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Abstract

Linux(R) uses a variant of the binary buddy allo-
cator that is fast but suffers badly from external
fragmentation and is unreliable for large con-
tiguous allocations. We begin by introducing
two cases where large contiguous regions are
needed: the allocation of HugeTLB pages dur-
ing the lifetime of the system and using mem-
ory hotplug to on-line and off-line memory on
demand in support of changing loads. We also
mention subsystems that may benefit from us-
ing contiguous groups of pages. We then de-
scribe two anti-fragmentation strategies, dis-
cuss their strengths and weaknesses and exam-
ine their implementations within the kernel. We
cover the standardised tests, the metrics used,
the system architectures tested in the evaluation
of these strategies and conclude with an exam-
ination of their effectiveness at satisfying large
allocations. We also look at a page reclamation
strategy that is suited to freeing contiguous re-
gions of pages and finish with a look at the fu-
ture direction of anti-fragmentation and related
work.

1 Introduction

The page allocator in any operating system is
a critical component. It must be fast and have
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the ability to satisfy all requests to avoid sub-
systems building reserve page pools [4]. Linux
uses a variant of the binary buddy allocator that
is known to be fast in comparison to other allo-
cator types [3] but behaves poorly in the face of
fragmentation [5].

Fragmentation is a space-efficiency problem
affecting all dynamic memory allocators and
comes in two varieties; internal and external.
Internal fragmentation occurs when a larger
free block than necessary is granted for a re-
quest, such as allocating one entire page to sat-
isfy a request for 32 bytes. Linux uses a slab
allocator for small requests to address this is-
sue. External fragmentation refers to the inabil-
ity to satisfy an allocation because a suitably
large block of memory is not free even though
enough memory may be free overall [6]. Linux
deals with external fragmentation by rarely re-
quiring larger (high order) pages. Although
this works well in general, Section 2 presents
situations where it performs poorly.

To be clear, anti-fragmentation is not the same
as defragmentation, which is a mechanism to
reduce fragmentation by moving or reclaim-
ing pages to have contiguous free space. Anti-
fragmentation enables a system to conduct a
partial defragmentation using the existing page
reclamation mechanism. The remainder of this
paper is arranged as described in the abstract.
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2 Motivation for Low Fragmenta-
tion

HugeTLB pages are contiguous regions that
match a large page size provided by an archi-
tecture, which is 1024 small pages on x86 and
4096 on PPC64. Use of these large pages re-
duces both expensive TLB misses [2] and the
number of Page Table Entries (PTEs) required
to map an area, thus increasing performance
and reducing memory consumption. Linux
keeps a HugeTLB freelist in the HugeTLB page
pool. This pool is sized at boot time, which
is a problem for workloads requiring differ-
ent amounts of HugeTLB memory at differ-
ent times. For example, workloads that use
large in-memory data sets, such as X Win-
dows, High-Performance Computing (HPC),
many Java applications, and some desktop ap-
plications (e.g. Konqueror) require variable
amounts of memory depending on the input
data and type of usage. It is not possible to
guess their needs at boot time. Instead it would
be better to maintain low fragmentation so that
their needs could be met as needed at run-time.

Contiguous regions are also required when a
section of memory needs to be on-lined and
then off-lined later. For example, a virtual ma-
chine running a service like a web server may
require more memory due to a spike in usage,
but later need to return the memory to the host.
Some architectures can return memory to a hy-
pervisor using a balloon driver but this only
works when memory can be off-lined at the
page granularity. The minimum sized region
that can be off-lined is the same as the size
of a memory section defined for the SPARSE-
MEM memory model. This model mandates
that the memory section size be a power-of-two
number of pages and the architecture selects
a size within that constraint. On the PPC64,
the minimum sized region of memory that can
be off-lined is 16MiB which is the minimum

size OpenFirmware uses for a Logical Memory
Block (LMB). On x86, the minimum sized re-
gion is 64MiB. This is the smallest DIMM size
taken by the IBM xSeries®) 445 which sup-
ports the memory hot-add feature. Low frag-
mentation increases the probability of finding
regions large enough to off-line.

A third case where contiguous regions are de-
sired, but not required, is for drivers that use
DMA but do not support scatter/gather 10 ef-
ficiently or do not have an IO-MMU available.
These drivers must spend time breaking up the
DMA request into page-sized units. Ideally,
drivers could ask for a page-aligned block of
memory and receive a list of large contiguous
regions. With low fragmentation, the expec-
tation is that the driver would have a better
chance of getting one contiguous block and not
need to break up the request.

3 External Fragmentation

The extent of fragmentation depends on the
number of free blocks! in the system, their size
and the size of the requested allocation. In this
section, we define two metrics that are used to
measure the ability of a system to satisfy an al-
location and the degree of fragmentation.

We measure the fraction of available free mem-
ory that can be used to satisfy allocations of a
specific size using an unusable free space in-
dex, F,.

. TotalFree—Y\="2'k;
F“ (]) - TotalFree

I'A free block is a single contiguous region stored on
a freelist. In rare cases with the buddy allocator, two free
blocks are adjacent but not merged because they are not
buddies.
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where TotalFree is the number of free pages,
2" is the largest allocation that can be satisfied,
Jj 1s the order of the desired allocation and k; is
the number of free page blocks of size 2. When
TotalFree 1s 0, we define F,, to be 1. A more
traditional, if slightly inaccurate?, view of frag-
mentation is available by multiplying F,(j) by
100. At O, there is 0% fragmentation, at 1, there
is 100% fragmentation, at 0.25, fragmentation
is at 25% and 75% of available free memory
can be used to satisfy a request for 2/ contigu-
ous pages.

F,(j) can be calculated at any time, but external
fragmentation is not important until an alloca-
tion fails [5] when F,(j) will be 1. We further
define a fragmentation index, F;(j), which de-
termines if the failure to allocate a contiguous
block of 2/ pages is due to lack of memory or
to external fragmentation. The higher the frag-
mentation of the system, the more free blocks
there will be. At the time of failure, the ideal
number of blocks shall be related to the size of
the requested allocation. Hence, the index at
the time of an allocation failure is

N TotalFree /2
Fi(J) = 1~ BlocksFree

where TotalFree is the number of free pages,
J 1s the order of the desired allocation and
BlocksFree is the number of contiguous re-
gions stored on freelists. When BlocksFree is
0, we define F;(j) to be 0. A negative value of
Fi(j) implies that the allocation can be satisfied
and the fragmentation index is only meaning-
ful when an allocation fails. A value tending
towards O implies the allocation failed due to
a lack of memory. A value tending towards 1
implies that the failure is due to fragmentation.

Discussions on fragmentation are typically con-
cerned with internal fragmentation where the percentage
represents wasted memory. A percentage value for ex-
ternal fragmentation is not as meaningful because it de-
pends on the request size.

Obviously the fewer times the F; are calculated,
the better.

4 Allocator Placement Policies

It is common for allocators to exploit known
characteristics of the request stream to improve
their efficiency. For example, allocation size
and the relative time of the allocation have been
used to heuristically group objects of an ex-
pected lifetime together [1]. Similar heuristics
cannot be used within an operating system as
it does not have the same distinctive phases as
application programs have. There is also lit-
tle correlation between the size of an alloca-
tion and its expected use. However, operating
system allocations do have unique characteris-
tics that may be exploited to control placement
thereby reducing fragmentation.

First, certain pages can be freed on demand;
saved to backing storage; or discarded. Sec-
ond, a large amount of kernel allocations are
for caches, such as the buffer and inode caches
which may be reclaimed on demand. Since it is
known in advance what the page will be used
for, an anti-fragmentation strategy can group
pages by allocation type. We define three types
of reclaimability

Easy to reclaim (EasyRclm) pages are allo-
cated directly for a user process. Almost
all pages mapped to a userspace page table
and disk buffers, but not their management
structures, are in this category.

Kernel reclaimable (KernRclm) pages are
allocated for the kernel but can often be
reclaimed on demand. Examples include
inodes, buffer head and directory entry
caches. Other examples, not applicable
to Linux, include kernel data and PTEs
where the system is capable of paging
them to swap.
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(KernNoRclm)
impossible to

Kernel non-reclaimable
pages are essentially
reclaim on demand.

To distinguish among the reclamation types,
additional GFP flags are used when calling
alloc_pages (). For simplicity, the strategies
presented here treat KernNoRclm and KernR-
clm the same so we use only one flag GFP_
EASYRCLM to distinguish between user and ker-
nel allocations. Variations exist that deal with
all three reclamation types, but the resulting
code is relatively more complex.

Allocation requests that specify the GFP_
EASYRCLM flag include requests for buffer
pages, process faulted pages, high pages allo-
cated with alloc_zeroed_user_highpage
and shared memory pages. The strategies prin-
cipally differ in the semantics of the GFP flag
and its treatment in the implementation.

S Anti-Fragmentation With Lists

The binary buddy allocator maintains
max_order lists of free blocks of each
power-of-two from 20 to 2@—order—1 pgtead
of one list at each order, this strategy uses two
lists by extending struct free_area. At
each order, one list is used to satisfy EasyRclm
allocations and the second list is used for all
other allocations. struct per_cpu_pages
is similarly extended to have one list for
EasyRclm and one for kernel allocations.

The difference in design between the standard
and list-based anti-fragmentation allocator is
illustrated in Figure 1. Where possible, al-
locations of a specified type use their own
freelist but can steal pages from each other
in low memory conditions. When allocated,
SetPageEasyRclm () is called for EasyRclm

allocations so that they will be freed back to
the correct lists. The two lists mean that a
page’s buddy is likely to be of the same re-
claimability. The success of this strategy de-
pends on there being a large enough number
of EasyRclm pages and that there are no pro-
longed bursts of requests for kernel pages lead-
ing to excessive stealing.

One advantage of this strategy is that a high or-
der kernel allocation can push out EasyRclm
pages to satisfy the allocation. The assumption
is that high-order allocations during the lifetime
of the system are short-lived. Performance re-
gressions tests did not show any problems de-
spite the allocator hot paths being affected by
this strategy.

A disadvantage is related to the advantage. As
kernel order-0 allocations can use the EasyR-
clm freelists, the strategy can break down if
there are prolonged periods of small allocations
without frees. The likelihood is also that long-
term light loads, such as desktops running for
a number of days will allow kernel pages to
slowly leak to all areas of physical memory.
Over time, the list-based strategy would have
similar success rates to the standard allocator.

6 Anti-Fragmentation With Zones

The Linux kernel splits available memory into
one or more zones, each representing mem-
ory with different usage limitations as shown
in Figure 2. On a typical x86, we have
ZONE_DMA representing memory capable of
use for Direct Memory Access (DMA), ZONE__
NORMAL representing memory which is di-
rectly accessible by the kernel, and ZONE_
HIGHMEM covering the remainder. Each zone
has its own set of lists for the buddy allocator
to track free memory within the zone.
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ANTI-FRAGMENTATION WITH LISTS

Figure 1: Comparison of the standard and list-based anti-frag allocators

This strategy introduces a new memory
zone, ZONE_EASYRCLM, to contain EasyR-
clm pages as illustrated in Figure 3. EasyR-
clm allocations that cannot be satisfied from
this zone fallback to regular zones, but
non-EasyRclm allocations cannot use ZONE_
EASYRCLM. This is a crucial difference be-
tween the list-based and zone-based strate-
gies for anti-fragmentation as list-based allows
stealing in both directions.

While booting, the system memory is split
into portions required by the kernel for its
operation and that which will be used for
EasyRclm allocations. The size of the ker-
nel portion is defined by the system adminis-
trator via the kernelcore= kernel parame-
ter, which bounds the memory placed in the
standard zones; the remaining memory consti-
tutes ZONE_EASYRCILM. If kernelcore=is
not specified, no pages are placed in ZONE_
EASYRCLM.

The principal advantage of this strategy are
that it provides a high likelihood of being
able to reclaim appropriately sized portions of

ZONE_EASYRCLM for any higher order allo-
cation if the high-order allocation is also eas-
ily reclaimable. Another significant advan-
tage is that ZONE_EASYRCLM may be used
for HugeTLB page allocations as they do not
worsen the fragmentation state of the system in
a meaningful way. This allows us to use the
ZONE_EASYRCLM as a “soft allocation” zone
from the HugeTLB pool to expand into.

One disadvantage is similar to the HugeTLB
pool sizing problem because the usage of the
system must be known in advance. Sizing is
workload dependant and performance may suf-
fer if an inappropriate size is specified with
kernelcore=. The second major disadvan-
tage is that the strategy does not provide any
help for high-order kernel allocations.

ZONE_DMA

ZONE_NORMAL | ZONE_HIGHMEM

Figure 2: Standard Linux kernel zone layout



374 e The What, The Why and the Where To of Anti-Fragmentation

CPU Xeon®) 2.8GHz CPU Power5®) PPC64 1.9GHz
# Physical CPUs | 2 # Physical CPUs | 2

# CPUs 4 # CPUs 4

Main Memory 1518MiB Main Memory 4019MiB

X86-BASED TEST MACHINE

POWERS-BASED TEST MACHINE

Figure 4: Specification of Test Machines

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM ZONE_EASYRCLM

Figure 3: Easy Reclaim zone layout

7 Experimental Methodology

The strategies were evaluated using five tests,
two related to performance and three related to
the system’s ability to satisfy large contiguous
allocations. The system is cleanly booted at the
beginning of a single set of tests. Each of the
five tests are run in order without intervening
reboots to maximise the chances of the system
suffering fragmentation. The tests are as fol-
lows

kbuild is similar to kernbench and it measures
the time taken to extract and build a kernel. The
test gives an overall view of the performance of
a kernel, including the rate the kernel is able to
satisfy allocations.

AIM?9 is a micro-benchmark that includes tests
for VM-related operations like page allocation
and the time taken to call brk (). AIM?9 is
a good barometer for performance regressions.
Crucially, it is sensitive to regressions in the
page allocator paths.

HugeTLB-Capability is a kernel compile
based benchmark. For every 250MiB of phys-
ical memory, a kernel compile is executed (in
parallel, simultaneously). During the compile,
one attempt is made to grow the HugeTLB
page pool from 0 by echoing a large number
to /proc/sys/vm/nr_hugepages. After the
re-size attempt, the pool is shrunk back to 0.

The kernel compiles are then stopped and an
attempt is made to grow the pool while the sys-
tem is under no significant load. A zero-filled
file that is the same size as physical memory
is then created with dd, then deleted, before a
third attempt is made to re-size the HugeTLB
pool. This test determines how capable the sys-
tem is of allocating HugeTLB pages at run-time
using the conventional interfaces.

Highalloc-Stress is a kernel compile based
benchmark. Kernel compiles are started as in
the HugeTLB-Capability test, plus updatedb
is also run in the background. A ker-
nel module is loaded to aggressively allocate
as many HugeTLB-sized pages as the sys-
tem has by calling alloc_pages (). These
persistent attempts force kswapd to start
reclaiming as well as triggering direct re-
claim which does not occur when resiz-
ing the HugeTLB pool via /proc/sys/
vm/nr_hugepages. F,(hugetlb_order) is
calculated at each allocation attempt and
F;(hugetlb_order) is calculated at each failure
(see Section 3). The results are graphed at the
end of the test. This test indicates how many
HugeTLB pages could be allocated under the
best of circumstances.

HotRemove-Capability is a memory hotplug
remove test. For each section of memory re-
ported in /sys/devices/system/memory,
an attempt is made to off-line the memory. As-
suming the kernel supports hotplug-remove, a
report states how many sections and what per-
centage of memory was off-lined. The base
kernel used for this paper was 2.6.16-rc6
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which did not support hotplug remove, so no re-
sults were produced and it will not be discussed
further.

All of these benchmarks were run using driver
scripts from VMRegress 0.36° in conjunction
with the same system that generates the reports
on http://test.kernel.org. Two ma-
chines were used to run the benchmarks based
on the x86 and Power5®) architectures as de-
tailed in Figure 4. In both cases, the tests were
run and results collected with scripts to min-
imise variation and prevent bias during testing.
Four sets of configurations were run on each ar-
chitecture

1. List-based strategy under light load
2. List-based strategy under heavy load

3. Zone-based with no kernelcore spec-
ified giving a ZONE_EASYRCLM with zero

pages.

4. Zone-based with kernelcore=1024MB

on x86 and kernelcore=2048MB on
PPCé64.

The list-based strategy is tested under light
and heavy loads to determine if the strat-
egy breaks down under pressure. We an-
ticipated the results of the benchmarks to
be similar if no breakdown was occurring.
The zone-based strategy is tested with and
without kernelcore to show that ZONE_
EASYRCLM is behaving as expected and that
the existence of the zone does not incur a per-
formance penalty. The choice of 2048MB on
PPC64 is 50% of physical memory. The choice
of 1024MB on x86 is to give some memory to
ZONE_EASYRCLM, but to leave some memory
in ZONE__HIGHMEM for PTE use as CONFIG__
HIGHPTE was set.

3http://www.csn.ul.ie/~mel/projects/vmregress/
vmregress-0.37.tar.gz

8 Results

On the successful completion of a test run, a
summarised report is generated similar* to the
one shown in Figure 11. These reports get ag-
gregated into the graphs shown in Figures 12
and 13. For each architecture the graphs show
how the two strategies compare against the
base allocator in terms of performance and the
ability to satisfy HugeTLB allocations. These
graphs will be the focus of our discussion on
performance in Section 8.1.

Figures 5 and 6 shows the values of
F,(hugetlb_order) at each allocation at-
tempt during the Highalloc-Stress Test while
the system was under no load. Note that in all
cases, the starting value of F,(hugetlb_order)
is close to 1 indicating that free memory was
not in large contiguous regions after the kernel
compiles were stopped. The value drops
over time as pages are reclaimed and buddies
coalesce. Kernels using anti-fragmentation
strategies had a higher rate of decline for the
value of F,(hugetlb_order), which implies that
the anti-fragmentation strategies had a measure
of success. These figures will be the focus
of our discussion on the ability of the system
to satisfy requests for contiguous regions in
Section 8.2.

Finally, Figures 7 and 8 show the value of
F;(hugetlb_order) at each allocation failure
during the Highalloc-Stress Test while the sys-
tem was under no load. These illustrate the
root cause of the allocation failures and are dis-
cussed in Section 8.3.

8.1 Performance

On both architectures, absolute performance
was comparable. The “KBuild Comparison”

4Edited to fit
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graphs in Figures 12 and 13 show the tim-
ings were within seconds of each other and this
was consistent among runs. The “AIM9 Com-
parison” graphs show that any regression was
within 3% of the base kernel’s performance.
This is expected as that test varies by a few
percent in each run and the results represent
one run, not an average. This leads us to con-
clude that neither list-based nor zone-based has
a significant performance penalty on either x86
or PPC64 architectures, at least for our sample
workloads.

8.2 Free Space Usability

In general, zone-based was more predictable
and reliable at providing contiguous free space.
On both architectures, the zone-based anti-
fragmentation kernels were able to allocate al-
most all of the pages in ZONE_EASYRCLM at
rest after the tests. As shown on Figure 6, 0.66
was the final value of F,(hugetlb_order) on
PPC64 with half of physical memory in ZONE__
EASYRCLM. We would expect it to reach 0.50
after multiple HugeTLB allocation attempts.
Without specifying kernelcore, the scheme
made no difference to absolute performance or
fragmentation as ZONE_EASYRCLM is empty.

The list-based strategy was potentially able
to reduce fragmentation throughout physical
memory. On x86, list-based anti-fragmentation
kept overall fragmentation lower than zone-
based but it was only fractionally better on the
PPC64 than the standard allocator. An ex-
amination of the x86 “High Allocation Stress
Test Comparison Test” report in Figure 12 hints
why. On x86, advantage is being taken of
the existing zone-based groupings of alloca-
tion types in Normal and HighMem. Effec-
tively, it was using a simple zone-based anti-
fragmentation that did not take PTEs into ac-
count. The list-based strategy succeeds on x86
because it keeps the PTE pages in HighMem

grouped together in addition to some success
in ZONE_NORMAL. Nevertheless, the strategy
clearly breaks down in ZONE_NORMAL due to
large amounts of kernel allocations falling back
to the EasyRclm freelists in low-memory sit-
uations. The breakdown is is illustrated by
the different values of F,(hugetlb_order) after
the different loads where similar values would
be expected if no breakdown was occurring.
Figure 5 shows that the light-load performed
worse than full-load due to the unpredictability
of the strategy. On an earlier run, the list-based
strategy under light load was able to allocate
119 HugeTLB pages from ZONE_NORMAL but
only 77 after full-load.

Under load, neither scheme was significantly
better than the other at keeping free areas con-
tiguous. This is because we were depending on
the LRU-approximation to reclaim a contigu-
ous region. Under load, zone-based was gen-
erally better because page reclaim was able to
reclaim within ZONE_EASYRCLM but the list-
based strategy did not have the same focus.
With either anti-fragmentation strategy, LRU
simply is not suitable for reclaiming contiguous
regions and an alternative strategy is discussed
in Section 10.

8.3 Fragmentation Index at Failure

Figures 7 and 8 clearly show that allocations
failed with both strategies due to fragmenta-
tion and not lack of memory. By design, the
zone-based strategy does not reduce fragmen-
tation in the kernel zones. When an allocation
fails at rest, it is because ZONE_EASYRCLM is
likely nearly depleted and we are looking at the
high fragmentation in the kernel zones. The
figures for list-based implied that, under load,
fragmentation had crept into all zones which
means the strategy broke down due to excessive
stealing.
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9 Results Conclusions

The two strategies had different advantages and
disadvantages but both were able to increase
availability of HugeTLB pages. The fact that
list-based does not require configuration and
works on all of memory makes it desirable but
our figures show that it breaks down in its cur-
rent implementation. Once correctly config-
ured, zone-based is more reliable even though
it does not help high-order kernel allocations.

The zone-based strategy is currently the best
available solution. In the short-to-medium
term, the zone-based strategy creates a soft-
area that can satisfy HugeTLB allocations on
demand. In the long-term, we intend to de-
velop a strategy that takes the best from both
approaches without incurring a performance re-
gression.

10 Linear Reclaim

Anti-fragmentation improves our chances of
finding contiguous regions of memory that may
be reclaimed to satisfy a high order allocation.

However, the existing LRU-approximation al-
gorithm for page reclamation is not suitable for
finding contiguous regions.

In the worst-case scenario, the LRU list con-
tains randomly ordered pages across the system
so the release of pages will also be in random
order. To free a contiguous region of 2/ pages
within a zone containing N pages, we may need
to release F}(j) pages in that zone where

F(j) =2/ —1))+1

The table in Figure 9 shows the relative propor-
tion of memory we will need to reclaim before
we can guarantee to free a contiguous region
of sufficient size for the specified order. We
can see that beyond the lowest orders we need
to reclaim most pages in the system to guar-
antee freeing pages of the desired order. Or-
der 10 and 12 are interesting as they represent
the HugeTLB page sizes for x86 and PPC64 re-
spectively. The average case is not this severe,
but a detailed analysis of the average case is be-
yond the scope of this paper.

We introduced an alternative reclaim algorithm
called Linear Reclaim designed to target larger



Order | Percentage
50.00
75.00
87.50
93.75
96.88
98.44
99.90

99.98

N O NN AW

—

Figure 9: Reclaim Difficulty

P P[P ¢— >

Reclaimable Reclaimable

Free

Reclaimable

Non-Reclaimable

Figure 10: Linear Reclaim

contiguous regions of pages. It is used when
the failing allocation is of order 3 or greater.
With linear reclaim we view the entire memory
space as a set of contiguous regions, each of the
size we are trying to release. For each region,
we check if all of the pages are likely to be re-
claimable or are already free. If so, the allo-
cated pages are removed from the LRU and an
attempt is made to reclaim them. This contin-
ues until a proportion of the contiguous regions
have been scanned.

In our example in Figure 10, linear reclaim will
only attempt to reclaim pages in the second and
fourth regions, applying reclaim to all the pages
in the selected region at the same time. It is
clear that in the case where reclaim succeeds
we should be able to free the region by releas-
ing just its pages which is significantly less than
that required with LRU-based reclaim.

An early proof-of-concept implementation of
linear reclaim was promising. A HugeTLB-
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capability test was run on the x86 machine.
Under load, a clean kernel was able to allo-
cate 6 HugeTLB pages, the zone-based anti-
fragmentation allocator was able to allocate 10
HugeTLB pages and with both zone-based anti-
fragmentation and linear-reclaim, it was able
to allocate 41 HugeTLB pages. We do not
have detailed timing information but early in-
dications are that linear reclaim is able to sat-
isfy allocation requests faster but spends more
time scanning than the existing page reclama-
tion policy before a failure. In summary, linear
reclaim is promising, but needs further devel-
opment.

11 Future Work

We intend to develop the zone-based anti-
fragmentation strategy further. The patches
that exist at the time of writing include some
complex architecture-specific code that calcu-
late the size of ZONE_EASYRCLM. As the code
for sizing zones and memory holes in each ar-
chitecture is similar, we are developing code
to calculate the size of zones and holes in an
architecture-independent fashion. Our initial
patches show a net reduction of code.

Once an anti-fragmentation strategy is in place,
we would like to develop the linear reclaim
scanner further as LRU reclaims far too much
memory to satisfy a request for a contiguous re-
gion. Our current testing strategy records how
long it takes to satisfy a large allocation and
we anticipate linear reclaim will show improve-
ments in those figures.

In a perfect world, with everything in place, the
plan is to work on the transparent support of
HugeTLB pages in Linux. Although there are
known applications that benefit from this such
as database and java-based software, we would
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also like to show benefits for desktop software
such as X.

We will then determine if there is a perfor-
mance case for the use of higher-order alloca-
tions by the kernel. If there is, we will revisit
the list-based approach and determine if a more
general solution can be developed to control
fragmentation throughout the system, and not
just in pre-configured zones.
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Kernel comparison report

Architecture: x86
Huge Page Size: 4 MB
Physical memory: 1554364 KB
Number huge pages: 379

KBuild Comparison

2.6.16-rc6-clean 2.6.16-rc6-zone-OMB 2.6.16-rc6-zone-1024MB

Time taken to extract kernel: 25 24 24
Time taken to build kernel: 393 391 391
AIM9 Comparison
2.6.16-rc6-clean zone-0MB zone—-1024MB
1 creat-clo 105965.67 105866.67 -0.09% 106500.00 0.50% File Creations and Closes/s
2 page_test 259306.67 271558.07 4.72% 258300.28 -0.39% System Allocations & Pages/s
3 brk_test 1666572.24 1866883.33 12.02% 1880766.67 12.85% System Memory Allocations/s
4 jmp_test 14805650.00 13949966.67 -5.78% 15088700.00 1.91% Non-local gotos/second
5 signal_test 286252.29 280183.33 -2.12% 282950.00 -1.15% Signal Traps/second
6 exec_test 131.79 131.98 0.14% 131.68 -0.08% Program Loads/second
7 fork_test 3857.69 3842.69 -0.39% 3862.69 0.13% Task Creations/second
8 link_test 21291.90 21693.58 1.89% 21499.37 0.97% Link/Unlink Pairs/second

High Allocation Stress Test Comparison

HighAlloc Under Load Test Results Pass 1

2.6.16-rc6-clean 2.6.16-rc6b-zone-OMB 2.6.16-rc6-zone-1024MB

Order 10 10 10
Success allocs 72 20 82
Failed allocs 307 359 297
DMA zone allocs 1 1 1
Normal zone allocs 5 5 6
HighMem zone allocs 66 14 7
EasyRclm zone allocs 0 0 68
% Success 18 5 21

HighAlloc Under Load Test Results Pass 2

2.6.16-rc6-clean 2.6.16-rc6-zone-OMB 2.6.16-rc6-zone-1024MB
Order 10 10 10
Success allocs 82 70 106
Failed allocs 297 309 273
DMA zone allocs 1 1 1
Normal zone allocs 5 5 6
HighMem zone allocs 76 64 7
EasyRclm zone allocs 0 0 92
% Success 21 18 27
HighAlloc Test Results while Rested

2.6.16-rc6-clean 2.6.16-rc6-zone-OMB 2.6.16-rc6-zone-1024MB
Order 10 10 10
Success allocs 110 130 181
Failed allocs 269 249 198
DMA zone allocs 1 1 1
Normal zone allocs 16 46 44
HighMem zone allocs 93 83 9
EasyRclm zone allocs 0 0 127
% Success 29 34 47

HugeTLB Page Capability Comparison

2.6.16-rc6-clean 2.6.16-rc6-zone-OMB 2.6.16-rc6-zone-1024MB
During compile: 5 5 5
At rest before dd of large file: 51 52 48
At rest after dd of large file: 67 64 92

Figure 11: Example Kernel Comparison Report
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Figure 12: Anti-Fragmentation Strategy Comparison on x86
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Figure 13: Anti-Fragmentation Strategy on PPC64
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