OCFS2: The Oracle Clustered File System, Version 2

Mark Fasheh
Oracle

mark.fasheh@oracle.com

Abstract

This talk will review the various components
of the OCFS2 stack, with a focus on the file
system and its clustering aspects. OCFS2 ex-
tends many local file system features to the
cluster, some of the more interesting of which
are posix unlink semantics, data consistency,
shared readable mmap, etc.

In order to support these features, OCFS2 logi-
cally separates cluster access into multiple lay-
ers. An overview of the low level DLM layer
will be given. The higher level file system
locking will be described in detail, including
a walkthrough of inode locking and messaging
for various operations.

Caching and consistency strategies will be dis-
cussed. Metadata journaling is done on a per
node basis with JBD. Our reasoning behind that
choice will be described.

OCFS2 provides robust and performant recov-
ery on node death. We will walk through the
typical recovery process including journal re-
play, recovery of orphaned inodes, and recov-
ery of cached metadata allocations.

Allocation areas in OCFS2 are broken up into
groups which are arranged in self-optimizing
“chains.” The chain allocators allow OCFS2 to
do fast searches for free space, and dealloca-
tion in a constant time algorithm. Detail on the
layout and use of chain allocators will be given.

Disk space is broken up into clusters which can
range in size from 4 kilobytes to 1 megabyte.
File data is allocated in extents of clusters. This
allows OCFS2 a large amount of flexibility in
file allocation.

File metadata is allocated in blocks via a sub
allocation mechanism. All block allocators in
OCFS2 grow dynamically. Most notably, this
allows OCFS2 to grow inode allocation on de-
mand.

1 Design Principles

A small set of design principles has guided
most of OCFS2 development. None of them
are unique to OCFS2 development, and in fact,
almost all are principles we learned from the
Linux kernel community. They will, however,
come up often in discussion of OCFS2 file sys-
tem design, so it is worth covering them now.

1.1 Avoid Useless Abstraction Layers

Some file systems have implemented large ab-
straction layers, mostly to make themselves
portable across kernels. The OCFS2 develop-
ers have held from the beginning that OCFS2
code would be Linux only. This has helped us
in several ways. An obvious one is that it made

290 e OCFS2: The Oracle Clustered File System, Version 2

the code much easier to read and navigate. De-
velopment has been faster because we can di-
rectly use the kernel features without worrying
if another OS implements the same features, or
worse, writing a generic version of them.

Unfortunately, this is all easier said than done.
Clustering presents a problem set which most
Linux file systems don’t have to deal with.
When an abstraction layer is required, three
principles are adhered to:

e Mimic the kernel API.

e Keep the abstraction layer as thin as pos-
sible.

e If object life timing is required, try to use
the VES object life times.

1.2 Keep Operations Local

Bouncing file system data around a cluster can
be very expensive. Changed metadata blocks,
for example, must be synced out to disk before
another node can read them. OCFS2 design at-
tempts to break file system updates into node
local operations as much as possible.

1.3 Copy Good Ideas

There is a wealth of open source file system im-
plementations available today. Very often dur-
ing OCFS2 development, the question “How do
other file systems handle it?”” comes up with re-
spect to design problems. There is no reason to
reinvent a feature if another piece of software
already does it well. The OCFS2 developers
thus far have had no problem getting inspira-
tion from other Linux file systems.! In some
cases, whole sections of code have been lifted,
with proper citation, from other open source
projects!

'Most notably Ext3.

2 Disk Layout

Near the top of the ocfs2_fs.h header, one
will find this comment:

~
*

An OCFS2 volume starts this way:

Sector 0: Valid ocfsl_vol_disk_hdr that cleanly
fails to mount OCFS.

Sector 1: Valid ocfsl_vol_label that cleanly
fails to mount OCFS.

Block 2: OCFS2 superblock.

All other structures are found
from the superblock information.

* ok ok ok ok ok ok ok %

*
~

The OCFS disk headers are the only amount of
backwards compatibility one will find within an
OCFS2 volume. It is an otherwise brand new
cluster file system. While the file system basics
are complete, there are many features yet to be
implemented. The goal of this paper then, is to
provide a good explanation of where things are
in OCFS2 today.

2.1 Inode Allocation Structure

The OCFS2 file system has two main alloca-
tion units, blocks and clusters. Blocks can
be anywhere from 512 bytes to 4 kilobytes,
whereas clusters range from 4 kilobytes up to
one megabyte. To make the file system math-
ematics work properly, cluster size is always
greater than or equal to block size. At format
time, the disk is divided into as many cluster-
sized units as will fit. Data is always allocated
in clusters, whereas metadata is allocated in
blocks

Inode data is represented in extents which are
organized into a b-tree. In OCFS2, extents are
represented by a triple called an extent record.

Extent records are stored in a large in-inode ar-
ray which extends to the end of the inode block.
When the extent array is full, the file system
will allocate an extent block to hold the current

DISK INODE
- (1L %
EXTENTBLOCK_) N

N [[] N
Figure 1: An Inode B-tree

Record Field Field Size | Description

e_cpos 32 bits Offset into the
file, in clusters

e_clusters 32 bits Clusters in this
extent

e _blkno 64 bits Physical disk
offset

Table 1: OCFS2 extent record

array. The first extent record in the inode will
be re-written to point to the newly allocated ex-
tent block. The e_clusters and e_cpos
values will refer to the part of the tree under-
neath that extent. Bottom level extent blocks
form a linked list so that queries accross a range
can be done efficiently.

2.2 Directories

Directory layout in OCFS2 is very similar to
Ext3, though unfortunately, htree has yet to be
ported. The only difference in directory en-
try structure is that OCFS2 inode numbers are
64 bits wide. The rest of this section can be
skipped by those already familiar with the di-
rent structure.

Directory inodes hold their data in the same
manner which file inodes do. Directory data
is arranged into an array of directory en-
tries. Each directory entry holds a 64-bit inode
pointer, a 16-bit record length, an 8-bit name
length, an 8-bit file type enum (this allows us
to avoid reading the inode block for type), and

2006 Linux Symposium, Volume One e 291

of course the set of characters which make up
the file name.

2.3 The Super Block

The OCFS2 super block information is con-
tained within an inode block. It contains a
standard set of super block information—block
size, compat/incompat/ro features, root inode
pointer, etc. There are four values which are
somewhat unique to OCFS2.

e s clustersize bits — Cluster size
for the file system.

e s_system_dir_blkno — Pointer to
the system directory.

e s _max_slots — Maximum number of
simultaneous mounts.

s_first_cluster_group - Block
offset of first cluster group descriptor.

s_clustersize_bits is self-explanatory.
The reason for the other three fields will be ex-
plained in the next few sections.

2.4 The System Directory

In OCFS2 file system metadata is contained
within a set of system files. There are two types
of system files, global and node local. All sys-
tem files are linked into the file system via the
hidden system directory> whose inode number
is pointed to by the superblock. To find a sys-
tem file, a node need only search the system
directory for the name in question. The most
common ones are read at mount time as a per-
formance optimization. Linking to system files

2debugfs.ocfs2 can list the system dir with the
1ls // command.

292 e OCFS2: The Oracle Clustered File System, Version 2

from the system directory allows system file lo-
catations to be completely dynamic. Adding
new system files is as simple as linking them
into the directory.

Global system files are generally accessible
by any cluster node at any time, given that it
has taken the proper cluster-wide locks. The
global_bitmap is one such system file.
There are many others.

Node local system files are said to be owned by
a mounted node which occupies a unique slot.
The maximum number of slots in a file sys-
tem is determined by the s_max_slots su-
perblock field. The slot_map global system
file contains a flat array of node numbers which
details which mounted node occupies which set
of node local system files.

Ownership of a slot may mean a different
thing to each node local system file. For
some, it means that access to the system file
is exclusive—no other node can ever access it.
For others it simply means that the owning node
gets preferential access—for an allocator file,
this might mean the owning node is the only
one allowed to allocate, while every node may
delete.

A node local system file has its slot number en-
coded in the file name. For example, the jour-
nal used by the node occupying the third file
system slot (slot numbers start at zero) has the
name journal:0002.

2.5 Chain Allocators

OCFS2 allocates free disk space via a special
set of files called chain allocators. Remember
that OCFS2 allocates in clusters and blocks, so
the generic term allocation units will be used
here to signify either. The space itself is broken
up into allocation groups, each of which con-
tains a fixed number of allocation units. These

ALLOCATION UNITS

A

GROUP
DESCRIPTOR

Figure 2: Allocation Group

groups are then chained together into a set of
singly linked lists, which start at the allocator
inode.

The first block of the first allocation unit
within a group contains an ocfs2_group_
descriptor. The descriptor contains a small
set of fields followed by a bitmap which ex-
tends to the end of the block. Each bit in the
bitmap corresponds to an allocation unit within
the group. The most important descriptor fields
follow.

e bg_free_bits_count - number of
unallocated units in this group.

e bg_chain - describes which group
chain this descriptor is a part of.

e bg_next_group — points to the next
group descriptor in the chain.

e bg_parent_dinode — pointer to disk
inode of the allocator which owns this

group.

Embedded in the allocator inode is an ocfs2_
chain_1list structure. The chain list con-
tains some fields followed by an array of
ocfs2_chain_rec records. An ocfs2__
chain_rec is a triple which describes a
chain.

e c_blkno — First allocation group.

ALLOCATOR
INODE

v

GROUP.
DESCRIPTOR

Y
Y

A 4

GROUP.
DESCRIPTOR

Y
Y

A 4

GROUP
DESCRIPTOR

Y
Y

Figure 3: Chain Allocator

e c_total — Total allocation units.

e c_free — Free allocation units.

The two most interesting fields at the top of
anocfs2_chain_list are: cl_cpg, clus-
ters per group; and cl_bpc, bits per cluster.
The product of those two fields describes the
total number of blocks occupied by each allo-
cation group. As an example, the cluster allo-
cator whose allocation units are clusters has a
cl_bpc of 1 and cl_cpg is determined by
mkfs.ocfs2 (usually it just picks the largest
value which will fit within a descriptor bitmap).

Chain searches are said to be self-optimizing.
That is, while traversing a chain, the file system
will re-link the group with the most number of
free bits to the top of the list. This way, full
groups can be pushed toward the end of the list
and subsequent searches will require fewer disk
reads.

2006 Linux Symposium, Volume One e 293

2.6 Sub Allocators

The total number of file system clusters is
largely static as determined by mkfs.ocfs2
or optionally grown via tunefs.ocfs2. File
system blocks however are dynamic. For exam-
ple, an inode block allocator file can be grown
as more files are created.

To grow a block allocator, c1_bpc clusters
are allocated from the cluster allocator. The
new ocfs2_group_descriptor record is
populated and that block group is linked to the
top of the smallest chain (wrapping back to
the first chain if all are equally full). Other
than the descriptor block, zeroing of the re-
maining blocks is skipped—when allocated, all
file system blocks will be zeroed and written
with a file system generation value. This allows
fsck.ocfs?2 to determine which blocks in a
group are valid metadata.

2.7 Local Alloc

Very early in the design of OCFS2 it was de-
termined that a large amount of performance
would be gained by reducing contention on the
cluster allocator. Essentially the local alloc is a
node local system file with an in-inode bitmap
which caches clusters from the global cluster
allocator. The local alloc file is never locked
within the cluster—access to it is exclusive to
a mounted node. This allows the block to re-
main valid in memory for the entire lifetime of
a mount.

As the local alloc bitmap is exhausted of free
space, an operation called a window slide is
done. First, any unallocated bits left in the lo-
cal alloc are freed back to the cluster alloca-
tor. Next, a large enough area of contiguous
space is found with which to re-fill the local al-
loc. The cluster allocator bits are set, the local

294 e OCFS2: The Oracle Clustered File System, Version 2

alloc bitmap is cleared, and the size and offset
of the new window are recorded. If no suitable
free space is found during the second step of a
window slide, the local alloc is disabled for the
remainder of that mount.

The size of the local alloc bitmap is tuned at
mkfs time to be large enough so that most
block group allocations will fit, but the total
size would not be so large as to keep an in-
ordinate amount of data unallocatable by other
nodes.

2.8 Truncate Log

The truncate log is a node local system file with
nearly the same properties of the local alloc file.
The major difference is that the truncate log is
involved in de-allocation of clusters. This in
turn dictates a difference in disk structure.

Instead of a small bitmap covering a section of
the cluster allocator, the truncate log contains
an in-inode array of ocfs2_truncate_rec
structures. Each ocfs2_truncate_rec is
an extent, with a start (t_start) cluster and a
length (t_clusters). This structure allows
the truncate log to cover large parts of the clus-
ter allocator.

All cluster de-allocation goes through the trun-
cate log. It is flushed when full, two seconds af-
ter the most recent de-allocation, or on demand
by a sync (2) call.

3 Metadata Consistency

A large amount of time is spent inside a clus-
ter file system keeping metadata blocks consis-
tent. A cluster file system not only has to track
and journal dirty blocks, but it must understand
which clean blocks in memory are still valid
with respect to any disk changes which other
nodes might initiate.

3.1 Journaling

Journal files in OCFS2 are stored as node local
system files. Each node has exclusive access to
its journal, and retains a cluster lock on it for
the duration of its mount.

OCFS2 does block based journaling via the
JBD subsystem which has been present in the
Linux kernel for several years now. This is the
same journaling system in use by the Ext3 file
system. Documentation on the JBD disk format
can be found online, and is beyond the scope of
this document.

Though the OCFS2 team could have invented
their own journaling subsystem (which could
have included some extra cluster optimiza-
tions), JBD was chosen for one main reason—
stability. JBD has been very well tested as a re-
sult of being in use in Ext3. For any journaled
file system, stability in its journaling layer is
critical. To have done our own journaling layer
at the time, no matter how good, would have
inevitably introduced a much larger time pe-
riod of unforeseen stability and corruption is-
sues which the OCFS2 team wished to avoid.

3.2 Clustered Uptodate

The small amount of code (less than 550 lines,
including a large amount of comments) in £s/
ocfs2/updtodate.c attempts to mimic
the buf fer_head caching API while main-
taining those properties across the cluster.

The Clustered Uptodate code maintains a small
set of metadata caching information on ev-
ery OCFS2 memory inode structure (struct
ocfs2_inode_info). The caching informa-
tion consists of a single sector_t per block.
These are stored in a 2 item array unioned with
a red-black tree root item struct rb_root.
If the number of buffers that require tracking

grows larger than the array, then the red-black
tree is used.

A few rules were taken into account before de-
signing the Clustered Uptodate code:

1. All metadata changes are done under clus-
ter lock.

2. All metadata changes are journaled.

3. All metadata reads are done under a read-
only cluster lock.

4. Pinning buf fer_head structures is not
necessary to track their validity.

5. The act of acquiring a new cluster lock can
flush metadata on other nodes and invali-
date the inode caching items.

There are actually a very small number of ex-
ceptions to rule 2, but none of them require the
Clustered Uptodate code and can be ignored for
the sake of this discussion.

Rules 1 and 2 have the effect that the return
code of buffer_jbd () can be relied upon to
tell us that a buffer_ head can be trusted. If
it is in the journal, then we must have a clus-
ter lock on it, and therefore, its contents are
trustable.

Rule 4 follows from the logic that a newly
allocated buffer head will not have its
BH_Uptodate flag set. Thus one does not
need to pin them for tracking purposes—a
block number is sufficient.

Rule 5 instructs the Clustered Uptodate code to
ignore BH_Uptodate buffers for which we
do not have a tracking item—the kernel may
think they’re up to date with respect to disk, but
the file system knows better.

From these rules, a very simple algorithm
is implemented within ocfs2_buffer_
uptodate ().

2006 Linux Symposium, Volume One e 295

1. If buffer_uptodate () returns false,
return false.

2. If buffer_jbd () returns true, return
true.

3. If there is a tracking item for this block,
return true.

4. Return false.

For existing blocks, tracking items are in-
serted after they are succesfully read from disk.
Newly allocated blocks have an item inserted
after they have been populated.

4 Cluster Locking

4.1 A Short DLM Tutorial

OCFS2 includes a DLM which exports a pared-
down VMS style API. A full description of the
DLM internals would require another paper the
size of this one. This subsection will concen-
trate on a description of the important parts of
the API.

A lockable object in the OCFS2 DLM is re-
ferred to as a lock resource. The DLM has no
idea what is represented by that resource, nor
does it care. It only requires a unique name by
which to reference a given resource. In order to
gain access to a resource, a process > acquires
locks on it. There can be several locks on a re-
source at any given time. Each lock has a lock
level which must be compatible with the levels
of all other locks on the resource. All lock re-
sources and locks are contained within a DLM
domain.

3When we say process here, we mean a process
which could reside on any node in the cluster.

296 e OCEFS2: The Oracle Clustered File System, Version 2

Name | Access Type | Compatible
Modes
EXMODE Exclusive NLMODE
PRMODE | Read Only | PRMODE,
NLMODE
NLMODE No Lock EXMODE,
PRMODE,
NLMODE

Table 2: OCFS2 DLM lock Modes

In OCFS2, locks can have one of three levels,
also known as lock modes. Table 2 describes
each mode and its compatibility.

Most of the time, OCFS2 calls a single DLM
function, dlmlock (). Via dlmlock () one
can acquire a new lock, or upconvert, and
downconvert existing locks.

typedef void (dlm_astlockfunc_t)(void *);
typedef void (dlm_bastlockfunc_t)(void x*, int);

enum dlm_status dlmlock(
struct dlm_ctxt xdIm,
int mode,
struct dlm_lockstatus x1ksb,
int flags,
const char xname,
dlm_astlockfunc_t *ast,
void *data,
dlm_bastlockfunc_t xbast);

Upconverting a lock asks the DLM to change
its mode to a level greater than the currently
granted one. For example, to make changes to
an inode it was previously reading, the file sys-
tem would want to upconvert its PRMODE lock
to EXMODE. The currently granted level stays
valid during an upconvert.

Downconverting a lock is the opposite of
an upconvert—the caller wishes to switch to
a mode that is more compatible with other
modes. Often, this is done when the currently

granted mode on a lock is incompatible with the

mode another process wishes to acquire on its
lock.

All locking operations in the OCFS2 DLM are
asynchronous. Status notification is done via
a set of callback functions provided in the ar-
guments of a dlmlock () call. The two most
important are the AST and BAST calls.

The DLM will call an AST function after a
dlmlock () request has completed. If the sta-
tus value on the d1m_lockstatus structure
i1s DLM_NORMAL then the call has suceeded.
Otherwise there was an error and it is up to the
caller to decide what to do next.

The term BAST stands for Blocking AST. The
BAST is the DLMs method of notifying the
caller that a lock it is currently holding is block-
ing the request of another process.

As an example, if process A currently holds an
EXMODE lock on resource foo and process B
requests an PRMODE lock, process A will be
sent a BAST call. Typically this will prompt
process A to downconvert its lock held on foo
to a compatible level (in this case, PRMODE or
NLMODE), upon which an AST callback is trig-
gered for both process A (to signify completion
of the downconvert) and process B (to signify
that its lock has been acquired).

The OCFS2 DLM supports a feature called
Lock Value Blocks, or LVBs for short. An LVB
is a fixed length byte array associated with a
lock resource. The contents of the LVB are en-
tirely up to the caller. There are strict rules to
LVB access. Processes holding PRMODE and
EXMODE locks are allowed to read the LVB
value. Only processes holding EXMODE locks
are allowed to write a new value to the LVB.
Typically a read is done when acquiring or up-
converting to a new PRMODE or EXMODE lock,
while writes to the LVB are usually done when
downconverting from an EXMODE lock.

4.2 DLM Glue

DIM glue (for lack of a better name) is a
performance-critical section of code whose job
it is to manage the relationship between the file
system and the OCFS2 DLM. As such, DLM
glue is the only part of the stack which knows
about the internals of the DLM—regular file
system code never calls the DLM API directly.

DLM ¢glue defines several cluster lock types
with different behaviors via a set of function
pointers, much like the various VFS ops struc-
tures. Most lock types use the generic func-
tions. The OCFS2 metadata lock defines most
of its own operations for complexity reasons.

The most interesting callback that DLM glue
requires is the unblock operation, which has the
following definition:

int (xunblock)(struct ocfs2_lock_res *, int x);

When a blocking AST is recieved for an
OCFS2 cluster lock, it is queued for process-
ing on a per-mount worker thread called the
vote thread. For each queued OCFS2 lock,
the vote thread will call its unblock () func-
tion. If possible the unblock () function is
to downconvert the lock to a compatible level.
If a downconvert is impossible (for instance the
lock may be in use), the function will return a
non-zero value indicating the operation should
be retried.

By design, the DLM glue layer never deter-
mines lifetiming of locks. That is dictated
by the container object—in OCFS2, this is
predominantly the st ruct inode which al-
ready has a set of lifetime rules to be obeyed.

Similarly, DLM glue is only concerned with
multi-node locking. It is up to the callers to
serialize themselves locally. Typically this is
done via well-defined methods such as holding
inode—->1i_mutex.

2006 Linux Symposium, Volume One o 297

The most important feature of DLM glue is
that it implements a technique known as lock
caching. Lock caching allows the file system to
skip costly DLM communication for very large
numbers of operations. When a DLM lock is
created in OCFS2 it is never destroyed until the
container object’s lifetime makes it useless to
keep around. Instead, DLM glue maintains its
current mode and instead of creating new locks,
calling processes only take references on a sin-
gle cached lock. This means that, aside from
the initial acquisition of a lock and barring any
BAST calls from another node, DLM glue can
keep most lock / unlock operations down to a
single integer increment.

DLM glue will not block locking processes in
the case of an upconvert—say a PRMODE lock
is already held, but a process wants exclusive
access in the cluster. DLM glue will continue
to allow processes to acquire PRMODE level ref-
erences while upconverting to EXMODE. Sim-
ilarly, in the case of a downconvert, processes

requesting access at the target mode will not be
blocked.

4.3 1Inode Locks

A very good example of cluster locking in
OCFS2 is the inode cluster locks. Each OCFS2
inode has three locks. They are described in
locking order, outermost first.

1. ip_rw_lockres which serializes file
read and write operations.

2. ip_meta_lockres which protects in-
ode metadata.

3. ip_data_lockres which protects in-
ode data.

The inode metadata locking code is responsible
for keeping inode metadata consistent across

298 e OCFS2: The Oracle Clustered File System, Version 2

the cluster. When a new lock is acquired at
PRMODE or EXMODE, it is responsible for re-
freshing the st ruct inode contents. To do
this, it stuffs the most common inode fields in-
side the lock LVB. This allows us to avoid a
read from disk in some cases. The metadata
unblock () method is responsible for waking
up a checkpointing thread which forces jour-
naled data to disk. OCFS2 keeps transaction
sequence numbers on the inode to avoid check-
pointing when unecessary. Once the check-
point is complete, the lock can be downcon-
verted.

The inode data lock has a similar responsibil-
ity for data pages. Complexity is much lower
however. No extra work is done on acquiry of
a new lock. It is only at downconvert that work
is done. For a downconvert from EXMODE to
PRMODE, the data pages are flushed to disk.
Any downconvert to NLMODE truncates the
pages and destroys their mapping.

OCFS2 has a cluster wide rename lock, for
the same reason that the VFS has s_vfs_
rename_mutex—certain combinations of
rename (2) can cause deadlocks, even be-
tween multiple nodes. A comment in ocfs2_
rename () is instructive:

/* Assume a directory hierarchy thusly:

* a/b/c

* a/d
a,b,c, and d are all directories.

from cwd of "a’ on both nodes:
nodel: mv b/c d
node2: mv d b/c

And that’s why, Jjust like the VFS, we need a
file system rename lock. */

L I I R

Serializing operations such as mount (2) and
umount (2) is the super block lock. File sys-
tem membership changes occur only under an
EXMODE lock on the super block. This is used
to allow the mounting node to choose an ap-
propriate slot in a race-free manner. The super
block lock is also used during node messaging,
as described in the next subsection.

4.4 Messaging

OCFS2 has a network vote mechanism which
covers a small number of operations. The vote
system stems from an older DLM design and
is scheduled for final removal in the next major
version of OCFS2. In the meantime it is worth
reviewing.

Vote Type
OCFS2_VOTE_REQ_MOUNT
OCFS2_VOTE_REQ_UMOUNT
OCFS2_VOTE_REQ_UNLINK
OCFS2_VOTE_REQ_RENAME
OCFS2_VOTE_REQ_DELETE

Operation

Mount notification
Unmount notification
Remove a name
Remove a name
Query an inode wipe

Table 3: OCFS2 vote types

Each vote is broadcast to all mounted nodes
(except the sending node) where they are pro-
cessed. Typically vote messages about a given
object are serialized by holding an EXMODE
cluster lock on that object. That way the send-
ing node knows it is the only one sending that
exact vote. Other than errors, all votes ex-
cept one return true. Membership is kept
static during a vote by holding the super block
lock. For mount/unmount that lock is held at
EXMODE. All other votes keep a PRMODE lock.
This way most votes can happen in parallel
with respect to each other.

The mount/unmount votes instruct the other
mounted OCFS2 nodes to the mount status of
the sending node. This allows them in turn to
track whom to send their own votes to.

The rename and unlink votes instruct receiving
nodes to look up the dentry for the name being
removed, and call the d_delete () function
against it. This has the effect of removing the
name from the system. If the vote is an unlink
vote, the additional step of marking the inode as
possibly orphaned is taken. The flag OCFS2_

INODE_MAYBE_ORPHANED will trigger addi-
tional processing in ocfs2_drop_inode ().
This vote type is sent after all directory and in-
ode locks for the operation have been acquired.

The delete vote is crucial to OCFS2 being
able to support POSIX style unlink-while-open
across the cluster. Delete votes are sent from
ocfs2_delete_inode (), which is called
on the last iput () of an orphaned inode. Re-
ceiving nodes simply check an open count on
their inode. If the count is anything other than
zero, they return a busy status. This way the
sending node can determine whether an inode
is ready to be truncated and deleted from disk.

5 Recovery

5.1 Heartbeat

The OCFS2 cluster stack heartbeats on disk and
via its network connection to other nodes. This
allows the cluster to maintain an idea of which
nodes are alive at any given point in time. It is
important to note that though they work closely
together, the cluster stack is a separate entity
from the OCFS?2 file system.

Typically, OCFS2 disk heartbeat is done on ev-
ery mounted volume in a contiguous set of sec-
tors allocated to the heartbeat system file
at file system create time. OCFS2 heartbeat
actually knows nothing about the file system,
and is only given a range of disk blocks to
read and write. The system file is only used
as a convenient method of reserving the space
on a volume. Disk heartbeat is also never ini-
tiated by the file system, and always started
by the mount . ocfs2 program. Manual con-
trol of OCFS2 heartbeat is available via the
ocfs2_hb_ctl program.

2006 Linux Symposium, Volume One e 299

Each node in OCFS2 has a unique node num-
ber, which dictates which heartbeat sector it
will periodically write a timestamp to. Opti-
mizations are done so that the heartbeat thread
only reads those sectors which belong to nodes
which are defined in the cluster configuration.
Heartbeat information from all disks is accu-
mulated together to determine node liveness. A
node need only write to one disk to be consid-
ered alive in the cluster.

Network heartbeat is done via a set of keep-
alive messages that are sent to each node. In the
event of a split brain scenario, where the net-
work connection to a set of nodes is unexpect-
edly lost, a majority-based guorum algorithm
is used. In the event of a 50/50 split, the group
with the lowest node number is allowed to pro-
ceed.

In the OCFS2 cluster stack, disk heartbeat is
considered the final arbiter of node liveness.
Network connections are built up when a node
begins writing to its heartbeat sector. Likewise
network connections will be torn down when a
node stops heartbeating to all disks.

At startup time, interested subsystems regis-
ter with the heartbeat layer for node up and
node down events. Priority can be assigned to
callbacks and the file system always gets node
death notification before the DLM. This is to
ensure that the file system has the ability to
mark itself needing recovery before DLM re-
covery can proceed. Otherwise, a race exists
where DLM recovery might complete before
the file system notification takes place. This
could lead to the file system gaining locks on
resources which are in need of recovery—for
instance, metadata whose changes are still in
the dead node’s journal.

300 e OCFS2: The Oracle Clustered File System, Version 2

5.2 File System Recovery

Upon notification of an unexpected node death,
OCFS2 will mark a recovery bitmap. Any
file system locks which cover recoverable re-
sources have a check in their locking path for
any set bits in the recovery bitmap. Those paths
will then block until the bitmap is clear again.
Right now the only path requiring this check
is the metadata locking code—it must wait on
journal replay to continue.

A recovery thread is then launched which takes
a EXMODE lock on the super block. This en-
sures that only one node will attempt to recover
the dead node. Additionally, no other nodes
will be allowed to mount while the lock is held.
Once the lock is obtained, each node will check
the slot_map system file to determine which
journal the dead node was using. If the node
number is not found in the slot map, then that
means recovery of the node was completed by
another cluster node.

If the node is still in the slot map then journal
replay is done via the proper JBD calls. Once
the journal is replayed, it is marked clean and
the node is taken out of the slot map.

At this point, the most critical parts of OCFS2
recovery are complete. Copies are made of the
dead node’s truncate log and local alloc files,
and clean ones are stamped in their place. A
worker thread is queued to reclaim the disk
space represented in those files, the node is re-
moved from the recovery bitmap and the super
block lock is dropped.

The last part of recovery—replay of the copied
truncate log and local alloc files—is (appropri-
ately) called recovery completion. It is allowed
to take as long as necessary because locking op-
erations are not blocked while it runs. Recovery
completion is even allowed to block on recov-
ery of other nodes which may die after its work

is queued. These rules greatly simplify the code
in that section.

One aspect of recovery completion which has
not been covered yet is orphan recovery. The
orphan recovery process must be run against
the dead node’s orphan directory, as well as the
local orphan directory. The local orphan direc-
tory is recovered because the now dead node
might have had open file descriptors against
an inode which was locally orphaned—thus the
delete_inode () code must be run again.

Orphan recovery is a fairly straightforward pro-
cess which takes advantage of the existing in-
ode life-timing code. The orphan directory
in question is locked, and the recovery com-
pletion process calls iget () to obtain an in-
ode reference on each orphan. As references
are obtained, the orphans are arranged in a
singly linked list. The orphan directory lock is
dropped, and iput () is run against each or-
phan.

6 What’s Been Missed!

Lots, unfortunately. The DLM has mostly been
glossed over. The rest of the OCFS2 cluster
stack has hardly been mentioned. The OCFS2
tool chain has some unique properties which
would make an interesting paper. Readers in-
terested in more information on OCFS2 are
urged to explore the web page and mailing lists
found in the references section. OCFS2 devel-
opment is done in the open and when not busy,
the OCFS2 developers love to answer questions
about their project.

7 Acknowledgments

A huge thanks must go to all the authors of Ext3
from which we took much of our inspiration.

Also, without JBD OCFS2 would not be what
it is today, so our thanks go to those involved in
its development.

Of course, we must thank the Linux kernel
community for being so kind as to accept our
humble file system into their kernel. In partic-
ular, our thanks go to Christoph Hellwig and
Andrew Morton whose guidance was critical in
getting our file system code up to kernel stan-
dards.

8 References

The OCFS2 home page can be found at
http://oss.oracle.com/projects/
ocfs2/.

From there one can find mailing lists, documen-
tation, and the source code repository.

2006 Linux Symposium, Volume One e 301

302 e OCEFS2: The Oracle Clustered File System, Version 2

Proceedings of the
Linux Symposium

Volume One

July 19th—-22nd, 2006
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

