
More Linux for Less
uClinuxTM on a $5.00 (US) Processor

Michael Hennerich
Analog Devices

hennerich@blackfin.uclinux.org

Robin Getz
Analog Devices

rgetz@blackfin.uclinux.org

Abstract

While many in the Linux community focus on
enterprise and multi-processor servers, there
are also many who are working and deploy-
ing Linux on the network edge. Due to its
open nature, and the ability to swiftly develop
complex applications, Linux is rapidly becom-
ing the number one embedded operating sys-
tem. However, there are many differences be-
tween running Linux on a Quad processor sys-
tem with 16Gig of Memory and 250Gig of
RAID storage than a on a system where the to-
tal cost of hardware is less than the price of a
typical meal.

1 Introduction

In the past few years, Linux
TM

has become an
increasingly popular operating system choice
not only in the PC and Server market, also
in the development of embedded devices—
particularly consumer products, telecommuni-
cations routers and switches, Internet appli-
ances, and industrial and automotive applica-
tions.

The advantage of Embedded Linux is that it is
a royalty-free, open source, compact solution

that provides a strong foundation for an ever-
growing base of applications to run on. Linux
is a fully functional operating system (OS) with
support for a variety of network and file han-
dling protocols, a very important requirement
in embedded systems because of the need to
“connect and compute anywhere at anytime.”
Modular in nature, Linux is easy to slim down
by removing utility programs, tools, and other
system services that are not needed in the tar-
geted embedded environment. The advantages
for companies using Linux in embedded mar-
kets are faster time to market, flexibility, and
reliability.

This paper attempts to answer several questions
that all embedded developers ask:

• Why use a kernel at all?

• What advantages does Linux provide over
other operating systems?

• What is the difference between Linux on
x86 and low cost processors?

• Where can I get a kernel and how do I get
started?

• Is Linux capable of providing real-time
functionality?

• What are the possibilities to port a existing
real-time application to a system running
also Linux?

314 • More Linux for Less

2 Why use a kernel at all

All applications require control code as support
for the algorithms that are often thought of as
the “real” program. The algorithms require data
to be moved to and/or from peripherals, and
many algorithms consist of more than one func-
tional block. For some systems, this control
code may be as simple as a “super loop” blindly
processing data that arrives at a constant rate.
However, as processors become more power-
ful, considerably more sophisticated control or
signal processing may be needed to realize the
processor’s potential, to allow the processor to
absorb the required functionality of previously
supported chips, and to allow a single processor
to do the work of many. The following sections
provide an overview of some of the benefits of
using a kernel on a processor.

2.1 Rapid Application Development

The use of the Linux kernel allows rapid de-
velopment of applications compared to creat-
ing all of the control code required by hand.
An application or algorithm can be created and
debugged on an x86 PC using powerful desk-
top debugging tools, and using standard pro-
gramming interfaces to device drivers. Moving
this code base to an embedded linux kernel run-
ning on a low-cost embedded processor is triv-
ial because the device driver model is exactly
the same. Opening an audio device on the x86
Desktop is done in exactly the same was as on
an embedded Linux system. This allows you to
concentrate on the algorithms and the desired
control flow rather than on the implementation
details. Embedded Linux kernels and applica-
tions supports the use of C, C++, and assem-
bly language, encouraging the development of
code that is highly readable and maintainable,
yet retaining the option of hand-optimizing if
necessary.

2.2 Debugged Control Structures

Debugging a traditional hand-coded applica-
tion can be laborious because development
tools (compiler, assembler, and linker among
others) are not aware of the architecture of the
target application and the flow of control that
results. Debugging complex applications is
much easier when instantaneous snapshots of
the system state and statistical runtime data are
clearly presented by the tools. To help offset
the difficulties in debugging software, embed-
ded Linux kernels are tested with the same tests
that many desktop distributions use before re-
leasing a Linux kernel. This ensure that the em-
bedded kernel is as bug-free as possible.

2.3 Code Reuse

Many programmers begin a new project by
writing the infrastructure portions that transfers
data to, from, and between algorithms. This
necessary control logic usually is created from
scratch by each design team and infrequently
reused on subsequent projects. The Linux ker-
nel provides much of this functionality in a
standard, portable, and reusable manner. Fur-
thermore, the kernel and its tight integration
with the GNU development and debug tools
are designed to promote good coding practice
and organization by partitioning large appli-
cations into maintainable and comprehensible
blocks. By isolating the functionality of sub-
systems, the kernel helps to prevent the morass
all too commonly found in systems program-
ming. The kernel is designed specifically to
take advantage of commonality in user applica-
tions and to encourage code reuse. Each thread
of execution is created from a user-defined tem-
plate, either at boot time or dynamically by an-
other thread. Multiple threads can be created
from the same template, but the state associ-
ated with each created instance of the thread

2006 Linux Symposium, Volume One • 315

remains unique. Each thread template repre-
sents a complete encapsulation of an algorithm
that is unaware of other threads in the system
unless it has a direct dependency.

2.4 Hardware Abstraction

In addition to a structured model for algo-
rithms, the Linux kernel provides a hardware
abstraction layer. Presented programming in-
terfaces allow you to write most of the applica-
tion in a platform-independent, high-level lan-
guage (C or C++). The Linux Application Pro-
gramming Interface (API) is identical for all
processors which support Linux, allowing code
to be easily ported to a different processor core.
When porting an application to a new plat-
form, programmers must only address the areas
necessarily specific to a particular processor—
normally device drivers. The Linux architec-
ture identifies a crisp boundary around these
subsystems and supports the traditionally dif-
ficult development with a clear programming
framework and code generation. Common de-
vices can use the same driver interface (for ex-
ample a serial port driver may be specific for a
certain hardware, but the application←→ serial
port driver interface should be exactly the same,
providing a well-defined hardware abstraction,
and making application development faster).

2.5 Partitioning an Application

A Linux application or thread is an encapsu-
lation of an algorithm and its associated data.
When beginning a new project, use this notion
of an application or thread to leverage the ker-
nel architecture and to reduce the complexity
of your system. Since many algorithms may be
thought of as being composed of subalgorithm
building blocks, an application can be parti-
tioned into smaller functional units that can be

individually coded and tested. These build-
ing blocks then become reusable components
in more robust and scalable systems.

You define the behavior of Linux applications
by creating the application. Many application
or threads of the same type can be created, but
for each thread type, only one copy of the code
is linked into the executable code. Each appli-
cation or thread has its own private set of vari-
ables defined for the thread type, its own stack,
and its own C run-time context.

When partitioning an application into threads,
identify portions of your design in which a
similar algorithm is applied to multiple sets of
data. These are, in general, good candidates for
thread types. When data is present in the sys-
tem in sequential blocks, only one instance of
the thread type is required. If the same opera-
tion is performed on separate sets of data simul-
taneously, multiple threads of the same type can
coexist and be scheduled for prioritized execu-
tion (based on when the results are needed).

2.6 Scheduling

The Linux kernel can be a preemptive multi-
tasking kernel. Each application or thread be-
gins execution at its entry point. Then, it ei-
ther runs to completion or performs its primary
function repeatedly in an infinite loop. It is the
role of the scheduler to preempt execution of a
an application or thread and to resume its ex-
ecution when appropriate. Each application or
thread is given a priority to assist the scheduler
in determining precedence.

The scheduler gives processor time to the
thread with the highest priority that is in the
ready state. A thread is in the ready state when
it is not waiting for any system resources it has
requested.

316 • More Linux for Less

2.7 Priorities

Each application or thread is assigned a dy-
namically modifiable priority. An application
is limited to forty (40) priority levels. How-
ever, the number of threads at each priority is
limited, in practice, only by system memory.
Priority level one is the highest priority, and pri-
ority thirty is the lowest. The system maintains
an idle thread that is set to a priority lower than
that of the lowest user thread.

Assigning priorities is one of the most difficult
tasks of designing a real-time preemptive sys-
tem. Although there has been research in the
area of rigorous algorithms for assigning pri-
orities based on deadlines (for example, rate-
monotonic scheduling), most systems are de-
signed by considering the interrupts and signals
triggering the execution, while balancing the
deadlines imposed by the system’s input and
output streams.

2.8 Preemption

A running thread continues execution unless
it requests a system resource using a kernel
system call. When a thread requests a signal
(semaphore, event, device flag, or message) and
the signal is available, the thread resumes exe-
cution. If the signal is not available, the thread
is removed from the ready queue; the thread is
blocked. The kernel does not perform a con-
text switch as long as the running thread main-
tains the highest priority in the ready queue,
even if the thread frees a resource and enables
other threads to move to the ready queue at the
same or lower priority. A thread can also be
interrupted. When an interrupt occurs, the ker-
nel yields to the hardware interrupt controller.
When the ISR completes, the highest priority
thread resumes execution.

2.9 Application and Hardware Interaction

Applications should have minimal knowledge
of hardware; rather, they should use device
drivers for hardware control. A application can
control and interact with a device in a portable
and hardware abstracted manner through a
standard set of APIs.

The Linux Interrupt Service Routine frame-
work encourages you to remove specific knowl-
edge of hardware from the algorithms encap-
sulated in threads. Interrupts relay informa-
tion to threads through signals to device drivers
or directly to threads. Using signals to con-
nect hardware to the algorithms allows the ker-
nel to schedule threads based on asynchronous
events. The Linux run-time environment can be
thought of as a bridge between two domains,
the thread domain and the interrupt domain.
The interrupt domain services the hardware
with minimal knowledge of the algorithms, and
the thread domain is abstracted from the de-
tails of the hardware. Device drivers and sig-
nals bridge the two domains.

2.10 Downside of using a kernel

• Memory consumption: to have a usable
Linux system, you should consider having
at least 4–8 MB of SDRAM, and at least
2MB of Flash.

• Boot Time: the kernel is fast, but some-
times not fast enough, expect to have a 2–5
second boot time.

• Interrupt Latency: On occasions, a Linux
device driver, or even the kernel, will dis-
able interrupts. Some critical kernel op-
erations can not be interrupted, and it is
unfortunate, but interrupts must be turned
off for a bit. Care has been taken to keep
critical regions as short as possible as they

2006 Linux Symposium, Volume One • 317

cause increased and variable interrupt la-
tency.

• Robustness: although a kernel has gone
through lots of testing, and many people
are using it, it is always possible that there
are some undiscovered issues. Only you
can test it in the configuration that you will
ship it.

3 Advantages of Linux

Despite the fact that Linux was not originally
designed for use in embedded systems, it has
found its way into many embedded devices.
Since the release of kernel version 2.0.x and the
appearance of commercial support for Linux
on embedded processors, there has been an ex-
plosion of embedded devices that use Linux as
their OS. Almost every day there seems to be a
new device or gadget that uses Linux as its op-
erating system, in most cases going completely
unnoticed by the end users. Today a large
number of the available broadband routers, fire-
walls, access points, and even some DVD play-
ers utilize Linux, for more examples see Lin-
uxdevices.1

Linux offers a huge amount of drivers for all
sorts of hardware and protocols. Combine that
with the fact that Linux does not have run-time
royalties, and it quickly becomes clear why
there are so many developers using Linux for
their devices. In fact, in a recent embedded sur-
vey, 75% of developers indicated they are us-
ing, or are planning on using an open source
operating system.2

1http://www.linuxdevices.org
2Embedded systems survey http://www.

embedded.com/showArticle.jhtml?
articleID=163700590

Many commercial and non-commercial Linux
kernel trees and distributions enable a wide var-
ity of choices for the embedded developer.

One of the special trees is the uClinux
(Pronounced you-see-linux, the name uClinux
comes from combining the greek letter mu (µ)
and the English capital C. Mu stands for mi-
cro, and the C is for controller) kernel tree, at
http://www.uclinux.org. This is a dis-
tribution which includes a Linux kernel opti-
mized for low-cost processors, including pro-
cessors without a Memory Management Unit
(MMU). While the nommu kernel patch has
been included in the official Linux 2.6.x kernel,
the most up-to-date development activity and
projects can be found at uClinux Project Page
and Blackfin/uClinux Project Page3. Patches
such as these are used by commercial Linux
vendors in conjunction with their additional en-
hancements, development tools, and documen-
tation to provide their customers an easy-to-use
development environment for rapidly creating
powerful applications on uClinux.

Contrary to most people’s understanding,
uClinux is not a “special” Linux kernel tree, but
the name of a distribution, which goes through
testing on low-cost embedded platforms.

www.uclinux.org provides developers
with a Linux distribution that includes different
kernels (2.0.x, 2.4.x, 2.6.x) along with required
libraries; basic Linux shells and tools; and a
wide range of additional programs such as web
server, audio player, programming languages,
and a graphical configuration tool. There are
also programs specially designed with size and
efficiency as their primary considerations. One
example is busybox, a multicall binary, which
is a program that includes the functionality of
a lot of smaller programs and acts like any one
of them if it is called by the appropriate name.
If busybox is linked to ls and contains the ls

3http://www.blackfin.uclinux.org

318 • More Linux for Less

code, it acts like the ls command. The benefit
of this is that busybox saves some overhead for
unique binaries, and those small modules can
share common code.

In general, the uClinux distribution is more
than adequate enough to compile a full Linux
image for a communication device, like a
router, without writing a single line of code.

4 Differences between MMU Linux
and noMMU Linux

Since Linux on processors with MMU and
without MMU are similar to UNIX256 in that it
is a multiuser, multitasking OS, the kernel has
to take special precautions to assure the proper
and safe operation of up to thousands of pro-
cesses from different users on the same system
at once. The UNIX security model, after which
Linux is designed, protects every process in its
own environment with its own private address
space. Every process is also protected from
processes being invoked by different users. Ad-
ditionally, a Virtual Memory (VM) system has
additional requirements that the Memory Man-
agement Unit (MMU) must handle, like dy-
namic allocation of memory and mapping of ar-
bitrary memory regions into the private process
memory.

Some processors, like Blackfin, do not pro-
vide a full-fledged MMU. These processors are
more power efficient and significantly cheaper
than the alternatives, while sometimes having
higher performance.

Even on processors featuring Virtual Memory,
some system developers target their applica-
tion to run without the MMU turned on, be-
cause noMMU Linux can be significantly faster
than Linux on the same processor. Overhead
of MMU operations can be significant. Even

when a MMU is available, it is sometimes not
used in systems with high real-time constraints.
Context switching and Inter Process Communi-
cation (IPC) can also be several times faster on
uClinux. A benchmark on an ARM9 processor,
done by H.S. Choi and H.C. Yun, has proven
this.4

To support Linux on processors without an
MMU, a few trade-offs have to be made:

1. No real memory protection (a faulty pro-
cess can bring the complete system down)

2. No fork system call

3. Only simple memory allocation

4. Some other minor differences

4.1 Memory Protection

Memory protection is not a real problem for
most embedded devices. Linux is a very sta-
ble platform, particularly in embedded devices,
where software crashes are rarely observed.
Even on a MMU-based system running Linux,
software bugs in the kernel space can crash
the whole system. Since Blackfin has mem-
ory protection, but not Virtual Memory, Black-
fin/uClinux has better protection than other no-
MMU systems, and does provide some protec-
tion from applications writing into peripherals,
and therefore will be more robust than uClinux
running on different processors.

There are two most common principal reasons
causing uClinux to crash:

• Stack overflow: When Linux is running
on an architecture where a full MMU ex-
ists, the MMU provides Linux programs

4http://opensrc.sec.samsung.com/
document/uc-linux-04_sait.pdf

2006 Linux Symposium, Volume One • 319

basically unlimited stack and heap space.
This is done by the virtualization of phys-
ical memory. However most embedded
Linux systems will have a fixed amount
of SDRAM, and no swap, so it is not re-
ally “unlimited.” A program with a mem-
ory leak can still crash the entire system on
embedded Linux with a MMU and virtual
memory.

Because noMMU Linux can not support
VM, it allocates stack space during com-
pile time at the end of the data for the ex-
ecutable. If the stack grows too large on
noMMU Linux, it will overwrite the static
data and code areas. This means that the
developer, who previously was oblivious
to stack usage within the application, must
now be aware of the stack requirements.

On gcc for Blackfin, there is a com-
piler option to enable stack checking.
If the option -fstack-limit-symbol=

_stack_start is set, the compiler will
add in extra code which checks to en-
sure that the stack is not exceeded. This
will ensure that random crashes due to
stack corruption/overflow will not happen
on Blackfin/uClinux. Once an application
compiled with this option and exceeds its
stack limit, it gracefully dies. The devel-
oper then can increase the stack size at
compile time or with the flthdr utility
program during runtime. On production
systems, stack checking can either be re-
moved (increase performance/reduce code
size), or left in for the increase in robust-
ness.

• Null pointer reference: The Blackfin
MMU does provide partial memory pro-
tection, and can segment user space from
kernel (supervisor) space. On Black-
fin/uClinux, the first 4K of memory start-
ing at NULL is reserved as a buffer for
bad pointer dereferences. If an applica-

tion uses a uninitialized pointer that reads
or writes into the first 4K of memory, the
application will halt. This will ensure that
random crashes due to uninitialized point-
ers are less likely to happen. Other im-
plementations of noMMU Linux will start
writing over the kernel.

4.2 No Fork

The second point can be little more problem-
atic. In software written for UNIX or Linux,
developers sometimes use the fork system call
when they want to do things in parallel. The
fork() call makes an exact copy of the orig-
inal process and executes it simultaneously. To
do that efficiently, it uses the MMU to map the
memory from the parent process to the child
and copies only those memory parts to that
child it writes. Therefore, uClinux cannot pro-
vide the fork() system call. It does, how-
ever, provide vfork(), a special version of
fork(), in which the parent is halted while
the child executes. Therefore, software that
uses the fork() system call has to be modi-
fied to use either vfork() or POSIX threads
that uClinux supports, because they share the
same memory space, including the stack.

4.3 Memory Allocation

As for point number three, there usually is
no problem with the malloc support noMMU
Linux provides, but sometimes minor modifi-
cations may have to be made. Memory allo-
cation on uClinux can be very fast, but on the
other hand a process can allocate all available
memory. Since memory can be only allocated
in contiguous chunks, memory fragmentation
can be sometimes an issue.

320 • More Linux for Less

4.4 Minor Differences

Most of the software available for Linux or
UNIX (a collection of software can be found on
http://freshmeat.net) can be directly
compiled on uClinux. For the rest, there is usu-
ally only some minor porting or tweaking to do.
There are only very few applications that do not
work on uClinux, with most of those being ir-
relevant for embedded applications.

5 Developing with uClinux

When selecting development hardware, devel-
opers should not only carefully make their se-
lection with price and availability considera-
tions in mind, but also look for readily available
open source drivers and documentation, as well
as development tools that makes life easier—
e.g., kernel, driver and application debugger,
profiler, strace.

/subsectionTesting uClinux Especially when
developing with open source—where software
is given as-is—developers making a platform
decision should also carefully have a eye on the
test methodology for kernel, drivers, libraries,
and toolchain. After all, how can a developer,
in a short time, determine if the Linux kernel
running on processor A is better or worse than
running on processor B?

The simplest way to test a new kernel on a new
processor is to just boot the platform, and try
out the software you normally run. This is an
important test, because it tests most quickly the
things that matter most, and you are most likely
to notice things that are out of the ordinary from
the normal way of working. However, this ap-
proach does not give widespread test coverage;
each user tends to use the GNU/Linux system
only for a very limited range of the available

functions it offers and it can take significant
time to build the processor tool chain, build the
kernel, and download it to the target for the test-
ing.

Another alternative is to run test suites. These
are software packages written for the express
purpose of testing, and they are written to cover
a wide range of functions and often to expose
things that are likely to go wrong.

The Linux Test Project (LTP), as an example,
is a joint project started by SGI and maintained
by IBM, that has a goal to deliver test suites to
the open source community that validate the re-
liability, robustness, and stability of Linux. The
LTP test suite contains a collection of tools for
testing the Linux kernel and related features.
Analog Devices, Inc., sponsored the porting
of LTP to architectures supported by noMMU
Linux.

Testing with test suites applies not only the ker-
nel, also all other tools involved during the de-
velopment process. If you can not trust your
compiler or debugger, then you are lost. Black-
fin/uClinux uses DejaGnu to ease and automate
the over 44,000 toolchain tests, and checking
of their expected results while running on tar-
get hardware. In addition there are test suites
included in Blackfin/uClinux to do automated
stress tests on kernel and device drivers using
expect scripts. All these tests can be easily re-
produced because they are well documented.

Here are the test results for the Blackfin gcc-4.x
compiler.

2006 Linux Symposium, Volume One • 321

=== gas Summary ===
of expected passes 79

== binutils Summary ===
of expected passes 26
of untested testcases 7

=== gdb Summary ===
of expected passes 9018
of unexpected failures 62
of expected failures 41
of known failures 27
of unresolved testcases 9
of untested testcases 5
of unsupported tests 32

=== gcc Summary ===
of expected passes 36735
of unexpected failures 33
of unexpected successes 1
of expected failures 75
of unresolved testcases 28
of untested testcases 28
of unsupported tests 393

=== g++ Summary ===
of expected passes 11792
of unexpected failures 10
of unexpected successes 1
of expected failures 67
of unresolved testcases 14
of unsupported tests 165

All of the unexpected failures have been anal-
ysed to ensure that the toolchain is as stable as
possible with all types of software that some-
one could use it with.

6 Where can I get uClinux and how
do I get started?

Normally, the first selection that is made once
Linux is chosen as the embedded operating sys-

tem, is to identify the lowest cost processor
that will meet the performance targets. Luck-
ily, many silicon manufacturers are fighting for
this position.

During this phase of development it is about the
5 processor Ps.

• Penguins

• Price

• Power

• Performance

• Peripherals

6.1 Low-cost Processors

Although the Linux kernel supports many ar-
chitectures, including alpha, arm, frv, h8300,
i386, ia64, m32r, m68k, mips, parisc, powerpc,
s390, sh, sparc, um, v850, x86_64, and xtensa,
many Linux developers are surprised to hear of
a recent new Linux port to the Blackfin Proces-
sor.

Blackin Processors combine the ability for real-
time signal processing and the functionality of
microprocessors, fulfilling the requirements of
digital audio and communication applications.
The combination of a signal processing core
with traditional processor architecture on a sin-
gle chip avoids the restrictions, complexity, and
higher costs of traditional heterogeneous multi-
processor systems.

All Blackfin Processors combine a state-of-the-
art signal processing engine with the advan-
tages of a clean, orthogonal RISC-like micro-
processor instruction set and Single Instruc-
tion Multiple Data (SIMD) multimedia capa-
bilities into a single instruction set architecture.
The Micro Signal Architecture (MSA) core is a

322 • More Linux for Less

dual-MAC (Multiply Accumulator Unit) mod-
ified Harvard Architecture that has been de-
signed to have unparalleled performance on
typical signal processing5 algorithms, as well
as standard program flow and arbitrary bit ma-
nipulation operations mainly used by an OS.

The single-core Blackfin Processors have two
large blocks of on-chip memory providing high
bandwidth access to the core. These memory
blocks are accessed at full processor core speed
(up to 756MHz). The two memory blocks sit-
ting next to the core, referred to as L1 mem-
ory, can be configured either as data or in-
struction SRAM or cache. When configured
as cache, the speed of executing external code
from SDRAM is nearly on par with running
the code from internal memory. This feature is
especially well suited for running the uClinux
kernel, which doesn’t fit into internal memory.
Also, when programming in C, the memory ac-
cess optimization can be left up to the core by
using cache.

6.2 Development Environment

A typical uClinux development environment
consists of a low-cost Blackfin STAMP board,
and the GNU Compiler Collection (gcc cross
compiler) and the binutils (linker, assembler,
etc.) for the Blackfin Processor. Additionally,
some GNU tools like awk, sed, make, bash,
etc., plus tcl/tk are needed, although they
usually come by default with the desktop Linux
distribution.

An overview of some of the STAMP board fea-
tures are given below:

• ADSP-BF537 Blackfin device with JTAG
interface

5Analog Devices, Inc. Blackfin Processors http:
//www.analog.com/blackfin

• 500MHz core clock

• Up to 133MHz system clock

• 32M x 16bit external SDRAM (64MB)

• 2M x 16bit external flash (4MB)

• 10/100 Mbps Ethernet Interface (via on-
chip MAC, connected via DMA)

• CAN Interface

• RS-232 UART interface with DB9 serial
connector

• JTAG ICE 14 pin header

• Six general-purpose LEDs, four general-
purpose push buttons

• Discrete IDC Expansion ports for all pro-
cessor peripherals

All sources and tools (compiler, binutils, gnu
debugger) needed to create a working uClinux
kernel on the Blackfin Processors can be freely
obtained from http://www.blackfin.
uclinux.org. To use the binary rpms, a
PC with a Linux distribution like Red Hat or
SuSE is needed. Developers who can not
install Linux on their PC have a alternative.
Cooperative Linux (coLinux) is a relatively
new means to provide Linux services on a
Windows host. There already exists an out-
of-the-box solution that can be downloaded
for free from http://blackfin.uclinux.

org/projects/bfin-colinux. This pack-
age comes with a complete Blackfin uClinux
distribution, including all user-space applica-
tions and a graphical Windows-like installer.

After the installation of the development envi-
ronment and the decompression of the uClinux
distribution, development may start.

2006 Linux Symposium, Volume One • 323

Figure 1: BF537-STAMP Board from Analog Devices

6.3 Compiling a kernel & Root Filesystem

First the developer uses the graphical config-
uration utility to select an appropriate Board
Support Package (BSP) for his target hard-
ware. Supported target platforms are STAMP
for BF533, BF537, or the EZKIT for the Dual
Core Blackfin BF561. Other Blackfin deriva-
tives not listed like BF531, BF532, BF536, or
BF534 are also supported but there isn’t a de-
fault configuration file included.

After the default kernel is configured and suc-
cessfully compiled, there is a full-featured
Linux kernel and a filesystem image that can be
downloaded and executed or flashed via NFS,
tftp, or Kermit protocol onto the target hard-
ware with the help of preinstalled u-boot boot
loader. Once successful, further development
can proceed.

6.4 Hello World

A further step could be the creation of a simple
Hello World program.

Here is the program hello.c as simple as it
can be:

#include <stdio.h>

int main () {
printf("Hello World\n");
return 0;

}

The first step is to cross compile hello.c on
the development host PC:

host> bfin-uclinux-gcc -Wl,-elf2flt \
hello.c -o hello

The output executable is hello.

When compiling programs that run
on the target under the Linux kernel,

324 • More Linux for Less

bfin-uclinux-gcc is the compiler used.
Executables are linked against the uClibc
runtime library. uClibc is a C library for
developing embedded Linux systems. It is
much smaller than the GNU C Library, but
nearly all applications supported by glibc also
work perfectly with uClibc. Library function
calls like printf() invoke a system call,
telling the operating system to print a string to
stdout, the console. The elf2flt command
line option tells the linker to generate a flat
binary—elf2flt converts a fully linked
ELF object file created by the toolchain into a
binary flat (BFLT) file for use with uClinux.

The next step is to download hello to the tar-
get hardware. The are many ways to accom-
plish that. One convenient way is be to place
hello into a NFS or SAMBA exported file
share on the development host, while mount-
ing the share form the target uClinux system.
Other alternatives are placing hello in a web
server’s root directory and use the wget com-
mand on the target board. Or simply use ftp,
tftp, or rcp to transfer the executable.

6.5 Debugging in uClinux

Debugging tools in the hello case are not a
necessity, but as programs become more so-
phisticated, the availablilty of good debugging
tools become a requirement.

Sometimes an application just terminates after
being executed, without printing an appropriate
error message. Reasons for this are almost infi-
nite, but most of the time it can be traced back
to something really simple, e.g. it can not open
a file, device driver, etc.

strace is a debugging tool which prints out a
trace of all the system calls made by a another
program. System calls and signals are events
that happen at the user/kernel interface. A close

examination of this boundary is very useful for
bug isolation, sanity checking, and attempting
to capture race conditions.

If strace does not lead to a quick result,
developers can follow the unspectacular way
most Linux developers go using printf or
printk to add debug statements in the code
and recompile/rerun.

This method can be exhausting. The standard
Linux GNU Debugger (GDB) with its graphi-
cal front-ends can be used instead to debug user
applications. GDB supports single stepping,
backtrace, breakpoints, watchpoints, etc. There
are several options to have gdb connected to the
gdbserver on the target board. Gdb can connect
over Ethernet, Serial, or JTAG (rproxy). For de-
bugging in the kernel space, for instance device
drivers, developers can use the kgdb Blackfin
patch for the gdb debugger.

If a target application does not work because
of hidden inefficiencies, profiling is the key to
success. OProfile is a system-wide profiler for
Linux-based systems, capable of profiling all
running code at low overhead. OProfile uses
the hardware performance counters of the CPU
to enable profiling of a variety of interesting
statistics, also including basic time spent pro-
filing. All code is profiled: hardware and soft-
ware interrupt handlers, kernel modules, the
kernel, shared libraries, and applications.

The Blackfin gcc compiler has very favor-
able performance, a comparison with other gcc
compilers can be found here: GCC Code-Size
Benchmark Environment (CSiBE). But some-
times it might be necessary to do some hand
optimization, to utilize all enhanced instruction
capabilities a processor architecture provides.
There are a few alternatives: Use Inline assem-
bly, assembly macros, or C-callable assembly.

2006 Linux Symposium, Volume One • 325

GCC Code Size Benchmark

3,634,174

3,410,494

3,057,192

2,884,078

2,875,194

2,991,774

3,861,877

3,500,098

3,193,538

2,747,131

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

arm
-elf

arm
-linux

bfin-elf

i386-elf

i686-linux

m
68k-elf

m
ips-elf

ppc-elf

sh-elf

thum
b-elf

Architectures

C
o

d
e

S
iz

e
(i

n
 B

yt
es

)

Figure 2: Results from GCC Code-Size Benchmark Environment (CSiBE) Department of Software
Engineering, University of Szeged

6.6 C callable assembly

For a C program to be able to call an assem-
bly function, the names of the function must be
known to the C program. The function proto-
type is therefore declared as an external func-
tion.

extern int minimum(int,int);

In the assembly file, the same function name is
used as the label at the jump address to which
the function call branches. Names defined in
C are used with a leading underscore. So the
function is defined as follows.

.global _minimum;
_minimum:

R0 = MIN(R0,R1);
RTS; /*Return*/

The function name must be declared using the
.global directive in the assembly file to let
the assembler and compiler know that its used
by a another file. In this case registers R0 and
R1 correspond to the first and second function
parameter. The function return value is passed
in R0. Developers should make themselves
comfortable with the C runtime parameter pass-
ing model of the used architecture.

6.7 Floating Point & Fractional Floating
Point

Since many low cost architectures (like Black-
fin) do not include hardware floating point unit
(FPU), floating point operations are emulated
in software. The gcc compiler supports two
variants of soft floating-point support. These
variants are implemented in terms of two alter-
native emulation libraries, selected at compile
time.

326 • More Linux for Less

The two alternative emulation libraries are:

• The default IEEE-754 floating-point li-
brary: It is a strictly-conforming vari-
ant, which offers less performance, but in-
cludes all the input-checking that has been
relaxed in the alternative library.

• The alternative fast floating-point library:
It is a high-performance variant, which re-
laxes some of the IEEE rules in the in-
terests of performance. This library as-
sumes that its inputs will be value num-
bers, rather than Not-a-number values.

The selection of these libraries is controlled
with the -ffast-math compiler option.

Luckily, most embedded applications do not
use floating point.

However, many signal processing algorithms
are performed using fractional arithmetic. Un-
fortunately, C does not have a fixed point frac-
tional data type. However, fractional operations
can be implemented in C using integer opera-
tions. Most fractional operations must be im-
plemented in multiple steps, and therefore con-
sume many C statements for a single opera-
tion, which makes them hard to implement on
a general purpose processor. Signal processors
directly support single cycle fractional and in-
teger arithmetic, while fractional arithmetic is
used for the actual signal processing operations
and integer arithmetic is used for control op-
erations such as memory address calculations,
loop counters and control variables.

The numeric format in signed fractional no-
tation makes sense to use in all kind of sig-
nal processing computations, because it is hard
to overflow a fractional result, because mul-
tiplying a fraction by a fraction results in a
smaller number, which is then either truncated

or rounded. The highest full-scale positive frac-
tional number is 0.99999, while the highest
full-scale negative number is –1.0. To convert
a fractional back to an integer number, the frac-
tional must be multiplied by a scaling factor so
the result will be always between ±2N−1 for
signed and 2N for unsigned integers.

6.8 libraries

The standard uClinux distribution con-
tains a rich set of available C libraries for
compression, cryptography, and other pur-
poses. (openssl, libpcap, libldap,
libm, libdes, libaes, zlib, libpng,
libjpeg, ncurses, etc.) The Black-
fin/uClinux distribution additionally includes:
libaudio, libao, libSTL, flac,
tremor, libid3tag, mpfr, etc. Further-
more Blackfin/uClinux developers currently
incorporate signal processing libraries into
uClinux with highly optimized assembly func-
tions to perform all kinds of common signal
processing algorithms such as Convolution,
FFT, DCT, and IIR/FIR Filters, with low MIPS
overhead.

6.9 Application Development

The next step would be the development of the
special applications for the target device or the
porting of additional software. A lot of de-
velopment can be done in shell scripts or lan-
guages like Perl or Python. Where C program-
ming is mandatory, Linux, with its extraordi-
nary support for protocols and device drivers,
provides a powerful environment for the devel-
opment of new applications.

Example: Interfacing a CMOS Camera Sensor

The Blackfin processor is a very I/O-balanced
processor. This means it offers a variety of

2006 Linux Symposium, Volume One • 327

high-speed serial and parallel peripheral inter-
faces. These interfaces are ideally designed in
a way that they can be operated with very low
or no-overhead impact to the processor core,
leaving enough time for running the OS and
processing the incoming or outgoing data. A
Blackfin Processor as an example has multiple,
flexible, and independent Direct Memory Ac-
cess (DMA) controllers. DMA transfers can
occur between the processor’s internal mem-
ory and any of its DMA-capable peripherals.
Additionally, DMA transfers can be performed
between any of the DMA-capable peripherals
and external devices connected to the exter-
nal memory interfaces, including the SDRAM
controller and the asynchronous memory con-
troller.

The Blackfin processor provides, besides other
interfaces, a Parallel Peripheral Interface (PPI)
that can connect directly to parallel D/A
and A/D converters, ITU-R-601/656 video en-
coders and decoders, and other general-purpose
peripherals, such as CMOS camera sensors.
The PPI consists of a dedicated input clock pin,
up to three frame synchronization pins, and up
to 16 data pins.

Figure 3 is an example of how easily a CMOS
imaging sensor can be wired to a Blackfin Pro-
cessor, without the need of additional active
hardware components.

Below is example code for a simple program
that reads from a CMOS Camera Sensor, as-
suming a PPI driver is compiled into the kernel
or loaded as a kernel module. There are two
different PPI drivers available, a generic full-
featured driver, supporting various PPI opera-
tion modes (ppi.c), and a simple PPI Frame
Capture Driver (adsp-ppifcd.c). The lat-
ter is used here. The application opens the
PPI device driver, performs some I/O controls
(ioctls), setting the number of pixels per line
and the number of lines to be captured. After
the application invokes the read system call,

the driver arms the DMA transfer. The start of a
new frame is detected by the PPI peripheral, by
monitoring the Line- and Frame-Valid strobes.
A special correlation between the two signals
indicates the start of frame, and kicks off the
DMA transfer, capturing pixels-per-line times
lines samples. The DMA engine stores the in-
coming samples at the address allocated by the
application. After the transfer is finished, exe-
cution returns to the application. The image is
then converted into the PNG (Portable Network
Graphic) format, utilizing libpng included in
the uClinux distribution. The converted image
is then written to stdout. Assuming the com-
piled program executable is called readimg, a
command line to execute the program, writing
the converted output image to a file, can look
like following:

root:~> readimg > /var/image.png

Example: Reading from a CMOS Camera Sen-
sor

Audio, Video, and Still-image silicon products
widely use an I2C-compatible Two Wire In-
terface (TWI) as a system configuration bus.
The configuration bus allows a system master
to gain access over device internal configura-
tion registers such as brightness. Usually, I2C
devices are controlled by a kernel driver. But
it is also possible to access all devices on an
adapter from user space, through the /dev in-
terface. The following example shows how to
write a value of 0x248 into register 9 of a I2C
slave device identified by I2C_DEVID:

#define I2C_DEVID (0xB8>>1)
#define I2C_DEVICE "/dev/i2c-0"

i2c_write_register(I2C_DEVICE,

I2C_DEVID,9,0x0248);

328 • More Linux for Less

MICRON MT9T001 ADSP−BF537

PPI_FS1

PPI_FS3

TMRn
SDA

PPI_FS2

PPIn_DATA
PPI_CLK

SCL

FRAME VALID

DATA
PIXEL CLOCK

SCL

LINE_VALID

SDA

8/16

Figure 3: Micron CMOS Imager gluelessly connected to Blackfin

Example: Writing configuration data to e.g. a
CMOS Camera Sensor

The power of Linux is the inexhaustible num-
ber of applications released under various open
source licenses that can be cross compiled to
run on the embedded uClinux system. Cross
compiling can be sometimes a little bit tricky,
that’s why it is discussed here.

6.10 Cross compiling

Linux or UNIX is not a single platform, there
is a wide range of choices. Most programs dis-
tributed as source code come with a so-called
configure script. This is a shell script that must
be run to recognize the current system config-
uration, so that the correct compiler switches,
library paths, and tools will be used. When
there isn’t a configure script, the developer can
manually modify the Makefile to add target-
processor-specific changes, or can integrate it

into the uClinux distribution. Detailed instruc-
tions can be found here. The configure script is
usually a big script, and it takes quite a while
to execute. When this script is created from re-
cent autoconf releases, it will work for Black-
fin/uClinux with minor or no modifications.

The configure shell script inside a source pack-
age can be executed for cross compilation using
following command line:

host> CC=’bfin-uclinux-gcc -O2 \
-Wl,-elf2flt’ ./configure \
--host=bfin-uclinux \
--build=i686-linux

Alternatively:

host> ./configure \
--host=bfin-uclinux \
--build=i686-linux \
LDFLAGS=’-Wl,-elf2flt’ \
CFLAGS=-O2

2006 Linux Symposium, Volume One • 329

#define WIDTH 1280
#define HEIGHT 1024

int main(int argc, char *argv[]) {
int fd;
char * buffer;

/* Allocate memory for the raw image */
buffer = (char*) malloc (WIDTH * HEIGHT);

/* Open /dev/ppi */
fd = open("/dev/ppi0", O_RDONLY,0);
if (fd == -1) {

printf("Could not open dev\/ppi\n");
free(buffer);
exit(1);

}

ioctl(fd, CMD_PPI_SET_PIXELS_PER_LINE, WIDTH);
ioctl(fd, CMD_PPI_SET_LINES_PER_FRAME, HEIGHT);

/* Read the raw image data from the PPI */
read(fd, buffer, WIDTH * HEIGHT);

put_image_png (buffer, WIDTH, HEIGHT)

close(fd); /* Close PPI */
}

/*
* convert image to png and write to stdout

*/
void put_image_png (char *image, int width, int height) {

int y;
char *p;
png_infop info_ptr;

png_structp png_ptr = png_create_write_struct (PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);

info_ptr = png_create_info_struct (png_ptr);

png_init_io (png_ptr, stdout);

png_set_IHDR (png_ptr, info_ptr, width, height,
8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);

png_write_info (png_ptr, info_ptr);
p = image;

for (y = 0; y < height; y++) {
png_write_row (png_ptr, p);
p += width;

}
png_write_end (png_ptr, info_ptr);
png_destroy_write_struct (&png_ptr, &info_ptr);

}

Figure 4: read.c file listing

330 • More Linux for Less

#define I2C_SLAVE_ADDR 0x38 /* Randomly picked */

int i2c_write_register(char * device, unsigned char client, unsigned char reg,
unsigned short value) {

int addr = I2C_SLAVE_ADDR;
char msg_data[32];
struct i2c_msg msg = { addr, 0, 0, msg_data };
struct i2c_rdwr_ioctl_data rdwr = { &msg, 1 };

int fd,i;

if ((fd = open(device, O_RDWR)) < 0) {
fprintf(stderr, "Error: could not open %s\n", device);
exit(1);

}

if (ioctl(fd, I2C_SLAVE, addr) < 0) {
fprintf(stderr, "Error: could not bind address %x \n", addr);

}

msg.len = 3;
msg.flags = 0;
msg_data[0] = reg;
msg_data[2] = (0xFF & value);
msg_data[1] = (value >> 8);
msg.addr = client;

if (ioctl(fd, I2C_RDWR, &rdwr) < 0) {
fprintf(stderr, "Error: could not write \n");

}

close(fd);
return 0;

}

Figure 5: Application to write configuration data to a CMOS Sensor

There are at least two causes able to stop the
running script: some of the files used by the
script are too old, or there are missing tools or
libraries. If the supplied scripts are too old to
execute properly for bfin-uclinux, or they
don’t recognize bfin-uclinux as a possi-
ble target, the developer will need to replace
config.subwith a more recent version from
e.g. an up-to-date gcc source directory. Only in
very few cases cross compiling is not supported
by the configure.in script manually writ-
ten by the author and used by autoconf. In this
case latter file can be modified to remove or
change the failing test case.

7 Network Oscilloscope

The Network Oscilloscope Demo is one of
the sample applications, besides the VoIP Lin-
phone Application or the Networked Audio
Player, included in the Blackfin/uClinux dis-
tribution. The purpose of the Network Oscil-
loscope Project is to demonstrate a simple re-
mote GUI (Graphical User Interface) mecha-
nism to share access and data distributed over
a TCP/IP network. Furthermore, it demon-
strates the integration of several open source
projects and libraries as building blocks into
single application. For instance gnuplot, a
portable command-line driven interactive data
file and function plotting utility, is used to
generate graphical data plots, while thttpd,
a CGI (Common Gateway Interface) capable

2006 Linux Symposium, Volume One • 331

web server, is servicing incoming HTTP re-
quests. CGI is typically used to generate dy-
namic webpages. It’s a simple protocol to
communicate between web forms and a spec-
ified program. A CGI script can be written in
any language, including C/C++, that can read
stdin, write to stdout, and read environ-
ment variables.

The Network Oscilloscope works as follow-
ing. A remote web browser contacts the HTTP
server running on uClinux where the CGI script
resides, and asks it to run the program. Pa-
rameters from the HTML form such as sam-
ple frequency, trigger settings, and display op-
tions are passed to the program through the en-
vironment. The called program samples data
from a externally connected Analog-to-Digital
Converter (ADC) using a Linux device driver
(adsp-spiadc.c). Incoming samples are
preprocessed and stored in a file. The CGI
program then starts gnuplot as a process and
requests generation of a PNG or JPEG im-
age based on the sampled data and form set-
tings. The webserver takes the output of the
CGI program and tunnels it through to the web
browser. The web browser displays the output
as an HTML page, including the generated im-
age plot.

A simple C code routine can be used to supply
data in response to a CGI request.

Example: Simple CGI Hello World application

8 Real-time capabilities of uClinux

Since Linux was originally developed for
server and desktop usage, it has no hard real-
time capabilities like most other operating sys-
tems of comparable complexity and size. Nev-
ertheless, Linux and in particular, uClinux has
excellent so-called soft real-time capabilities.

This means that while Linux or uClinux can-
not guarantee certain interrupt or scheduler la-
tency compared with other operating systems
of similar complexity, they show very favorable
performance characteristics. If one needs a so-
called hard real-time system that can guarantee
scheduler or interrupt latency time, there are a
few ways to achieve such a goal:

Provide the real-time capabilities in the form
of an underlying minimal real-time kernel
such as RT-Linux (http://www.rtlinux.
org) or RTAI (http://www.rtai.org).
Both solutions use a small real-time kernel that
runs Linux as a real-time task with lower pri-
ority. Programs that need predictable real time
are designed to run on the real-time kernel and
are specially coded to do so. All other tasks
and services run on top of the Linux kernel and
can utilize everything that Linux can provide.
This approach can guarantee deterministic in-
terrupt latency while preserving the flexibility
that Linux provides.

For the initial Blackfin port, included in Xeno-
mai v2.1, the worst-case scheduling latency ob-
served so far with userspace Xenomai threads
on a Blackfin BF533 is slightly lower than 50
us under load, with an expected margin of im-
provement of 10–20 us, in the future.

Xenomai and RTAI use Adeos as a underlying
Hardware Abstraction Layer (HAL). Adeos is
a real time enabler for the Linux kernel. To
this end, it enables multiple prioritized O/S do-
mains to exist simultaneously on the same hard-
ware, connected through an interrupt pipeline.

Xenomai as well as Adeos has been ported to
the Blackfin architecture by Philippe Gerum
who leads both projects. This development has
been significantly sponsored by Openwide, a
specialist in embedded and real time solutions
for Linux.

Nevertheless in most cases, hard real-time is

332 • More Linux for Less

not needed, particularly for consumer multime-
dia applications, in which the time constraints
are dictated by the abilities of the user to recog-
nize glitches in audio and video. Those physi-
cally detectable constraints that have to be met
normally lie in the area of milliseconds, which
is no big problem on fast chips like the Black-
fin Processor. In Linux kernel 2.6.x, the new
stable kernel release, those qualities have even
been improved with the introduction of the new
O(1) scheduler.

Figures below show the context switch time for
a default Linux 2.6.x kernel running on Black-
fin/uClinux:

Context Switch time was measured with lat_
ctx from lmbench. The processes are con-
nected in a ring of Unix pipes. Each process
reads a token from its pipe, possibly does some
work, and then writes the token to the next pro-
cess. As number of processes increases, effect
of cache is less. For 10 processes the average
context switch time is 16.2us with a standard
deviation of .58, 95% of time is under 17us.

9 Conclusion

Blackfin Processors offer a good price/
performance ratio (800 MMAC @ 400 MHz
for less than (US)$5/unit in quantities), ad-
vanced power management functions, and
small mini-BGA packages. This represents
a very low-power, cost- and space-efficient
solution. The Blackfin’s advanced DSP and
multimedia capabilities qualify it not only
for audio and video appliances, but also
for all kinds of industrial, automotive, and
communication devices. Development tools
are well tested and documented, and include
everything necessary to get started and suc-
cessfully finished in time. Another advantage
of the Blackfin Processor in combination with

uClinux is the availability of a wide range of
applications, drivers, libraries and protocols,
often as open source or free software. In most
cases, there is only basic cross compilation
necessary to get that software up and running.
Combine this with such invaluable tools as
Perl, Python, MySQL, and PHP, and develop-
ers have the opportunity to develop even the
most demanding feature-rich applications in
a very short time frame, often with enough
processing power left for future improvements
and new features.

10 Legal

This work represents the view of the authors and
does not necessarily represent the view of Analog
Devices, Inc.

Linux is registered trademark of Linus Torvalds.
uClinux is trademark of Arcturus Networks Inc.
SGI is trademark of Silicon Graphics, Inc. ARM
is a registered trademark of ARM Limited. Black-
fin is a registered trademark of Analog Devices Inc.
IBM is a registered trademark of International Busi-
ness Machines Corporation. UNIX is a registered
trademark of The Open Group. Red Hat is regis-
tered trademark of Red Hat, Inc. SuSE is registered
trademark of Novell Inc.

All other trademarks belong to their respective own-
ers.

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

