G.Nevill-Manning and Ian
H.Witten, University of Waikato, New
Zealand, 1997

[9.3] “Efficient Representation and
Abstractions for Quantifying and
Exploiting Data Reference Locality”,
by Trishul M.Chilimbi, Microsoft
Research, 2001

[10] Helper threads and compiler based
pre-execution:

[10.1] For concept overview see “Compiler
Based Pre-execution”, Dongkeun Kim
dissertation, University of Maryland,
2004,

[10.2] Threads: Basic Theory and Libraries:
http://www.cs.cf.ac.uk/Dave/

C/node29.html

[10.3] Usage model for helper threads in
“Helper threads via Multi-threading”,
IEEE Micro, 11/2004

[10.4] “Helper Threads via Virtual
Multithreading on an experimental
Itanium 2 Processor-based platform”,
by Perry Wang et al, Intel, 2002

Helper threads and pre-execution
technology for:

[10.5] Profiling, see “Profiling with Helper
threads”, T.Tokunaga and T. Sato
(Japan), 2006

56 • Ideas on improving Linux infrastructure for performance on multi-core platforms

[10.6] Debugging, see “HeapMon: A helper
thread approach to programmable,
automatic, and low overhead memory
bug detection”, IBM Journal of
Research and Development, by
R.Shetty et al., 2005

[11] “Dynamic run-time architecture
technique for enabling continuous
optimizations” by Tipp Moseley,
Daniel A. Connors, etc., University of
Colorado

[12] “Chip Multithreading Systems Need a
New Operating System Scheduler” by
Alexandra Fedorova, Christopher
Small, et all, Harward University &
Sun Micro.

[13] “Methods for Modeling Resource
Contention on Simultaneous
Multithreading Processors” by Tipp
Moseley, Daniel A. Connors,
University of Colorado

[14] “Pthreads Primer, A guide to
multithreaded programming”, Bill
Lewis and Daniel J. Berg, SunSoft
Press, 1996

[15] SimPoint toolkit by UCSD:
http://www-cse.ucsd.edu/

~calder/simpoint/simpoint_

overview.htm

[16] Intel Compiler Documentation –
keywords: Software-based Speculative
Precomputation (SSP); Profrun utility,
prof-gen-sampling:
http://www.intel.com/

software/products/compilers/

clin/docs/main_cls/index.htm

[17] “Pin: Building Customized Program
Analysis Tools with Dynamic
Instrumentation,” by Chi-Keung Luk,
Robert Cohn, Robert Muth, Harish

Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi,
Kim Hazelwood. Programming
Language Design and Implementation
(PLDI), Chicago, IL, June 2005

[18] Tree SSA: A new optimization
infrastructure for GCC, by Diego
Novillo, Red Hat Canada, 2003:
http://people.redhat.com/

dnovillo/pub/tree-ssa/

papers/tree-ssa-gccs03.pdf;
http://gcc.gnu.org/projects/

tree-ssa/#intro

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

