
kboot—A Boot Loader Based on Kexec

Werner Almesberger
werner@almesberger.net

Abstract

Compared to the “consoles” found on tradi-
tional Unix workstations and mini-computers,
the Linux boot process is feature-poor, and the
addition of new functionality to boot loaders of-
ten results in massive code duplication. With
the availability of kexec, this situation can be
improved.

kboot is a proof-of-concept implementation of
a Linux boot loader based on kexec. kboot uses
a boot loader like LILO or GRUB to load a reg-
ular Linux kernel as its first stage. Then, the full
capabilities of the kernel can be used to locate
and to access the kernel to be booted, perform
limited diagnostics and repair, etc.

1 Oh no, not another boot loader !

There is already no shortage of boot loaders for
Linux, so why have another one ? The moti-
vation for making kboot is simply that the boot
process of Linux is still not as good as it could
be, and that recent technological advances have
made it comparably easy to do better.

Looking at traditional Unix servers and work-
stations, one often finds very powerful boot en-
vironments, offering a broad choice of possible
sources for the kernel and other system files to
load. It is also quite common to find various

tools for hardware diagnosis and system soft-
ware repair. On Linux, many boot loaders are
much more limited than this.

Even boot loaders that provide several of these
advanced features, like GRUB, suffer from the
problem that they need to replicate functional-
ity or at least include code found elsewhere,
which creates an ever increasing maintenance
burden. Similarly, any drivers or protocols the
boot loader incorporates, will have to be main-
tained in the context of that boot loader, in par-
allel with the original source.

New boot loader functionality is not only re-
quired because administrators demand more
powerful tools, but also because technologi-
cal progress leads to more and more complex
mechanisms for accessing storage and other de-
vices, which a boot loader eventually should be
able to support.

It is easy to see that a regular Linux system hap-
pens to support a superset of all the functional-
ity described above.

With the addition of the kexec system call to
the 2.6.13 mainline Linux kernel, we now have
an instrument that allows us to build boot load-
ers with a fully featured Linux system, tailored
according to the needs of the boot process and
the resources available for it.

Kboot is a proof-of-concept implementation of
such a boot loader. It demonstrates that new
functionality can be merged from the vast code



28 • kboot—A Boot Loader Based on Kexec

base available for Linux with great ease, and
without incurring any significant maintenance
overhead. This way, it can also serve as a plat-
form for the development of new boot concepts.

The project’s home page is at http://
kboot.sourceforge.net/

The remainder of this section gives a high-level
view of the role of a boot loader in general,
and what kboot aims to accomplish. Additional
technical details about the boot process, includ-
ing tasks performed by the Linux kernel when
bringing up user space, can be found in [1].

Section 2 briefly describes Eric Biederman’s
kexec [2], which plays a key role in the op-
eration of kboot. Section 3 introduces kboot
proper, explains its structure, and discusses its
application. Section 4 gives an outlook on fu-
ture work, and we conclude with section 5.

1.1 What a boot loader does

After being loaded by the system’s firmware, a
boot loader spends a few moments making it-
self comfortable on the system. This includes
loading additional parts, moving itself to other
memory regions, and establishing access to de-
vices.

After that, it typically tries to interact with
the user. This interaction can range from
checking whether the user is trying to get the
boot loader’s attention by pressing some key,
through a command line or a simple full-screen
menu, to a lavish graphical user interface.

Whatever the interface may be, in the end its
main purpose is to allow the user to select, per-
haps along with some other options, which op-
erating system or kernel will be booted. Once
this choice is made, the boot loader proceeds to
load the corresponding data into memory, does
some additional setup, e.g., to pass parameters

to the operating system it is booting, and trans-
fers control to the entry point of the code it has
loaded.

In the case of Linux, two items deserve special
mention: the boot parameter line and the initial
RAM disk.

The boot parameter line was at its inception in-
tended primarily as a means for passing a “boot
into single user mode” flag to the kernel, but
this got a little out of hand, and it is nowadays
often used to pass dozens if not hundreds of
bytes of essential configuration data to the ker-
nel, such as the location of the root file system,
instructions for how certain drivers should ini-
tialize themselves (e.g., whether it is safe for
the IDE driver to try to use DMA or not), and
the selection and tuning of items included in a
generic kernel (e.g., disabling ACPI support).

Since a kernel would often not even boot with-
out the correct set of boot parameters, a boot
loader must store them in its configuration, and
pass them to the kernel without requiring user
action. At the same time, users should of course
be able to manually set and override such pa-
rameters.

The initial RAM disk (initrd), which at the time
of writing is gradually being replaced by the
initial RAM file system (initramfs), provides an
early user space, which is put into memory by
the boot loader, and is thus available even be-
fore the kernel is fully capable to interact with
its surroundings. This early user space is used
for extended setup operations, such as the load-
ing of driver modules.

Given that the use of initrd is an integral part of
many Linux distributions, any general-purpose
Linux boot loader must support this functional-
ity.



2006 Linux Symposium, Volume One • 29

Boot

process

Hard− and firmware

New device drivers
New protocols

Combination of services
New file systems Convenience

Compatible "look and feel"

Administration User experience

Figure 1: The boot process exists in a world full of changes and faces requirements from many
directions. All this leads to the need to continuously grow in functionality.

1.2 What a boot loader should be like

A boot loader has much in common with the
operating system it is loading: it shares the
same hardware, exists in the same administra-
tive context, and is seen by the same users.
From all these directions originate require-
ments on the boot process, as illustrated in fig-
ure 1.

The boot loader has to be able to access at least
the hardware that leads to the locations from
which data has to be loaded. This does not
only include physical resources, but also any
protocols that are used to communicate with
devices. Firmware sometimes provides a set
of functions to perform such accesses, but new
hardware or protocol extensions often require
support that goes beyond this. For example, al-
though many PCs have a Firewire port, BIOS
support for booting from storage attached via
Firewire is not common.

Above basic access mechanisms lies the do-
main of services the administrator can combine
more or less freely. This begins with file system

formats, and gets particularly interesting when
using networks. For example, there is noth-
ing inherently wrong in wanting to boot kernels
that happen to be stored in RPM files on an NFS
server, which is reached through an IPsec link.

The hardware and protocol environment of the
boot process extends beyond storage. For ex-
ample, keyboard or display devices for users
with disabilities may require special drivers.
With kboot, such devices can also be used to
interact with the boot loader.

Last but not least, whenever users have to per-
form non-trivial tasks with the boot loader, they
will prefer a context similar to what they are
used to from normal interaction with the sys-
tem. For instance, path names starting at the
root of a file system hierarchy tend to be easier
to remember than device-local names prefixed
with a disk and partition number.

In addition to all this, it is often desirable if
small repair work on an unbootable system can
be done from the boot loader, without having
to find or prepare a system recovery medium,
or similar.



30 • kboot—A Boot Loader Based on Kexec

kboot −f

Kernel memory
(before rebooting)

Kernel
code

Kernel memory
(while and after rebooting)

Kernel
code

Jump to kernel setup

Order pages

1 3

Copy file(s) through user space
into kernel memory

file

4

Run kexec reboot
code

2

Figure 2: Simplified boot sequence of kexec.

The bottom line is that a general-purpose boot
loader will always grow in functionality along
the lines of what the full operating system can
support.

1.3 The story so far

The two principal boot loaders for Linux on the
i386 platform, LILO and GRUB, illustrate this
trend nicely.

LILO was designed with the goal in mind of
being able to load kernels from any file system
the kernel may support. Other functionality has
been added over time, but growth has been lim-
ited by the author’s choice of implementing the
entire boot loader in assembler. 1

GRUB appeared several years later and was
written in C from the beginning, which helped

1LILO was written in 1992. At that time, 32-bit real
mode of the i386 processor was not generally known, and
the author therefore had to choose between programming
in the 16-bit mode in which the i386 starts, or implement-
ing a fully-featured 32-bit protected mode environment,
complete with real-mode callbacks to invoke BIOS func-
tions. After choosing the less intrusive of the two ap-
proaches, there was the problem that no suitable and rea-
sonably widely deployed free C compiler was available.
Hence the decision to write LILO in assembler.

it to absorb additional functionality more
quickly. For instance, GRUB can directly read
a large number of different file system formats,
without having to rely on external help, such as
the map file used by LILO. GRUB also offers
limited networking support.

Unfortunately, GRUB still requires that any
new functionality, be it drivers, file systems, file
formats, network protocols, or anything else, is
integrated into GRUB’s own environment. This
somewhat slows initial incorporation of new
features, and, worse yet, leads to an increas-
ing amount of code that has to be maintained in
parallel with its counterpart in regular Linux.

In an ideal boot loader, the difference between
the environment found on a regular Linux sys-
tem and that in the boot loader would be re-
duced to a point where integration of new fea-
tures, and their subsequent maintenance, is triv-
ial. Furthermore, reducing the barrier for work-
ing on the boot loader should also encourage
customization for specific environments, and
more experimental uses.

The author has proposed the use of the Linux
kernel as the main element of a boot loader
in [1]. Since then, several years have passed,
some of the technology has first changed, then



2006 Linux Symposium, Volume One • 31

matured, and with the integration of the key el-
ement required for all this into the mainstream
kernel, work on this new kind of boot loader
could start in earnest.

2 Booting kernels with kexec

One prediction in [1] came true almost immedi-
ately, namely that major changes to the bootimg
mechanism described there were quite prob-
able: when Eric Biederman released kexec,
it swiftly replaced bootimg, being technologi-
cally superior and also better maintained.

Unfortunately, adoption of kexec into the main-
stream kernel took much longer than anyone
expected, in part also because it underwent de-
sign changes to better support the very elegant
kdump crash dump mechanism [3], and it was
only with the 2.6.13 kernel that it was finally
accepted.

2.1 Operation

This is a brief overview of the fundamental as-
pects of how kexec operates. More details can
be found in [4], [5], and also [3].

As shown in figure 2, the user space tool
kexec first loads the code of the new kernel
plus any additional data, such as an initial RAM
disk, into user space memory, and then invokes
the kexec_load system call to copy it into
kernel memory (1). During the loading, the
user space tool can also add or omit data (e.g.,
setup code), and perform format conversions
(e.g., when reading from an ELF file).

After that, a reboot system call is made to
boot the new kernel (2). The reboot code tries
to shut down all devices, such that they are in a

defined and inactive state, from which they can
be instantly reactivated after the reboot.

Since data pages containing the new kernel
have been loaded to arbitrary physical locations
and could not occupy the same space as the
code of the old kernel before the reboot any-
way, they have to be moved to their final desti-
nation (3).

Finally, the reboot code jumps to the entry point
of the setup code of the new kernel. That kernel
then goes through its initialization, brings up
drivers, etc.

2.2 Debugging

The weak spot of kexec are the drivers: some
drivers may simply ignore the request to shut
down, others may be overzealous, and deac-
tivate the device in question completely, and
some may leave the device in a state from
which it cannot be brought back to life, be
this either because the state itself is incorrect
or irrecoverable, or because the driver simply
does not know how to resume from this specific
state.

Failure may also be only partial, e.g., VGA of-
ten ends up in a state where the text does not
scroll properly until the card is reset by loading
a font.

Many of these problems have not become vis-
ible yet, because those drivers have not been
subjected to this specific shutdown and reboot
sequence so far.

The developers of kexec and kdump have made
a great effort to make kexec work with a large
set of hardware, but given the sheer number of
drivers in the kernel and also in parallel trees,
there are doubtlessly many more problems still
awaiting discovery.



32 • kboot—A Boot Loader Based on Kexec

udev

dropbear

kexec

etc.

kboot utils

kboot shell

uClibc/glibc

Lean kernel

(sh, cat, mount, ...)
BusyBox

Figure 3: The software stack of the kboot envi-
ronment.

Since kboot is the first application of kexec
that should attract interest from more than a
relatively small group of developers, many of
the expected driver conflicts will surface in the
form of boot failures occurring under kboot, af-
ter which they can be corrected.

3 Putting it all together

Kboot bundles the components needed for a
boot loader, and provides the “glue” to hold
them together. For this, it needs very little
code: as of version 10, only roughly 3’500
lines, about half of this shell scripts. Already
LILO exceeds this by one order of magnitude,
and GRUB further doubles LILO’s figure.2

Of course, during its build process, kboot pulls
in various large packages, among them the
entire GCC tool chain, a C library, Busy-
Box, assorted other utilities, and the Linux
kernel itself. In this regard, kboot resembles
more a distribution like Gentoo, OpenEmbed-
ded, or Rock Linux, which consist mainly of

2These numbers were obtained by quite unscientifi-
cally running wc-l on a somewhat arbitrary set of the
files in the respective source trees.

Firmware

kboot

Boot loader

kexec

legacy OS
Reboot to

Main system
("booted environment")

initramfs
Kernel

Figure 4: The boot sequence when using kboot.

meta-information about packages maintained
by other parties.

3.1 The boot environment

Figure 3 shows the software packages that con-
stitute the kboot environment. Its basis is a
Linux kernel. This kernel only needs to support
the devices, file systems, and protocols that will
be used by kboot, and can therefore, if space
is an issue, be made considerably smaller than
a fully-featured production kernel for the same
machine.

In order to save space, kboot can use uClibc [6]
instead of the much larger glibc. Unfortunately,
properly supporting a library different from the
one on the host system requires building a dedi-
cated version of GCC. Since uClibc is sensitive
to the compiler version, kboot also builds a lo-
cal copy of GCC for the host. To be on the safe
side, it also builds binutils.

After this tour de force, kboot builds the appli-
cations for its user space, which include Busy-
Box [7], udev [8], the kexec tools [2], and



2006 Linux Symposium, Volume One • 33

dropbear [9]. BusyBox provides a great many
common programs, ranging from a Bourne
shell, through system tools like “mount,” to a
complete set of networking utilities, including
“wget” and a DHCP client. Udev is responsible
for the creation of device files in /dev. It is
a user space replacement for the kernel-based
devfs. The kexec tools provide the user space
interface to kexec.

Last but not least, dropbear, an SSH server and
client package, is included to demonstrate the
flexibility afforded by this design. This also of-
fers a simple remote access to the boot prompt,
without the need to set up a serial console for
just this purpose.

3.2 The boot sequence

The boot sequence, shown in figure 4, is as
follows: first, the firmware loads and starts
the first-stage boot loader. This would typi-
cally be a program like GRUB or LILO, but
it could also be something more specialized,
e.g., a loader for on-board Flash memory. This
boot loader then immediately proceeds to load
kboot’s Linux kernel and kboot’s initramfs.

The kernel goes through the usual initialization
and then starts the kboot shell, which updates
its configuration files (see section 3.5), may
bring up networking, and then interacts with the
user.

If the user chooses, either actively or through
a timeout, to start a Linux system, kboot then
uses kexec to load the kernel and maybe also
an initial RAM disk.

Although not yet implemented at the time of
writing, kboot will also be able to boot legacy
operating systems. The plan is to initially avoid
the quagmire of restoring the firmware envi-
ronment to the point that the system can be

booted from it, but to hand the boot request
back to the first stage boot loader (e.g., with
lilo-R or grub-set-default), and to
reboot through the firmware.

3.3 The boot shell

At the time of writing, the boot shell is fairly
simple. After initializing the boot environment,
it offers a command line with editing, com-
mand and file name completion, and a history
function for the current session.

The following types of items can be entered:

• Names of variables containing a com-
mand. These variables are usually defined
in the kboot configuration file, but can also
be set during a kboot session.3 The vari-
able is expanded, and the shell then pro-
cesses the command. This is a slight gen-
eralization of the label in LILO, or the
title in GRUB.

• The path to a file containing a bootable
kernel. Path names are generalized in
kboot, and also allow direct access to de-
vices and some network resources. They
are described in more detail in the next
section. When such a path name is en-
tered, kboot tries to boot the file through
kexec.

• The name of a block device containing the
boot sector of a legacy operating system,
or the path to the corresponding device
file.

• An internal command of the kboot shell.
It currently supports cd and pwd, with the
usual semantics.

3In the latter case, they are lost when the session ends.



34 • kboot—A Boot Loader Based on Kexec

Syntax Example Description
variable my_kernel Command stored in a variable
/path /boot/bzImage-2.6.13.2 Absolute path in booted environment
//path cat //etc/fstab Absolute path in kboot environment
path cd linux-2.6.14 Relative path in current environment
device hda7 Device containing a boot sector
/dev/device /dev/hda7 Device file of device with boot sector
device:/path hda1:/bzImage File or directory on a device
device:path hda1:bzImage (implicit /dev/)
/dev/device:/path /dev/sda6:/foo/bar File or directory on a device
/dev/device:path /dev/sda6:foo/bar (explicit /dev/)
host:/path server:/home/k/bzImage-a File or directory on an NFS server
http://host/path http://server/foo File on an HTTP server
ftp://host/path ftp://server/foo/bar File on an FTP server

Table 1: Types of path names recognized by kboot.

• A shell command. The kboot shell per-
forms path name substitution, and then
runs the command. If the command uses
an executable from the booted environ-
ment, it is run with chroot, since the shared
libraries available in the kboot environ-
ment may be incompatible with the expec-
tations of the executable.

With the exception of a few helper programs,
like the command line editor, the kboot shell is
currently implemented as a Bourne shell script.

3.4 Generalized path names

Kboot automatically mounts file systems of
the booted environment, on explicitly specified
block devices, and—if networking is enabled—
also from NFS servers. Furthermore, it can
copy and then boot files from HTTP and FTP
servers.

For all this, it uses a generalized path name
syntax that reflects the most common forms of
specifying the respective resources. E.g., for

NFS, the host:path syntax is used, for HTTP, it
is a URL, and paths on the booted environment
look just like normal Unix path names. Table 1
shows the various forms of path names.

Absolute paths in the kboot environment are an
exception: they begin with two slashes instead
of one.

We currently assume that there is one principal
booted system environment, which defines the
“normal” file system hierarchy on the machine
in question. Support for systems with multiple
booted environments is planned for future ver-
sions of kboot.

3.5 Configuration files

When kboot starts, it only has access to the con-
figuration files stored in its initramfs. These
were gathered at build time, either from the user
(who placed them in kboot’s config/ direc-
tory), or from the current configuration of the
build host.

This set of files includes kboot’s own config-
uration /etc/kboot.conf, /etc/fstab,



2006 Linux Symposium, Volume One • 35

/etc/fstab
/etc/hosts

kboot.conf
Build environment

kboot

kboot.conf
fstab
hosts

Mount /etcCopy latest
versions

Booted
environment

Figure 5: Some of the configuration files used
by kboot.

and /etc/hosts. The kboot build process
also adds a file /etc/kboot-features
containing settings needed for the initialization
of the kboot shell.

Kboot can now either use these files, or it can,
at the user’s discretion, try to mount the file
system containing the /etc directory of the
booted environment, and obtain more recent
copies of them.

The decision of whether kboot will use its own
copies, or attempt an update first, is made at
build time. It can be superseded at boot time by
passing the kernel parameter kboot=local.

3.6 When not to use kboot

While kboot it designed to be a flexible and ex-
tensible solution, there are areas where this type
of boot loader architecture does not fit.

If only very little persistent storage is available,
which is a common situation in small embed-
ded systems, or if large enough storage devices

would be available, but cannot be made an inte-
gral part of the boot process, e.g., removable or
unreliable media, only a boot loader optimized
for tiny size may be suitable.

Similarly, if boot time is critical, the time spent
loading and initializing an extra kernel may be
too much. The boot time of regular desktop or
server type machines already greatly exceeds
the minimum boot time of a kernel, which em-
bedded system developers aim to bring well be-
low one second [10], so loading another kernel
does not add too much overhead, particularly if
the streamlining proposed below is applied.

Finally, the large hidden code base of kboot
is unsuitable if high demands on system reli-
ability, at least until the point when the kernel
is loaded, require that the number of software
components be kept to a minimum.

3.7 Extending kboot

The most important aspect of kboot is not the
set of features it already offers, but that it makes
it easy to add new ones.

New device drivers, low-level protocols (e.g.,
USB), file systems, network protocols, etc., are
usually directly supported by the kernel, and
need no or only little additional support from
user space. So kboot can be brought up to date
with the state of the art by a simple kernel up-
grade.

Most of the basic system software runs out of
the box on virtually all platforms supported by
Linux, and particularly distributions for em-
bedded systems provide patches that help with
the occasional compatibility glitches. They
also maintain compact alternatives to packages
where size may be an issue.

Similarly, given that kboot basically provides a
regular Linux user space, the addition of new



36 • kboot—A Boot Loader Based on Kexec

ornaments and improvements to the user inter-
face, which is an area with a continuous de-
mand for development, should be easy.

When porting kboot to a new platform,
the foremost—and also technically most
demanding—issue is getting kexec to run.
Once this is accomplished, interaction with the
boot loader has to be adapted, if such inter-
action is needed. Finally, any administrative
tools that are specific to this platform need to
be added to the kboot environment.

4 Future work

At the time of writing, kboot is still a very
young program, and has only been tested by a
small number of people. As more user feed-
back arrives, new lines of development will
open. This section gives an overview of cur-
rently planned activities and improvements.

4.1 Reducing kernel delays

The Linux kernel spends a fair amount of time
looking for devices. In particular, IDE or SCSI
bus scans can try the patience of the user, also
because they repeat similar scans already done
by the firmware. The use of kboot now adds
another round of the same.

A straightforward mechanism that should help
to alleviate such delays would be to predict
their outcome, and to stop the scan as soon as
the list of discovered devices matches the pre-
diction. Such a prediction could be made by
kboot, based on information obtained from the
kernel it is running under, and be passed as a
boot parameter to be interpreted by the kernel
being booted.

Once this is in place, one could also envision
configuring such a prediction at the first stage

boot loader, and passing it directly to the first
kernel. This way, slow device scans that are
known to always yield the same result could be
completely avoided.

4.2 From shell to C

At the time of writing, the boot shell is a
Bourne shell script. While this makes it easy
to integrate other executables into the kboot
shell, execution speed may become an issue,
and also other language properties, such as the
difficulty of separating name spaces, and how
easily subtle quoting bugs may escape discov-
ery, are turning into serious problems.

Rewriting the kboot shell in C should yield
a program that is still compact, but easier to
maintain.

4.3 Using a real distribution

The extensibility of kboot can be further in-
creased by replacing its build process, which
is very similar to that of buildroot [11], with
the use of a modular distribution with a large
set of maintained packages. In particular Open-
Embedded [12] and Rock Linux [13] look very
promising.

The reasons for not reusing an existing build
process already from the beginning were
mainly that kboot needs tight control over the
configuration process (to reuse kernel configu-
ration, and to propagate information from there
to other components) and package versions (in
order to know what users will actually be build-
ing), the sometimes large set of prerequisites,
and also problems encountered during trials.

4.4 Modular configuration

Adding new functionality to the kboot environ-
ment usually requires an extension of the build



2006 Linux Symposium, Volume One • 37

process and changes to the kboot shell. For
common tasks, such as the addition of a new
type of path names, it would be desirable to be
able to just drop a small description file into the
build system, which would then interface with
the rest of kboot over a well-defined interface.

Regarding modules: at the time of writing,
kboot does not support loadable kernel mod-
ules.

5 Conclusions

Kboot shows that a versatile boot loader can be
built with relative little effort, if using a Linux
kernel supporting kexec and a set of programs
designed with the space constraints of embed-
ded systems in mind.

By making it considerably easier to synchro-
nize the boot process with regular Linux devel-
opment, this kind of boot loader architecture
should facilitate more timely support for new
functionality, and encourage developers to ex-
plore new ideas whose implementation would
have been considered too tedious or too arcane
in the past.

References

[1] Almesberger, Werner. Booting Linux:
The History and the Future, Proceedings
of the Ottawa Linux Symposium 2000,
July 2000.
http://www.almesberger.net/
cv/papers/ols2k-9.ps

[2] Biederman, Eric W. Kexec tools and
patches. http://www.xmission.
com/~ebiederm/files/kexec/

[3] Goyal, Vivek; Biederman, Eric W.;
Nellitheertha, Hariprasad. Kdump, A
Kexec-based Kernel Crash Dumping
Mechanism, Proceedings of the Ottawa
Linux Symposium 2005, vol. 1, pp.
169–180, July 2005. http://www.
linuxsymposium.org/2005/
linuxsymposium_procv1.pdf

[4] Pfiffer, Andy. Reducing System Reboot
Time with kexec, April 2003. http://
www.osdl.org/archive/andyp/
kexec/whitepaper/kexec.pdf

[5] Nellitheertha, Hariprasad. Reboot Linux
Faster using kexec, May 2004.
http://www-128.ibm.com/
developerworks/linux/
library/l-kexec.html

[6] Andersen, Erik. uClibc.
http://www.uclibc.org/

[7] Andersen, Erik. BUSYBOX.
http://busybox.net/

[8] Kroah-Hartman, Greg; et al. udev.
http://www.kernel.org/pub/
linux/utils/kernel/hotplug/
udev.html

[9] Johnston, Matt. Dropbear SSH server
and client. http://matt.ucc.asn.
au/dropbear/dropbear.html

[10] CE Linux Forum. BootupTimeResources,
CE Linux Public Wiki.
http://tree.celinuxforum.
org/pubwiki/moin.cgi/
BootupTimeResources

[11] Andersen, Erik. BUILDROOT. http:
//buildroot.uclibc.org/

[12] OpenEmbedded.
http://oe.handhelds.org/

[13] Rock Linux.
http://www.rocklinux.org/



38 • kboot—A Boot Loader Based on Kexec



Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


