
System Firmware Updates Utilizing Sofware
Repositories

OR: Two proprietary vendor firmware update packages walk into a dark alley,
six RPMS in a yum repository walk out. . .

Matt Domsch
Dell

Matt_Domsch@dell.com

Michael Brown
Dell

Michael_E_Brown@dell.com

Abstract

Traditionally, hardware vendors don’t make
it easy to update the firmware (motherboard
BIOSes, RAID controller firmware, systems
management firmware, etc.) that’s flashed into
their systems. Most provide DOS-based tools
to accomplish this, requiring a reboot into a
DOS environment. In addition, some vendors
release OS-specific, proprietary tools, in pro-
prietary formats, to accomplish this. Examples
include Dell Update Packages for BIOS and
firmware, HP Online System Firmware Update
Component for Linux, and IBM ServRAID
BIOS and Firmware updates for Linux. These
tools only work on select operating systems, are
large because they carry all necessary prerequi-
site components in each package, and cannot
easily be integrated into existing Linux change
management frameworks such as YUM repos-
itories, Debian repositories, Red Hat Network
service, or Novell/SuSE YaST Online Update
repositories.

We propose a new architecture that utilizes na-
tive Linux packaging formats (.rpm, .deb) and
native Linux change management frameworks
(yum, apt, etc.) for delivering and installing
system firmware. This architecture is OS dis-

tribution, hardware vendor, device, and change
management system agnostic.

The architecture is easy as PIE: splitting Pay-
load, Inventory, and Executable components
into separate packages, using package format
Requires/Provides language to handle depen-
dencies at a package installation level, and us-
ing matching Requires/Provides language to
handle runtime dependency resolution and in-
stallation ordering.

The framework then provides unifying appli-
cations such as inventory_firmware and
apply_updates that handle runtime order-
ing of inventory, execution, and conflict reso-
lution/notification for all of the plug-ins. These
are the commands a system administrator runs.
Once all of the separate payload, inventory,
and execution packages are in package man-
ager format, and are put into package manager
repositories, then standard tools can retreive,
install, and execute them:

yum install $(inventory_firmware -b)
apply_updates

We present a proof-of-concept source code im-
plementing the base of this system; web site

236 • System Firmware Updates Utilizing Sofware Repositories

and repository containing Dell desktop, note-
book, workstation, and server BIOS images;
open source tools for flashing Dell BIOSes; and
open source tools to build such a repository
yourself.

1 Overview

The purpose of this paper is to describe a
proposal and sample implementation to per-
form generic, vendor-neutral, firmware updates
using a system that integrates cleanly into
a normal Linux environment. Firmware in-
cludes things such as system BIOS; addon-card
firmware, e.g. RAID cards; system Baseboard
Management (BMC), hard drives, etc. The first
concept of the proposal is the definition of a ba-
sic update framework and a plugin API to in-
ventory and update the system. For this, we
define some basic utilities upon which to base
the update system. We also define a plug-
in architecture and API so that different ven-
dor tools can cleanly integrate into the system.
The second critical piece of the update sys-
tem is cleanly separating system inventory, ex-
ecution of updates, and payload, i.e. individ-
ual firmware images. After defining the basic
utilities to glue these functions together, we de-
fine how a package management system should
package each function. Last, we define the in-
teraction between the package manager and the
repository manager to create a defined inter-
face for searching a repository for applicable
updates. This paper will cover each of these
points. The proposal describes an implementa-
tion, called firmware-tools [1].

2 Infrastructure

This section will detail the basic compo-
nents used by the firmware update system,

and firmware-tools. The base infrastruc-
ture for this system consists of two com-
ponents: inventory and execution. These
are named inventory_firmware and
apply_updates, respectively. These are
currently command-line utilities, but it is an-
ticipated that, after the major architectural is-
sues are worked out and this has been more
widely peer-reviewed, there will be GUI wrap-
pers written.

The basic assumption is that, before you can
update firmware on a device, you need several
pieces of information.

• What is the existing firmware version?

• What are the available versions of
firmware that are on-disk?

• How do you do a version comparison?

• How do I get the correct packages installed
for the hardware I have? In other words,
solve the bootstrap issue.

It is important to note that all of these ques-
tions are independent of exactly how the files
and utilities get installed on the system. We
have deliberately split out the behavior of the
installed utilities from the specification of how
these utilities are installed. This allows us flex-
ibility in packaging the tools using the “best”
method for the system. Packaging will be dis-
cussed in a section below. The specification of
packaging and how it interacts with the repos-
itory layer is an important aspect of how the
initial set of utilities get bootstrapped onto the
system, as well as how payload upgrades are
handled over time.

2.1 Existing Firmware Version

The answer to the question, “What is the ex-
isting firmware version?” is provided by the

2006 Linux Symposium, Volume One • 237

inventory_firmware tool. The basic
inventory_firmware tool has no capabil-
ity to inventory anything; all inventory capabil-
ity is provided by plugins. Plugins consist of a
python module with a specific entry point, plus
a configuration fragment to tell inventory_
firmware about the plugin. Each plugin pro-
vides inventory capability for one device type.
The plugin API is covered in the API section
of this paper, below. It should be noted that, at
this point, the plugin API is still open for sug-
gestions and updates.

As an example, there is a dell-lsiflash
package that provides a plugin to inven-
tory firmware on LSI RAID adapters. The
dell-lsiflash plugin package drops a
configuration file fragment into the plugin
directory /etc/firmware/firmware.d/ in
order to activate the plugin. This configuration
file fragment looks like this:

[delllsi]
plugin that provides
inventory for LSI RAID cards.
inventory_plugin=delllsi

This causes the inventory_plugin to load
a python module named delllsi.py and use
the entry points defined there to perform inven-
tory on LSI RAID cards. The delllsi.py
module is free to do the inventory any way it
chooses. For example, there are vendor utili-
ties that can sometimes be re-purposed to pro-
vide quick and easy inventory. In this specific
case, we have written a small python extension
module in C which calls a specific ioctl()
in the LSI megaraid drivers to perform the in-
ventory and works across all LSI hardware sup-
ported by the megaraid driver family. Note that
while the framework is open source, the per-
device inventory applications may choose their
own licenses (of course, open source apps are
strongly preferred).

2.2 Available Firmware Images

The next critical part of infrastructure lies in
enumerating the payload files that are available
on-disk. The main firmware-tools configura-
tion file defines the top-level directory where
firmware payloads are stored. The default lo-
cation for firmware images is /usr/share/

firmware/. This can be changed such that,
for example, multiple systems network mount a
central repository of firmware images. In gen-
eral each type or class of firmware update will
create a subdirectory under the main top-level
directory, and each individual firmware pay-
load will have another subdirectory under that.

Each individual firmware payload consists of
two files: a binary data file of the firmware and
a package.ini metatdata file used by the
firmware-tools utilities. It specifies the mod-
ules to be used to apply the update and the ver-
sion of the update, among other things.

2.3 Version Comparison

Another interesting problem lies in doing ver-
sion comparison between different version
strings to try to figure out which is newer,
due to the multitude of version string formats
used by different firmware types. For exam-
ple, some firmware might have version strings
such as A01, A02, etc., while other firmware
has version strings such as 2.7.0-1234, 2.
8.1-1532, etc. Each different system may
have different precedence rules. For exam-
ple, current Dell BIOS releases have version
strings in sequence like A01, A02, etc. But
non-release, beta BIOS have version strings
like X01, X02, etc., and developer test BIOS
have version strings like P01, P02, etc. This
poses a problem because a naive string com-
parison would always rank beta “X-rev” BIOS
as higher version than production BIOS, which
is undesirable.

238 • System Firmware Updates Utilizing Sofware Repositories

The solution to this problem is to allow plugins
to define version comparison functions. These
functions take two strings as input and out-
put which one is newer. Each package.ini
configuration file contains the payload version,
plus the name of the plugin to use for version
comparison.

2.4 Initial Package Installation—
Bootstrap

The last interesting problem arises when you
consider how to decide which packages to
download from the package repository and in-
stall on the local machine. This is a critical
problem to solve in order to drive usability of
this solution. If the user has to know details
of the machine to manually decide which pack-
ages to download, then the system will not be
sucessful. Next to consider is that a centralized
solution does not fit in well with the distributed
nature of Linux, Linux development, and the
many vendors we hope to support with this so-
lution. We aim to provide a distributed solution
where the packages themselves carry the nec-
essary metadata such that a repository manager
metadata query can provide an accurate list of
which package is needed.

Normal package metadata relates to the soft-
ware in the package, including files, libraries,
virtual package names, etc. The firmware-tools
concept extends this by defining “applicability
metadata” and adding it to the payload pack-
ages. For example, we add
Provides: pci_firmware(...)
RPM tags to tell that the given RPM file is ap-
plicable to certain PCI cards. Details on pack-
aging are in the next section, including speci-
fications on package Provides that must be in
each package.

We then provide a special “bootstrap inven-
tory” mode for the inventory tool. In this mode,

inventory_firmware outputs a standard-
ized set of package Provides names, based
upon the current system hardware configura-
tion. By default, this list only includes pci_

firmware(...). Additional vendor-specific
addon packs can add other, vendor-specific
package names. For example, the Dell ad-
don pack, firmware-addon-dell, adds system_
bios(...) and bmc_firmware(...) stan-
dard packages to the list. We hope for wide
vendor adoption in this area, where different
vendors can provide addon packs for their stan-
dard systems. In this manner, the user need not
know anything about their hardware, other than
the manufacturer. They simply ask their reposi-
tory manager to install the addon pack for their
system. They then run bootstrap inventory to
get a list of all other required packages. This
list is fed to the OS repository manager, for
example, yum, up2date, apt, etc. The reposi-
tory manager will then search the repository for
packages with matching Provides names. This
package will normally be the firmware payload
package. Through the use of Requires, the pay-
load packages will then pull the execution and
inventory packages into the transaction.

3 plugin-api

The current firmware-tools provides only
infrastructure. All actual work is done by
writing plugins to do either inventory, boot-
strap, or execution tasks. We expect that as
new members join the firmware-tools project
this API will evolve. The current API is very
straightforward, consisting of a configuration
file, two mandatory function calls, and one
optional function call. It is implemented in
python, but we anticipate that in the future we
may add a C API, or something like a WBEM
API. The strength of the current implementa-
tion is its simplicity.

2006 Linux Symposium, Volume One • 239

3.1 Configuration

Plugins are expected to write a configu-
ration file fragment into /etc/firmware/

firmware.d/. This fragment should be
named modulename.conf. It is an INI-
format configuration file that is read with
the python ConfigParser module. Each con-
figuration fragment should have one section
named the same as the plugin, for exam-
ple, [delllsi]. At the moment, there
are only two configuration directives that can
be placed in this section. The first is,
bootstrap_inventory_plugin= and the
other is inventory_plugin=.

3.2 Bootstrap Inventory

When in bootstrap mode, inventory_

firmware searches the configuration for
bootstrap_inventory_plugin= di-
rectives. It then dynamically loads the
specified python module. It then calls the
BootstrapGenerator() function in that
module. This function takes no arguments and
is expected to be a python “generator” function
[2]. This function yields, one-by-one, instances
of the package.InstalledPackage class.

Figure 1 illustrates the Dell bootstrap generator
for the firmware-addon-dell package.

This module is responsible for generating a list
of all possible packages that could be applica-
ble to Dell systems. As you can see, it outputs
two standard packages, system_bios(...)
and bmc_firmware(...). It is also responsi-
ble for outputting a list of pci_firmware(..
.) packages with the system name appended.
In the future, as more packages are added to
the system, we anticipate that the bootstrap will
also output package names for things such as
external SCSI/SAS enclosures, system back-
planes, etc.

3.3 System Inventory

When in system inventory mode, inventory_
firmware searches the configuration for
inventory_plugin= directives. It then dy-
namically loads the specified python module.
It then calls the InventoryGenerator()

function in that module. This function
takes no arguments and is expected to be a
python “generator” function. This function
yields, one-by-one, instances of the package.
InstalledPackage class. The difference
here between this and bootstrap mode is
that, in system inventory mode, the inven-
tory function will populate version and
compareStrategy fields of the package.

InstalledPackage class.

Figure 2 illustrates the Dell inventory generator
for the firmware-addon-dell package.

The inventory generator in this instance outputs
only the BIOS inventory, with more detailed
version information. It is also responsible for
setting up the correct comparison function to
use for version comparison purposes.

3.4 On-Disk Payload Repository

The on-disk payload repository is the toplevel
directory where firmware payloads are stored.
There is currently not a separate tools to
generate an inventory of the repository, but,
there is python module code in repository.

py which will provide a list of available
packages in the on-disk repository. The
repository.Repository class handles the
on-disk repository. The constructor should
be given the top-level directory. Af-
ter construction, the iterPackages() or
iterLatestPackages() generator function
methods can be called to get a list of pack-
ages in the repository. These generator func-
tions output either all repository packages,

240 • System Firmware Updates Utilizing Sofware Repositories

standard entry point -- Bootstrap
def BootstrapGenerator():

standard function call to get Dell System ID
sysId = biosHdr.getSystemId()

output packages for Dell BIOS and BMC
for i in ["system_bios(ven_0x1028_dev_0x%04x)", "bmc_firmware(ven_0x1028_dev_0x%04x)"]:

p = package.InstalledPackage(
name = (i % sysId).lower()
)

yield p

output all normal PCI bootstrap packages with system-specific name appended.
module = __import__("bootstrap_pci", globals(), locals(), [])
for pkg in module.BootstrapGenerator():

pkg.name = "%s/%s" % (pkg.name, "system(ven_0x1028_dev_0x%04x)" % sysId)
yield pkg

Figure 1: Dell bootstrap generator code

standard entry point -- Inventory
def InventoryGenerator():

sysId = biosHdr.getSystemId()
biosVer = biosHdr.getSystemBiosVer()
p = package.InstalledPackage(

name = ("system_bios(ven_0x1028_dev_0x%04x)" % sysId).lower(),
version = biosVer,
compareStrategy = biosHdr.compareVersions,
)

yield p

Figure 2: Dell inventory generator code

2006 Linux Symposium, Volume One • 241

or only latest packages, respectively. They
read the package.ini file for each pack-
age and output an instance of package.

RepostitoryPackage. The package.ini

specifies the wrapper to use for each reposi-
tory package object. The wrapper will over-
ride the compareVersion() and install()
methods as appropriate.

3.5 Execution

Execution is handled by calling the
install() on a package object returned from
the repository inventory. The install()

method is set up by a type-specific wrapper, as
specified in the package.ini file. Figure 3
shows a typical wrapper class.

The wrapper constructor is passed a package
object. The wrapper will then set up meth-
ods in the package object for install and ver-
sion compare. Typical installation function
is a simple call to a vendor command line
tool. In this example, it uses the open-source
dell_rbu kernel driver and the open-source
libsmbios [3] dellBiosUpdate application
to perform the update.

4 Packaging

The goal of packaging is to make it as easy
as possible to integrate firmware update ap-
plications and payloads into existing OS de-
ployments. This means following a standards-
based packaging format. For Linux, this is the
Linux Standard Base-specified Red Hat Pack-
age Manager (RPM) format, though we don’t
preclude native Debian or Gentoo package for-
mats. The concepts are equally applicable;
implementation is left as an exercise for the
reader.

Base infrastructure components are in the
firmware-tools package, detailed previ-
ously. Individual updates for specific device
classes are split into two (or more) packages: an
Inventory and Execution package, and a Pay-
load package. The goal is to be able to provide
newer payloads (the data being written into the
flash memory parts) separate from providing
newer inventory and execution components. In
an ideal world, once you get the relatively sim-
ple inventory and execution components right,
they would rarely have to change. However,
one would expect the payloads to change regu-
larly to add features and fix bugs in the product
itself.

4.1 RPM Dependencies

Payload packages have a one-way (optionally
versioned) RPM dependency on the related In-
ventory and Execution package. This allows
tools to request the payload package, and the
related Inventory and Execution package is
downloaded as well. Should there be a com-
pelling reason to do so, the Inventory and Ex-
ecution components may be packaged sepa-
rately, though most often they’re done by the
same tool.

Payload packages further Provide various tags,
again to simplify automated download tools.

Lets look at the details, using BIOS package
for Dell PowerEdge 6850 as an example.
The actual BIOS firmware image is pack-
aged in an RPM called system_bios_

PE6850-a02-12.3.noarch.rpm. This
package has RPM version-release a02-12.3,
and is a noarch rpm because it does not con-
tain any CPU architecture-specific executable
content.

This package Provides:

242 • System Firmware Updates Utilizing Sofware Repositories

class BiosPackageWrapper(object):
def __init__(self, package):

package.installFunction = self.installFunction
package.compareStrategy = biosHdr.compareVersions
package.type = self

def installFunction(self, package):
ret = os.system("/sbin/modprobe dell_rbu")
if ret:

out = ("Could not load Dell RBU kernel driver (dell_rbu).\n"
" This kernel driver is included in Linux kernel 2.6.14 and later.\n"
" For earlier releases, you can download the dell_rbu dkms module.\n\n"
" Cannot continue, exiting...\n")

return (0, out)
status, output = commands.getstatusoutput("""dellBiosUpdate -u -f %s""" %

os.path.join(package.path, "bios.hdr"))
if status:

raise package.InstallError(output)
return 1

Figure 3: Example wrapper class

system_bios(ven_0x1028
_dev_0x0170) = a02-12.3
system_bios_PE6850 = a02-12.3

Let’s look at these one at a time.
system_bios(ven_0x1028
_dev_0x0170) = a02-12.3

This can be parsed as denoting a system BIOS,
from a vendor with PCI SIG Vendor ID num-
ber of 0x1028 (Dell). For each vendor, there
will be a vendor-specific system type number-
ing scheme which we care nothing about ex-
cept to consume. In this example, 0x0170 is
the software ID number of the PowerEdge 6850
server type. The BIOS version, again using a
vendor-specific versioning scheme, is A02. All
of the data in these fields can be determined
programatically, so is suitable for automated
tools.

Most systems and devices will have prettier,
marketing names. Whenever possible, we want
to use those, rather than the ID numbers, when
interacting with the sysadmin. So this pack-
age also provides the same version informa-
tion, only now using the marketing short name
PE6850.
system_bios_PE6850 = a02-12.3

Presumably the marketing short names, though
per-vendor, will not conflict in this flat names-
pace. The BIOS version, A02, is seen here
again, as well as a release field (12.3) which
can be used to indicate the version of the vari-
ous tools used to produce this payload package.
This version-release value matches that of the
RPM package.

The firmware-addon-dell package provides an
ID-to-shortname mapping config appropriate
for Dell-branded systems. It is anticipated that
other vendors will provide equivalent function-
ality for their packages. Users generating their
own content for systems not in the list can ac-
cept the auto-generated name or add their sys-
tem ID to the mapping config.

Epochs are used to account for version scheme
changes, such as Dell’s conversion from the
Axx format to the x.y.z format.

To account for various types of firmware that
may be present on the system, we have come
up with a list for RPM Provides tags seen in
Figure 4. We anticipate adding new entries to
this list as firmware updates for new types of
devices are added to the system.

The combination pci_firmware/system entries

2006 Linux Symposium, Volume One • 243

system_bios(ven_VEN_dev_ID)
pci_firmware(ven_VEN_dev_DEV)
pci_firmware(ven_VEN_dev_DEV_subven_SUBVEN_subdev_SUBDEV)
pci_firmware(ven_VEN_dev_DEV_subven_SUBVEN_subdev_SUBDEV)/system(ven_VEN_dev_ID)
bmc_firmware(ven_VEN_dev_ID)

system_bios_SHORTNAME
pci_firmware_SHORTNAME
pci_firmware_SHORTNAME/system_SHORTNAME
bmc_firmware_SHORTNAME

Figure 4: Package Manager Provides lines in payload packages

are to address strange cases where a given
payload is applicable to a given device in a
given system only, where the PCI ven/dev/
subven/subdev values aren’t enough to dis-
ambiguate this. It’s very rare, and should be
used with extreme caution, if at all.

These can be expanded to add additional
firmware types, such as SCSI backplanes, hot
plug power supply backplanes, disks, etc. as
the need arises. These names were chosen
to avoid conflicts with existing RPM packages
Provides.

4.2 Payload Package Contents

Continuing our BIOS example, the toplevel
firmware storage directory is /usr/share/

firmware. BIOS has its own subdirectory un-
der the toplevel, at /usr/share/firmware/
bios/, representing the top-level BIOS direc-
tory. The BIOS RPM payload packages in-
stall their files into subdirectories of the BIOS
toplevel directory. Figure 5 shows this layout.

This allows multiple versions of each payload
to be present on the file system, which may be
handy for downrev’ing. It also allows an entire
set of packages to be installed once on a file
server and shared out to client servers.

In this example, the actual data being writ-
ten to the flash is in the file bios.hdr. The
package.ini file contains metadata about

the payload described above and consumed by
the framework apps. The package.xml file
listed here was copied from the original ven-
dor package. It contains additional metadata,
and may be used by vendor-specific tools. The
firmware-addon-dell package uses the in-
formation in this file to only attempt installing
the payload onto the system type for which it
was made (e.g. to avoid trying to flash a desk-
top system with a server BIOS image).

4.3 Obtaining Payload Content

We’ve described the format of the packages, but
what if the existing update tools aren’t already
in the proper format? For example, as detailed
at the beginning of this paper, most vendors re-
lease their content in proprietary formats. The
solution is to write a tool that will take the ex-
isting proprietary formats and repackage them
into the firmware-tools format.

The fwupdate-tools package provides a
script, mkbiosrepo.sh, which can down-
load files from support.dell.com, extract
and unpack the relevant payloads from them,
and re-package them into packages as we’ve
described here. This allows a graceful transi-
tion from an existing packaging format to this
new format with little impact to existing busi-
ness processes. The script can be extended to
do likewise for other proprietary vendor pack-
age formats.

244 • System Firmware Updates Utilizing Sofware Repositories

rpm -qpl system_bios_PE6850-a02-12.3.noarch.rpm
/usr/share/firmware/bios
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02/bios.hdr
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02/package.ini
/usr/share/firmware/bios/system_bios_ven_0x1028_dev_0x0170_version_a02/package.xml

Figure 5: Example Package Manager file layout

If this format proves to be popular, it is hoped
that vendors will start to release packages in na-
tive firmware-tools format. The authors of this
paper are already working internally to Dell to
push for this change, although there is currently
no ETA nor guarantee of official Dell support.
We are working on the open-source firmware-
tools project to prototype the solution and to get
peer review on this concept from other industry
experts in this area.

5 Repositories

We recognize that each OS distribution has its
own model for making packages avaialble in
an online repository. Red Hat Enterprise Linux
customers use Red Hat Network, or RHN Satel-
lite Server, to host packages. Fedora and Cen-
tOS use Yellow dog Updater, Modified (YUM)
repositories. SuSE uses Novell ZenWorks,
YaST Online Update (YOU) repositories, and
newer SuSE releases can use YUM reposito-
ries too. Debian uses FTP archives. Other third
party package managers have their own sys-
tems and tools. The list goes on and on. In
general, you can put RPMs or debs into any of
these, and they “just work.”

As an optimization, you can package RPMs in a
single directory, and provide the multiple forms
of metadata that each require in that same loca-
tion, letting one set of packages, and one repos-
itory, be easily used by all of the system types.
The mkbiosrepo.sh script manages meta-
data for both YUM and YOU tools. Creation of

channels in Red Hat Network Satellite Server
is, unfortunately, a manual process at present;
uploading content into channels is easily done
using RHN tools. Providing packages in other
repository formats is another exercise left to the
reader.

6 System Administrator Use

Up to this point, everything has focused on cre-
ating and publishing packages in a format for
system administration tools to consume. So
how does this all look from the sysadmin per-
spective?

6.1 Pulling from a Repository

First, you must configure your target systems
to be able to pull files from the online reposito-
ries. How you do that is update system spe-
cific, but it probably involves editing a con-
figuration file (/etc/yum.repos.d/, /usr/
sysconfig/rhn/sources, . . .) to point at
the repository, configure GPG keys, and the
like. Nothing here is specific to updating
firmware.

The first tool you need is one that will
match your system vendor, which pulls in
the framework packages, which provides the
inventory_firmware tool.

yum install firmware-addon-dell

2006 Linux Symposium, Volume One • 245

6.2 Bootstrapping from a Repository

Now it’s time to request from the repository
all the packages that might match your target
system. inventory_firmware, in bootstrap
mode, provides the list of packages that could
exist. Figure 6 shows an example.

We pass this value to yum or up2date, as such:

yum install $(inventory_firmware

-b)

or

up2date -i $(inventory_firmware

-b -u)

This causes each of the possible firmware Pay-
load packages, if they exist in any of the reposi-
tories we have configured to use, to be retreived
and installed into the local file system. Be-
cause the Payload packages have RPM depen-
dencies on their Inventory and Execution pack-
ages, those are downloaded and installed also.

Subsequent update runs, such as the nightly
yum or up2date run will then pick up any newer
packages, using the list of packages actually
on our target system. If packages for new de-
vice types are released into the repository (e.g.
someone adds disk firmware update capability),
then the sysadmin will have to run the above
commands again to download those new pack-
ages.

6.3 Applying Firmware Updates

apply_updates will perform the actual
flash part update using the inventory and exe-
cution tools and payloads for each respective
device type.

apply_updates

apply_updates can be configured to run
automatically at RPM package installation
time, though its more likely to be run as a
scheduled downtime activity.

7 Proof of Concept Payload Repos-
itory

Using the above tool set, we’ve created a proof-
of-concept payload repository [4], containing
the latest Dell system BIOS for over 200 sys-
tem types, and containing Dell PERC RAID
controller firmware for current generation con-
trollers. It provides YUM and YOU meta-
data in support of target systems running Fe-
dora Core 3, 4, and 5, Red Hat Enterprise
Linux 3 and 4 (and its clones like CentOS),
and Novell/SuSE Linux Enterprise Server 9 and
10. New device types and distributions will be
added in the future.

8 Future Directions

We believe that this model for automatically
downloading firmware can also be used for
other purposes. For example, we could tag
DKMS [5] driver RPMS with tags and have the
inventory system output pci_driver(...)

lines to be fed into yum or up2date. A proposal
has been sent to the dkms mailing list with
subsequent commentary and discussion. This
model could also be used for things like In-
tel ipw2x00 firmware, which typically is down-
loaded separately from the kernel and must
match the kernel driver version.

9 Conclusion

While most sysadmins only update their BIOS
and firmware when they have to, the process

246 • System Firmware Updates Utilizing Sofware Repositories

inventory_firmware -b
system_bios(ven_0x1028_dev_0x0170)
bmc_firmware(ven_0x1028_dev_0x0170)
pci_firmware(ven_0x8086_dev_0x3595)/system(ven_0x1028_dev_0x0170)
pci_firmware(ven_0x8086_dev_0x3596)/system(ven_0x1028_dev_0x0170)
pci_firmware(ven_0x8086_dev_0x3597)/system(ven_0x1028_dev_0x0170)
...

Figure 6: Running inventory_firmware -b

should be as easy as possible. By utilizing
OS tools already present, BIOS and firmware
change management becomes just as easy as
other software change management. We’ve de-
veloped this to be Linux distribution, hardware
manufacturer, system manufacturer, and update
mechanism agnostic, and have demonstrated its
capability with Dell BIOS and PERC Firmware
on a number of Linux distributions and ver-
sions. We encourage additional expansion of
the types of devices handled, types of OSs, and
types of update systems, and would welcome
patches that provide this functionality.

10 Glossary

Package: OS standard package (.rpm/.deb)

Package Manager: OS standard package man-
ager (rpm/dpkg)

Repository Manager: OS standard repository
solution (yum/apt)

References

[1] Firmware-tools Project
Home page: http://linux.dell.
com/firmware-tools/
Mailing list: http://lists.us.
dell.com/mailman/listinfo/
firmware-tools-devel

[2] Python Generator documentation
http://www.python.org/dev/
peps/pep-0255/

[3] Libsmbios Project
Home Page: http:
//linux.dell.com/libsmbios
Mailing list: http://lists.us.
dell.com/mailman/listinfo/
libsmbios-devel

[4] Proof of Concept Payload Repository
Home Page: http://fwupdate.com

[5] DKMS Project
Home Page:
http://linux.dell.com/dkms
Mailing list:
http://lists.us.dell.com/
mailman/listinfo/dkms-devel

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

