
The LTTng tracer: A low impact performance and
behavior monitor for GNU/Linux

Mathieu Desnoyers
École Polytechnique de Montréal
mathieu.desnoyers@polymtl.ca

Michel R. Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

Efficient tracing of system-wide execution,
allowing integrated analysis of both kernel
space and user space, is something difficult to
achieve. The following article will present you
a new tracer core, Linux Trace Toolkit Next
Generation (LTTng), that has taken over the
previous version known as LTT. It has the same
goals of low system disturbance and architec-
ture independance while being fully reentrant,
scalable, precise, extensible, modular and easy
to use. For instance, LTTng allows tracepoints
in NMI code, multiple simultaneous traces and
a flight recorder mode. LTTng reuses and en-
hances the existing LTT instrumentation and
RelayFS.

This paper will focus on the approaches taken
by LTTng to fulfill these goals. It will present
the modular architecture of the project. It
will then explain how NMI reentrancy requires
atomic operations for writing and RCU lists for
tracing behavior control. It will show how these
techniques are inherently scalable to multipro-
cessor systems. Then, time precision limita-
tions in the kernel will be discussed, followed
by an explanation of LTTng’s own monotonic
timestamps motives.

In addition, the template based code generator
for architecture agnostic trace format will be

presented. The approach taken to allow nested
types, variable fields and dynamic alignment of
data in the trace buffers will be revealed. It will
show the mechanisms deployed to facilitate use
and extension of this tool by adding custom in-
strumentation and analysis involving kernel, li-
braries and user space programs.

It will also introduce LTTng’s trace analyzer
and graphical viewer counterpart: Linux Trace
Toolkit Viewer (LTTV). The latter implements
extensible analysis of the trace information
through collaborating text and graphical plu-
gins.1 It can simultaneously display multi-
ple multi-GBytes traces of multi-processor sys-
tems.

1 Tracing goals

With the increasing complexity of newer com-
puter systems, the overall performance of appli-
cations often depends on a combination of sev-
eral factors including I/O subsystems, device
drivers, interrupts, lock contention among mul-
tiple CPUs, scheduling and memory manage-
ment. A low impact, high performance, trac-
ing system may therefore be the only tool ca-
pable of collecting the information produced
by instrumenting the whole system, while not

1Project website: http://ltt.polymtl.ca.

210 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

changing significantly the studied system be-
havior and performance.

Besides offering a flexible and easy to use in-
terface to users, an efficient tracer must satisfy
the requirements of the most demanding appli-
cation. For instance, the widely used printk
and printf statements are relatively easy to
use and are correct for simple applications, but
do not offer the needed performance for instru-
menting interrupts in high performance multi-
processor computer systems and cannot neces-
sarily be used in some code paths such as non
maskable interrupts (NMI) handlers.

An important aspect of tracing, particularly in
the real-time and high performance comput-
ing fields, is the precision of events times-
tamps. Real-time is often used in embedded
systems which are based on a number of dif-
ferent architectures (e.g. ARM, MIPS, PPC)
optimized for various applications. The chal-
lenge is therefore to obtain a tracer with precise
timestamps, across multiple architectures, run-
ning from several MHz to several GHz, some
being multi-processors.

The number of ad hoc tracing systems devised
for specific needs (several Linux device drivers
contain a small tracer), and the experience with
earlier versions of LTT, show the needs for a
flexible and extensible system. This is the case
both in terms of adding easily new instrumen-
tation points and in terms of adding plugins for
the analysis and display of the resulting trace
data.

2 Existing solutions

Several different approaches have been taken
by performance monitoring tools. They usually
adhere to one of the following two paradigms.
The first class of monitor, post-processing,

aims to minimize CPU usage during the exe-
cution of the monitored system by collecting
data for later off-line analysis. As the goal is to
have minimum impact on performance, static
instrumentation is habitually used in this ap-
proach. Static instrumentation consists in mod-
ifying the program source code to add logging
statements that will compile with the program.
Such systems include LTT [7], a Linux ker-
nel Tracer, K42 [5], a research operating sys-
tem from IBM, IrixView and Tornado which
are commercial proprietary products.

The second class of monitor aims at calculating
well defined information (e.g. I/O requests per
seconds, system calls per second per PID) on
the monitored CPU itself: it is what is generally
called a pre-processing approach. It is the case
of SystemTAP [3], Kerninst [4], Sun’s dtrace
[1] and IBM’s Performance and Environment
Monitoring (PEM) [6]. All except PEM use a
dynamic instrumentation approach. Dynamic
instrumentation is performed by changing as-
sembly instructions for breakpoints in the pro-
gram binary objects loaded in memory, like the
gdb debugger does. It is suitable to their goal
because it generally has a negligible footprint
compared to the pre-processing they do.

Since our goal is to support high performance
and real-time embedded systems, the dynamic
probe approach is too intrusive, as it implies
using a costly breakpoint interrupt. Further-
more, even if the pre-processing of information
can sometimes be faster than logging raw data,
it does not allow the same flexibility as post-
processing analysis. Indeed, almost every as-
pect of a system can be studied once is obtained
a trace of the complete flow of the system be-
havior. However, pre-processed data can be
logged into a tracer, as does PEM with K42, for
later combined analysis, and the two are there-
fore not incompatible.

2006 Linux Symposium, Volume One • 211

3 Previous Works

LTTng reuses research that has been previously
done in the operating system tracing field in or-
der to build new features and address currently
unsolved questions more thoroughly.

The previous Linux Trace Toolkit (LTT) [7]
project offers an operating system instrumen-
tation that has been quite stable through the 2.6
Linux kernels. It also has the advantage of be-
ing cross-platform, but with types limited to
fixed sizes (e.g. fixed 8, 16, 32, or 64-byte inte-
gers compared to host size byte, short, integer,
and long). It also suffers from the monolithic
implementation of both the LTT tracer and its
viewer which have proven to be difficult to ex-
tend. Another limitation is the use of the ker-
nel NTP corrected time for timestamps, which
is not monotonic. LTTng is based on LTT but
is a new generation, layered, easily extensible
with new event types and viewer plugins, with
a more precise time base and that will eventu-
ally support the combined analysis of several
computers in a cluster [2].

RelayFS [8] has been developed as a standard
high-speed data relay between the kernel and
user space. It has been integrated in the 2.6.14
Linux kernels. It offers hooks for kernel clients
to send information in large buffers and inter-
acts with a user space daemon through file op-
erations on a memory mapped file.

IBM, in the past years, has developed K42 [5],
an open source research kernel which aims at
full scalability. It has been designed from the
ground up with tracing being a necessity, not an
option. It offers a very elegant lockless tracing
mechanism based on the atomic compare-and-
exchange operation.

The Performance and Environment Monitor-
ing (PEM) [6] project shares a few similarities
with LTTng and LTTV since some work have

been done in collaboration with members of
their team. The XML file format for describ-
ing events came from these discussions, aiming
at standardizing event description and trace for-
mats.

4 The LTTng approach

The following subsections describe the five
main components of the LTTng architecture.
The first one explains the control of the differ-
ent entities in LTTng. It is followed by a de-
scription of the data flow in the different mod-
ules of the application. The automated static
instrumentation will thereafter be introduced.
Event type registration, the mecanism that links
the extensible instrumentation to the dynamic
collection of traces, will then be presented.

4.1 Control

There are three main parts in LTTng: a user
space command-line application, lttctl; a user
space daemon, lttd, that waits for trace data and
writes it to disk; and a kernel part that controls
kernel tracing. Figure 1 shows the control paths
in LTTng. lttctl is the command line application
used to control tracing. It starts a lttd and con-
trols kernel tracing behavior through a library-
module bridge which uses a netlink socket.

The core module of LTTng is ltt-core. This
module is responsible for a number of LTT
control events. It controls helper modules
ltt-heartbeat, ltt-facilities, and ltt-statedump.
Module ltt-heartbeat generates periodic events
in order to detect and account for cycle coun-
ters overflows, thus allowing a single monoton-
ically increasing time base even if shorter 32-
bit (instead of 64-bit) cycle counts are stored
in each event. Ltt-facilities lists the facilities

212 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

User space

lttd liblttctllttctl

Netlink socket

RelayFS

ltt-control

ltt-coreltt-statedump

ltt-heartbeat

ltt-base

Kernel

modules

Kernel

built-in

Kernel-User

Communication

ltt-facilities

Figure 1: LTTng control architecture

(collection of event types) currently loaded at
trace start time. Module ltt-statedump gener-
ates events to describe the kernel state at trace
start time (processes, files. . .). A builtin ker-
nel object, ltt-base, contains the symbols and
data structures required by builtin instrumenta-
tion. This includes principally the tracing con-
trol structures.

4.2 Data flow

Figure 2 shows the data flow in LTTng. All data
is written through ltt-base into RelayFS circu-
lar buffers. When subbuffers are full, they are
delivered to the lttd disk writer daemon.

Lttd is a standalone multithreaded daemon
which waits on RelayFS channels (files) for

trace files

User space

lttd

RelayFS

libltt-usertrace-fast

ltt-baseKernel

Built-in

Kernel-User

Communication

Figure 2: LTTng data flow

data by using the poll file operation. When it
is awakened, it locks the channels for reading
by using a relay buffer get ioctl. At that point,
it has exclusive access to the subbuffer it has re-
served and can safely write it to disk. It should
then issue a relay buffer put ioctl to release it so
it can be reused.

A side-path, libltt-usertrace-fast, running com-
pletely in user space, has been developed for
high throughput user space applications which
need high performance tracing. It is explained
in details in Section 4.5.4.

Both lttd and the libltt-usertrace-fast compan-
ion process currently support disk output, but
should eventually be extended to other media
like network communication.

4.3 Instrumentation

LTTng instrumentation, as presented in Fig-
ure 3, consists in an XML event description that

2006 Linux Symposium, Volume One • 213

XML event
description

trace files

User space
instrumentation

lttctl

Kernel
Instrumentation

genevent

copy

Figure 3: LTTng instrumentation

is used both for automatically generating trac-
ing headers and as data metainformation in the
trace files. These tracing headers implement the
functions that must be called at instrumentation
sites to log information in traces.

Most common types are supported in the XML
description: fixed size integers, host size inte-
gers (int, long, pointer, size_t), floating point
numbers, enumerations, and strings. All of
these can be either host or network byte or-
dered. It also supports nested arrays, se-
quences, structures, and unions.

The tracing functions, generated in the tracing
headers, serialize the C types given as argu-

User space
ltt-usertrace

ltt-statedump

ltt-heartbeat

ltt-facilities

ltt-syscall

Kernel
Instrumentation

Kernel

Built-in

Kernel or

Modules

Kernel-User

Communication

User space
Instrumentation

Figure 4: LTTng event type registration

ments into the LTT trace format. This format
supports both packed or aligned data types.

A record generated by a probe hit is called an
event. Event types are grouped in facilities.
A facility is a dynamically loadable object, ei-
ther a kernel module for kernel instrumentation
or a user space library for user space instru-
mentation. An object that calls instrumentation
should be linked with its associated facility ob-
ject.

214 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

4.4 Event type registration

Event type registration is centralized in the ltt-
facilities kernel object, as shown in Figure 4. It
controls the rights to register specific type of in-
formation in traces. For instance, it does not al-
low a user space process using the ltt-usertrace
API to register facilities with names conflicting
with kernel facilities.

The ltt-heartbeat built-in object and the ltt-
statedump also have their own instrumentation
to log events. Therefore, they also register
to ltt-facilities, just like standard kernel instru-
mentation.

Registered facility names, checksums and type
sizes are locally stored in ltt-facilities so they
can be dumped in a special low traffic chan-
nel at trace start. Dynamic registration of new
facilities, while tracing is active, is also sup-
ported.

Facilities contain information concerning the
type sizes in the compilation environment of
the associated instrumentation. For instance, a
facility for a 32-bit process would differ from
the same facility compiled with a 64-bit pro-
cess from its long and pointer sizes.

4.5 Tracing

There are many similarities between Figure 4
and Figure 5. Indeed, each traced information
must have its metainformation registered into
ltt-facilities. The difference is that Figure 4
shows how the metainformation is registered
while Figure 5 show the actual tracing. The
tracing path has the biggest impact on system
behavior because it is called for every event.

Each event recorded uses ltt-base, container
of the active traces, to get the pointers to

User space

ltt-usertrace (system call)

ltt-statedump

ltt-heartbeat

ltt-base

ltt-syscall

Kernel
Instrumentation

Kernel

Built-in

Kernel or

Modules

Kernel-User

Communication

ltt-facilities

User space
instrumentation

Figure 5: LTTng tracing

RelayFS buffers. One exception is the libltt-
usertrace-fast which will be explained at Sub-
section 4.5.4.

The algorithms used in these tracing sites
which make them reentrant, scalable, and pre-
cise will now be explained.

4.5.1 Reentrancy

This section presents the lockless reentrancy
mechanism used at LTTng instrumentation
sites. Its primary goal is to provide correct
tracing throughout the kernel, including non-

2006 Linux Symposium, Volume One • 215

Trace control
information

from "ltt-base"

Data structure passed
 as parameter

from the call site

instrumentation
 site

RelayFS buffers

Figure 6: LTTng instrumentation site

maskable interrupts (NMI) handlers which can-
not be disabled like normal interrupts. The sec-
ond goal is to have the minimum impact on per-
formance by both having a fast code and not
disrupting normal system behavior by taking
intrusive locks or disabling interrupts.

To describe the reentrancy mechanism used by
the LTTng instrumentation site (see Figure 6),
we define the call site, which is the original
code from the instrumented program where the
tracing function is called. We also define the
instrumentation site, which is the tracing func-
tion itself.

The instrumentation site found in the kernel and
user space instrumentation has very well de-
fined inputs and outputs. Its main input is the
call site parameters. The call site must insure
that the data given as parameter to the instru-
mentation site is properly protected with its as-
sociated locks. Very often, such data is already
locked by the call site, so there is often no need
to add supplementary locking.

The other input that the instrumentation site
takes is the global trace control information. It
is contained in a RCU list of active traces in the

ltt-base object. Note that the instrumentation
site uses the trace control information both as
an input and output: this is both how tracing
behavior is controlled and where variables that
control writing to RelayFS buffers are stored.

The main output of the instrumentation site is
a serialized memory write of both an event
header and the instrumentation site parameters
to the per-CPU RelayFS buffers. The location
in these buffers is protected from concurrent ac-
cess by using a lockless memory write scheme
inspired from the one found in K42 [5]:

First, the amount of memory space necessary
for the memory write is computed. When the
data size is known statically, this step is quite
fast. If, however, variable length data (string or
sequence) must be recorded, a first size calcu-
lation pass is performed. Alignment of the data
is taken care of in this step. To speed up data
alignment, the start address of the variable size
data is always aligned on the architecture size:
it makes it possible to do a compile time aligne-
ment computation for all fixed size types.

Then, a memory region in the buffers is
reserved atomically with a compare-and-
exchange loop. The algorithm retries the reser-
vation if a concurrent reserve occurs. The
timestamp for the event is taken inside the
compare-and-exchange loop so that it is monot-
ically incrementing with buffer offsets. This
is done to simplify data parsing in the post-
processing tool.

A reservation can fail on the following condi-
tions. In normal tracing mode, a buffer full
condition causes the reservation to fail. On
the other hand, in flight recorder mode, we
overwrite non-read buffers, so it will never
fail. When the reservation fails, the event lost
counter is incremented and the instrumentation
site will return without doing a commit.

The next step is to copy data from the instru-

216 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

mentation site arguments to the RelayFS re-
served memory region. This step must preserve
the same data alignment that has been calcu-
lated earlier.

Finally, a commit operation is done to release
the reserved memory segment. No information
is kept on a per memory region basis. We only
keep a count of the number of reserved and
committed bytes per subbuffer. A subbuffer
is considered to be in a consistent state (non-
corrupted and readable) when both counts are
equal.

Is is possible that a process die between the
slot reservation and commit because of a ker-
nel OOPS. In that case, the lttd daemon will
be incapable of reading the subbuffer affected
by this condition because of unequal reserve
and commit counts. This situation is resolved
when the reservation algorithm wraps to the
faulty subbuffer: if the reservation falls in a
new buffer that has unequal reserve and commit
counts, the reader (lttd) is pushed to the next
subbuffer, the subbuffers lost counter is incre-
mented, and the subbuffer is overwritten. To
insure that this condition will not be reached by
normal out of order commit of events (caused
by nested execution contexts), the buffer must
be big enough to contain data recorded by the
maximum number of out of order events, which
is limited by the longest sequence of events
logged from nestable contexts (softirq, inter-
rupts, and NMIs).

The subbuffer delivery is triggered by a flag
from the call site on subbuffer switch. It is peri-
odically checked by a timer routine to take the
appopriate actions. This ensures atomicity and
a correct lockless behavior when called from
NMI handlers.

Compared to printk, which calls the sched-
uler, disables interrupts, and takes spinlocks,
LTTng offers a more robust reentrancy that

makes it callable from the scheduler code and
from NMI handlers.

4.5.2 Scalability

Scalability of the tracing code for SMP ma-
chines is insured by use of per-CPU data and
by the lockless tracing mechanism. The in-
puts of the instrumentation site are scalable: the
data given as parameter is usually either on the
caller’s stack or already properly locked. The
global trace information is organized in a RCU
list which does not require any lock from the
reader side.

Per-CPU buffers eliminate the false sharing
of cachelines between multiple CPUs on the
memory write side. The fact that input-output
trace control structures are per-CPU also elim-
inates false sharing.

To identify more precisely the performance
cost of this algorithm, let’s compare two ap-
proaches: taking a per-CPU spinlock or us-
ing an atomic compare-and-exchange opera-
tion. The most frequent path implies either
taking and releasing a spinlock along with
disabling interrupts or doing a compare-and-
exchange, an atomic increment of the reserve
count, and an atomic increment of the commit
count.

On a 3GHz Pentium 4, a compare-and-
exchange without LOCK prefix costs 29 cycles.
With a LOCK prefix, it raises to 112 cycles. An
atomic increment costs respectively 7 and 93
cycles without and with a LOCK prefix. Using
a spinlock with interrupts disabled costs 214
cycles.

As LTTng uses per-CPU buffers, it does not
need to take a lock on memory to protect from
other CPU concurrent access when perform-
ing these operations. Only the non-locked ver-

2006 Linux Symposium, Volume One • 217

sions of compare-and-exchange and atomic in-
crement are then necessary. If we consider
only the time spent in atomic operations, using
compare-and-exchange and atomic increments
takes 43 cycles compared to 214 cycles for a
spinlock.

Therefore, using atomic operations is five times
faster than an equivalent spinlock on this archi-
tecture while having the additionnal benefit of
being reentrant for NMI code and not disturb-
ing the system behavior, as it does not disable
interrupts for the duration of the tracing code.

4.5.3 Time (im)precision in the Linux ker-
nel

Time precision in the Linux kernel is a research
subject on its own. However, looking at the
Linux kernel x86 timekeeping code is very en-
lightening on the nanosecond timestamps accu-
racy provided by the kernel. Effectively, it is
based on a CPU cycle to nanosecond scaling
factor computed at boot time based on the timer
interrupt. The code that generates and uses this
scaling factor takes for granted that the value
should only be precise enough to keep track
of scheduling periods. Therefore, the focus is
to provide a fast computation of the time with
shifting techniques more than providing a very
accurate timestamp. Furthermore, doing inte-
ger arithmetic necessarily implies a loss of pre-
cision.

It causes problems when a tool like LTTng
strongly depends on the monotonicity and pre-
cision of the time value associated with times-
tamps.

To overcome the inherent kernel time preci-
sion limitations, LTTng directly reads the CPU
timestamp counters. It uses the cpu_khz ker-
nel variable which contains the most precise
calibrated CPU frequency available. This value

will be used by the post-processing tool, LTTV,
to convert cycles to nanoseconds in a precise
manner with double precision numbers.

Due to the importance of the CPU times-
tamp counters in LTTng instrumentation, a
workaround has been developed to support ar-
chitectures that only have a 32-bit timestamp
counter available. It uses the ltt-heartbeat mod-
ule periodic timer to keep a full 64-bit times-
tamp counter on architectures where it is miss-
ing by detecting the 32-bit overflows in an
atomic fashion; both the previous and the cur-
rent TSC values are kept, swapped by a pointer
change upon overflow. The read-side must ad-
ditionnaly check for overflows.

It is important to restate that the time base
used by LTTng is based neither on the ker-
nel do_gettimeofday, which is NTP cor-
rected and thus non monotonic nor on the ker-
nel monotonic time, which suffers from integer
arithmetic imprecision. LTTng uses the CPU
timestamp counter and its most accurate cali-
bration.

4.5.4 User space tracing

User space tracing has been achieved in many
ways in the past. The original LTT [7] did use
write operations in a device to send events to
the kernel. It did not, however, give the same
performances as in kernel events, as it needs a
round-trip to the kernel and many copies of the
information.

K42 [5] solves this by sharing per-CPU mem-
ory buffers between the kernel and user space
processes. Although this is very performant, it
does not insure secure tracing, as a given pro-
cess can corrupt the traces that belong to other
processes or to the kernel. Moreover, sharing
memory regions between the kernel and user

218 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

space might be acceptable for a research ker-
nel, but for a production kernel, it implies a
weaker traceability of process-kernel commu-
nications and might bring limitations on archi-
tectures with mixed 32- and 64-bit processes.

LTTng provides user space tracing through two
different schemes to suit two distincts cate-
gories of instrumentation needs.

The first category is characterized by a very
low event throughput. It can be the case of an
event than happens rarely to show a specific er-
ror condition or periodically at an interval typ-
ically greater or equal to the scheduler period.
The “slow tracing path” is targeted at this cate-
gory.

The second category, which is addressed by the
“fast tracing path,” is much more demanding. It
is particularly I/O intensive and must be close
to the performance of a direct memory write.
This is the case when instrumenting manually
the critical path in a program or automatically
every function entry/exit by gcc.

Both mecanisms share the same facility regis-
tration interface with the kernel, which passes
through a system call, as shown in Figure 4.
Validation is done by limiting these user space
facilities to their own namespace so they cannot
imitate kernel events.

The slow path uses a costly system call at each
event call site. Its advantage is that it does
not require linking the instrumented program
against any library and does not have any thread
startup performance impact like the fast path
explained below. Every event logged through
the system call is copied in the kernel tracing
buffers. Before doing so, the system call ver-
ifies that the facility ID corresponds to a valid
user space facility.

The fast path, libltt-usertrace-fast (at Figure 2)
library consists in a per thread companion pro-
cess which writes the buffers directly to disk.

Communication between the thread and the li-
brary is done through the use of circular buffers
in an anonymous shared memory map. Writing
the buffers to disk is done by a separate com-
panion process to insure that buffered data is
never lost when the traced program terminates.
The other goal is to account the time spent writ-
ing to disk to a different process than the one
being traced. The file is written in the filesys-
tem, arbitrarily in /tmp/ltt-usertrace,
in files following this naming convention:
process-tid-pid-timestamp, which
makes it unique for the trace. When tracing
is over, the /tmp/ltt-usertrace must be
manually moved into the kernel trace. The trace
and usertrace do not have to coincide: although
it is better to have the usertrace time span in-
cluded in the kernel trace interval to benefit
from the scheduler information for the running
processes, it is not mandatory and partial infor-
mation will remain available.

Both the slow and the fast path reuse the lock-
less tracing algorithm found in the LTTng ker-
nel tracer. In the fast path, it ensures reentrancy
with signal handlers without the cost of dis-
abling signals at each instrumentation site.

5 Graphical viewer: LTTV

LTTng is independent of the viewer, the trace
format is well documented and a trace-reading
library is provided. Nonetheless, the associ-
ated viewer, LTTV, will be briefly introduced.
It implements optimised algorithms for random
access of several multi-GB traces, describing
the behavior of one or several uniprocessor or
multi-processor systems. Many plugin views
can be loaded dynamically into LTTV for the
display and analysis of the data. Developers
can thus easily extend the tool by creating their
own instrumentation with the flexible XML de-
scription and connect their own plugin to that

2006 Linux Symposium, Volume One • 219

information. It is layered in a modular archi-
tecture.

On top of the LGPL low-level trace files read-
ing library, LTTV recreates its own representa-
tion of the evolving kernel state through time
and keeps statistical information into a generic
hierarchical container. By combining the ker-
nel state, the statistics, and the trace events, the
viewers and analysis plugins can extend the in-
formation shown to the user. Plugins are kept
focused (analysis, text, or graphical display,
control. . .) to increase modularity and reuse.
The plugin loader supports dependency control.

LTTV also offers a rich and performant event
filter, which allows specifying, with a logical
expression, the events a user is interested to see.
It can be reused by the plugins to limit their
scope to a subset of the information.

For performance reasons, LTTV is written in C.
It uses the GTK graphical library and glib. It is
distributed under the GPLv2 license.

6 Results

This section presents the results of several mea-
surements. We first present the time overhead
on the system running microbenchmarks of the
instrumentation site. Then, taking these results
as a starting point, the interrupt and scheduler
impact will be discussed. Macrobenchmarks of
the system under different loads will then be
shown, detailing the time used for tracing.

The size of the instrumentation object code will
be discussed along with possible size optimisa-
tions. Finally, time precision calibration is per-
formed with a NMI timer.

6.1 Test environment

The test environment consists of a 3GHz,
uniprocessor Pentium 4, with hyperthreading
disabled, running LTTng 0.5.41. The results
are presented in cycles; the exact calibration of
the CPU clock is 3,000.607 MHz.

6.2 Microbenchmarks

Table 1 presents probe site microbenchmarks.
Kernel probe tests are done in a kernel mod-
ule with interrupts disabled. User space tests
are influenced by interrupts and the sched-
uler. Both consist in 20,000 hits of a probe
that writes 4 bytes plus the event header (20
bytes). Each hit is surrounded by two times-
tamp counter reads.

When compiling out the LTTng tracing, cali-
bration of the tests shows that the time spent in
the two TSC reads varies between 97 and 105
cycles, with an average of 100.0 cycles. We
therefore removed this time from the raw probe
time results.

As we can see, the best case for kernel tracing
is a little slower than the ltt-usertrace-fast li-
brary: this is due to supplementary operations
that must be done in the kernel (preemption dis-
abling for instance) that are not needed in user
space. The maximum and average values of
time spent in user space probes does not mean
much because they are sensitive to scheduling
and interrupts.

The key result in Table 1 is the average 288.5
cycles (96.15ns) spent in a probe.

LTTng probe sites do not increase latency be-
cause they do not disable interrupts. However,
the interrupt entry/exit instrumentation itself
does increase interrupt response time, which

220 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

Probe site Test Series
Time spent in probe (cycles)

min average max
Kernel Tracing dynamically disabled 0 0.000 338
Kernel Tracing active (1 trace) 278 288.500 6,997
User space ltt-usertrace-fast library 225 297.021 88,913
User space Tracing through system call 1,013 1,042.200 329,062

Table 1: LTTng microbenchmarks for a 4-byte event probe hit 20,000 times

therefore increases low priority interrupts la-
tency by twice the probe time, which is 577.0
cycles (192.29ns).

The scheduler response time is also affected
by LTTng instrumentation because it must dis-
able preemption around the RCU list used for
control. Furthermore, the scheduler instrumen-
tation itself adds a task switch delay equal
to the probe time, for a total scheduler de-
lay of twice the probe time: 577.0 cycles
(192.29ns). In addition, a small implementa-
tion detail (use of preempt_enable_no_
resched()), to insure scheduler instrumen-
tation reentrancy, has a downside: it can possi-
bly make the scheduler miss a timer interrupt.
This could be solved for real-time applications
by using the no resched flavour of preemption
enabling only in the scheduler, wakeup, and
NMI nested probe sites.

6.3 Macrobenchmarks

6.3.1 Kernel tracing

Table 2 details the time spent both in the
instrumentation site and in lttd for different
loads. Time spent in instrumentation is com-
puted from the average probe time (288.5 cy-
cles) multiplied by the number of probe hits.
Time spent in lttd is the CPU time of the lttd
process as given in the LTTV analysis. The
load is computed by subtracting the time spent

in system call mode in process 0 (idle process)
from the wall time.

It is quite understandable that the probes trig-
gered by the ping flood takes that much CPU
time, as it instruments a code path that is called
very often: the system call entry. The total
cpu time used by tracing on a busy system
(medium and high load scenarios) goes from
1.54 to 2.28%.

6.3.2 User space tracing

Table 3 compares the ltt-usertrace-fast user
space tracer with gprof on a specific task: the
instrumentation of each function entry and exit
of a gcc compilation execution. You will see
that the userspace tracing of LTTng is only a
constant factor of 2 slower than a gprof instru-
mented binary, which is not bad considering the
amount of additional data generated. The fac-
tor of 2 is for the ideal case where the daemon
writes to a /dev/null output. In practice,
the I/O device can further limit the throughput.
For instance, writing the trace to a SATA disk,
LTTng is 4.13 slower than gprof.

The next test consists in running an instru-
mented version of gcc, itself compiled with op-
tion -finstrument-functions, to com-
pile a 6.9KiB C file into a 15KiB object, with
level 2 optimisation.

As Table 3 shows, gprof instrumented gcc takes
1.73 times the normal execution time. The

2006 Linux Symposium, Volume One • 221

Load size Test Series
CPU time (%) Data rate Events/s

load probes lttd (MiB/s)
Small mozilla (browsing) 1.15 0.053 0.27 0.19 5,476
Medium find 15.38 1.150 0.39 2.28 120,282
High find + gcc 63.79 1.720 0.56 3.24 179,255
Very high find + gcc + ping flood 98.60 8.500 0.96 16.17 884,545

Table 2: LTTng macrobenchmarks for different loads

gcc instrumentation Time (s) Data rate
(MiB/s)

not instrumented 0.446
gprof 0.774
LTTng (null output) 1.553 153.25
LTTng (disk output) 3.197 74.44

Table 3: gcc function entry/exit tracing

fast userspace instrumentation of LTTng is 3.22
times slower than normal. Gprof only extracts
sampling of function time by using a periodical
timer and keeps per function counters. LTTng
extracts the complete function call trace of a
program, which generates an output of 238MiB
in 1.553 seconds (153.25 MiB/s). The execu-
tion time is I/O-bound, it slows down to 3.197s
when writing the trace on a SATA disk through
the operating system buffers (74.44 MiB/s).

6.4 Instrumentation objects size

Another important aspect of instrumentation is
the size of the binary instructions added to the
programs. This wastes precious L1 cache space
and grows the overall object code size, which
is more problematic in embedded systems. Ta-
ble 4 shows the size of stripped objects that
only contain intrumentation.

Independently of the amount of data to trace,
the object code size only varies in our tests

Instrumentation object code
size (bytes)

log 4-byte integer 2,288
log variable length string 2,384
log a structure of 2,432

int, string,
sequence of

8-byte integers

Table 4: Instrumentation object size

of a maximum of 3.3% from the average size.
Adding 2.37kB per event might be too much for
embedded applications, but a tradeoff can be
done between inlining of tracing sites (and ref-
erence locality) and doing function calls, which
would permit instrumentation code reuse.

A complete L1 cache hit profiling should be
done to fully see the cache impact of the in-
strumentation and help tweak the inlining level.
Such profiling is planned.

6.5 Time precision

Time precision measurement of a timestamp
counter based clock source can only be done
relatively to another clock source. The follow-
ing test traces the NMI watchdog timer, us-
ing it as a comparison clock source. It has
the advantage of not being disturbed by CPU
load as these interruptions cannot be deacti-
vated. It is, however, limited by the precision of

222 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

 3.994

 3.995

 3.996

 3.997

 3.998

 3.999

 4

 4.001

 4.002

 4.003

 4.004

 4.005

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

in
te

rv
al

 (
m

s)

event number

Traced NMI timer events interval

Figure 7: Traced NMI timer events interval

the timer crystal. The hardware used for these
tests is an Intel D915-GAG motherboard. Its
timer is driven by a TXC HC-49S crystal with a
±30 PPM precision. Table 5 and Figure 7 show
the intervals of the logged NMI timer events.
Their precision is discussed.

This table indicates a standard deviation of
52ns and a maximum deviation of 5,075ns from
the average. If we take the maximum deviation
as a worse case, we can assume than we have a
±5.075µs error between the programmable in-
terrupt timer (PIT) and the trace time base (de-
rived from the CPU TSC). Part of it is due to the
CPU cache misses, higher priority NMIs, ker-
nel minor page faults, and the PIT itself. A 52ns
standard deviation each 4ms means a 13µs er-
ror each second, for a 13 PPM frequency preci-
sion which is within the expected limits.

Statistic value (ns)
min 3,994,844
average 3,999,339
max 4,004,468
standard deviation 52
max deviation 5,075

Table 5: Traced NMI timer events interval

7 Conclusion

As demonstrated in the previous section,
LTTng is a low disturbance tracer that uses
about 2% of CPU time on a heavy workload.
It is entirely based on atomic operations to in-
sure reentrancy. This enables it to trace a wide
range of code sites, from user space programs
and libraries to kernel code, in every execution
context, including NMI handlers.

2006 Linux Symposium, Volume One • 223

Its time measurement precision gives a
13 PPM frequency error when reading the
programmable interrupt timer (PIT) in NMI
mode, which is coherent with the 30 PPM
crystal precision.

LTTng proves to be a performant and precise
tracer. It offers an architecture independent in-
strumentation code generator, from templates,
to reduce instrumentation effort. It provides ef-
ficient and convenient mechanisms for kernel
and user space tracing.

A plugin based analysis tool, LTTV, helps to
further reduce the effort for analysis and visual-
isation of complex operating system behavior.
Some work is actually being done in time syn-
chronisation between cluster nodes, to extend
LTTV to cluster wide analysis.

You are encouraged to use this tool and create
new instrumentations, either in user space or in
the kernel. LTTng and LTTV are distributed
under the GPLv2 license.2

References

[1] Bryan M. Cantrill, Michael W. Shapiro,
and Adam H. Leventhal. Dynamic
instrumentation of production systems. In
USENIX ’04, 2004.

[2] Michel Dagenais, Richard Moore, Robert
Wisniewski, Karim Yaghmour, and
Thomas Zanussi. Efficient and accurate
tracing of events in linux clusters. In
Proceedings of the Conference on High
Performance Computing Systems (HPCS),
2003.

[3] Vara Prasad, William Cohen, Frank Ch.
Eigler, Martin Hunt, Jim Keniston, and
Brad Chen. Locating system problems

2Project website: http://ltt.polymtl.ca

using dynamic instrumentation. In OLS
(Ottawa Linux Symposium) 2005, 2005.

[4] Ariel Tamches and Barton P. Miller.
Fine-grained dynamic instrumentation of
commodity operating system kernels. In
3rd Symposium on Operating Systems
Design and Implementation, February
1999.

[5] Robert W. Wisniewski and Bryan
Rosenburg. Efficient, unified, and scalable
performance monitoring for
multiprocessor operating systems. In
Supercomputing, 2003 ACM/IEEE
Conference, 2003.

[6] Robert W. Wisniewski, Peter F. Sweeney,
Kartik Sudeep, Matthias Hauswirth,
Evelyn Duesterwald, Calin Cascaval, and
Reza Azimi. Pem performance and
environment monitoring for whole-system
characterization and optimization. In
PAC2 (Conference on Power/Performance
interaction with Architecture, Circuits, and
Compilers), 2004.

[7] Karim Yaghmour and Michel R. Dagenais.
The linux trace toolkit. Linux Journal,
May 2000.

[8] Tom Zanussi, Karim Yaghmour Robert
Wisniewski, Richard Moore, and Michel
Dagenais. relayfs: An efficient unified
approach for transmitting data from kernel
to user space. In OLS (Ottawa Linux
Symposium) 2003, pages 519–531, 2003.

224 • The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

