
Evaluating Linux Kernel Crash Dumping Mechanisms

Fernando Luis Vázquez Cao
NTT Data Intellilink

fernando@intellilink.co.jp

Abstract

There have been several kernel crash dump cap-
turing solutions available for Linux for some
time now and one of them, kdump, has even
made it into the mainline kernel.

But the mere fact of having such a feature does
not necessary imply that we can obtain a dump
reliably under any conditions. The LKDTT
(Linux Kernel Dump Test Tool) project was
created to evaluate crash dumping mechanisms
in terms of success rate, accuracy and com-
pleteness.

A major goal of LKDTT is maximizing the
coverage of the tests. For this purpose, LKDTT
forces the system to crash by artificially recre-
ating crash scenarios (panic, hang, exception,
stack overflow, hang, etc.), taking into ac-
count the hardware conditions (such as ongoing
DMA or interrupt state) and the load of the sys-
tem. The latter being key for the significance
and reproducibility of the tests.

Using LKDTT the author could constate the su-
perior reliability of the kexec-based approach
to crash dumping, although several deficiencies
in kdump were revealed too. Since the final
goal is having the best crash dumping mech-
anism possible, this paper also addresses how
the aforementioned problems were identified
and solved. Finally, possible applications of
kdump beyond crash dumping will be intro-
duced.

1 Introduction

Mainstream Linux lacked a kernel crash dump-
ing mechanism for a long time despite the
fact that there were several solutions (such as
Diskdump [1], Netdump [2], and LKCD [3])
available out of tree . Concerns about their in-
trusiveness and reliability prevented them from
making it into the vanilla kernel.

Eventually, a handful of crash dumping so-
lutions based on kexec [4, 5] appeared:
Kdump [6, 7], Mini Kernel Dump [8], and
Tough Dump [9]. On paper, the kexec-based
approach seemed very reliable and the impact
in the kernel code was certainly small. Thus,
kdump was eventually proposed as Linux ker-
nel’s crash dumping mechanism and subse-
quently accepted.

However, having a crash dumping mechanism
does not necessarily imply that we can get a
dump under any crash scenario. It is necessary
to do proper testing, so that the success rate and
accuracy of the dumps can be estimated and the
different solutions compared fairly. Besides,
having a standardised test suite would also help
establishing a quality standard and, collaterally,
detecting regressions would be much easier.

Unless otherwise indicated, henceforth all the
explanations will refer to i386 and x86_64 ar-
chitectures, and Linux 2.6.16 kernel.

154 • Evaluating Linux Kernel Crash Dumping Mechanisms

1.1 Shortcomings of current testing meth-
ods

Typically to test crash dumping mechanisms a
kernel module is created that artificially causes
the system to die. Common methods to bring
the system down from this module consist of
directly invoking panic, making a null pointer
dereference and other similar techniques.

Sometimes, to ease testing a user space tool is
provided that sends commands to the kernel-
space part of the testing tool (via the /proc
file system or a new device file), so that things
like the crash type to be generated can be con-
figured at run-time.

Beyond the crash type, there are no provisions
to further define the crash scenario to be recre-
ated. In other words, parameters like the load
of the machine and the state of the hardware
are undefined at the time of testing.

Judging from the results obtained with this ap-
proach to testing all crash dumping solutions
seem to be very close in terms of reliability,
regardless of whether they are kexec-based or
not, which seems to contradict theory. The rea-
son is that the coverage of the tests is too lim-
ited as a consequence of leaving important fac-
tors out of the picture. Just to give some exam-
ples, the hardware conditions (such as ongoing
DMA or interrupt state), the system load, and
the execution context are not taken into consid-
eration. This greatly diminishes the relevance
of the results.

1.2 LKDTT motivation

The critical role crash dumping solutions play
in enterprise systems calls for proper testing,
so that we can have an estimate of their suc-
cess rate under realistic crash scenarios. This is
something the current testing methods cannot

achieve and, as an attempt to fill this gap, the
LKDTT project [10] was created.

Using LKDTT many deficiencies in kdump,
LKCD, mkdump and other similar projects
were found. Over the time, some regressions
were observed too. This type of information
is of great importance to both Linux distribu-
tions and end-users, and making sure it does
not pass unnoticed is one of the commitments
of this project.

To create meaningful tests it is necessary to un-
derstand the basics of the different crash dump-
ing mechanisms. A brief introduction follows
in the next section.

2 Crash dump

A variety of crash dumping solutions have
been developed for Linux and other UNIX R©-
like operating systems over the time. Even
though implementations and design principles
may differ greatly, all crash dumping mecha-
nisms share a multistage nature:

1. Crash detection.

2. Minimal machine shutdown.

3. Crash dump capture.

2.1 Crash detection

For the crash dump capturing process to start
a trigger is needed. And this trigger is, most
interestingly, a system crash.

The problem is that this peculiar trigger some-
times passes unnoticed or, in the words, the ker-
nel is unable to detect that itself has crashed.

2006 Linux Symposium, Volume One • 155

The culprits of system crashes are software er-
rors and hardware errors. Often a hardware er-
ror leads to a software errors, and vice versa,
so it is not always easy to identify the original
problem. For example, behind a panic in the
VFS code a damaged memory module might
be lurking.

There is one principle that applies to both soft-
ware and hardware errors: if the intention is
to capture a dump, as soon as an error is de-
tected control of the system should be handed
to the crash dumping functionality. Deferring
the crash dumping process by delegating in-
vocation of the dump mechanism to functions
such as panic is potentially fatal, because the
crashing kernel might well lose control of the
system completely before getting there (due to
a stack overflow for example).

As one might expect, the detection stage of the
crash dumping process does not show marked
implementation specific differences. As a con-
sequence, a single implementation could be
easily shared by the different crash dumping so-
lutions.

2.1.1 Software errors

A list of the most common crash scenarios the
kernel has to deal with is provided below:

• Oops: Occurs when a programming mis-
take or an unexpected event causes a situa-
tion that the kernel deems grave. Since the
kernel is the supervisor of the entire sys-
tem it cannot simply kill itself as it would
do with a user-space application that goes
nuts. Instead, the kernel issues and oops
(which results in a stack trace and error
message to the console) and strives to get
out of the situation. But often, after the
oops, the system is left in an inconsistent

state the kernel cannot recover from and,
to avoid further damage, the system panics
(see panic below). For example, a driver
might have been in the middle of talking
to hardware or holding a lock at the time
of the crash and it would not be safe to re-
sume execution. Hence, a panic is issued
instead.

• Panic: Panics are issued by the kernel
upon detecting a critical error from which
it cannot recover. After printing and error
message the system is halted.

• Faults: Faults are triggered by instructions
that cannot or should not be executed by
the CPU. Even though some of them are
perfectly valid, and in fact play an essen-
tial role in important parts of the kernel
(for example, pages faults in virtual mem-
ory management); there are certain faults
caused by programming errors, such as
divide-error, invalid TSS, or double fault
(see below), which the kernel cannot re-
cover from.

• Double and triple faults: A double fault
indicates that the processor detected a sec-
ond exception while calling the handler for
a previous exception. This might seem a
rare event but it is possible. For exam-
ple, if the invocation of an exception han-
dler causes a stack overflow a page fault
is likely to happen, which, in turn, would
cause a double fault. In i386 architectures,
if the CPU faults again during the incep-
tion of the double fault, then it triple faults,
entering a shutdown cycle that is followed
by a system RESET.

• Hangs: Bugs that cause the kernel to loop
in kernel mode, without giving other tasks
the chance to run. Hangs can be classified
in two big groups:

– Soft lockups: These are transitory
lockups that delay execution and

156 • Evaluating Linux Kernel Crash Dumping Mechanisms

scheduling of other tasks. Soft lock-
ups can be detected using a software
watchdog.

– Hard lockups: These are lockups that
leave the system completely unre-
sponsive. They occur, for example,
when a CPU disables interrupts and
gets stuck trying to get spinlock that
is not freed due to a locking error.
In such a state timer interrupts are
not served, so scheduler-based soft-
ware watchdogs cannot be used for
detection. The same happens to key-
board interrupts, and that is why the
Sys Rq key cannot be used to trig-
ger the crash dump. The solution
here is using the NMI handler.

• Stack overflows: In Linux the size of the
stacks is limited (at the time of writing
i386’s default size is 8KB) and, for this
reason, the kernel has to make a sensitive
use of the stack to avoid bloating. It is
a common mistake by novice kernel pro-
grammers to declare large automatic vari-
ables or to use deeply nested recursive al-
gorithms; both of these practises tend to
cause stack overflows. Stacks are also
jeopardised by other factors that are not so
evident. For example, in i386 interrupts
and exceptions use the stack of the current
task, which puts extra pressure on it. Con-
sequently, interruption nesting should also
be taken into account when programming
interrupt handlers.

2.1.2 Hardware errors

Not only software has errors, sometimes ma-
chines fail too. Some hardware errors are re-
coverable, but when a fatal error occurs the sys-
tem should come to a halt as fast as possible
to avoid further damage. It is not even clear

whether trying to capture a crash dump in the
event of a serious hardware error is a sensi-
tive thing to do. When the underlying hard-
ware cannot be trusted one would rather bring
the system down to avoid greater havoc.

The Linux kernel can make use of some er-
ror detection facilities of computer hardware.
Currently the kernel is furnished with several
infrastructures which deal with hardware er-
rors, although the tendency seems to be to con-
verge around EDAC (Error Detection and Cor-
rection) [11]. Common hardware errors the
Linux kernel knows about include:

• Machine checks: Machine checks occur in
response to CPU-internal malfunctions or
as a consequence of hardware resets. Their
occurrence is unpredictable and can leave
memory and/or registers in a partially up-
dated state. In particular, the state of the
registers at the time of the event is com-
pletely undefined.

• System RAM errors: In systems equipped
with ECC memory the memory chip has
extra circuitry that can detect errors in the
ingoing and outgoing data flows.

• PCI bus transfer errors: The data travel-
ling to/from a PCI device may experience
corruption whilst on the PCI bus. Even
though a majority of PCI bridges and pe-
ripherals support such error detection most
system do not check for them. It is worth
noting that despite the fact that some of
this errors might trigger an NMI it is not
possible figure out what caused it, because
there is no more information.

2.2 Minimal machine shutdown

When the kernel finds itself in a critical situa-
tion it cannot recover from, it should hand con-

2006 Linux Symposium, Volume One • 157

trol of the machine to the crash dumping func-
tionality. In contrast to the previous stage (de-
tection), the things that need to be done at this
point are quite implementation dependent. That
said, all the crash dumping solutions, regardless
of their design principles, follow the basic exe-
cution flow indicated below:

1. Right after entering the dump route the
crashing CPU disables interrupts and
saves its context in a memory area spe-
cially reserved for that purpose.

2. In SMP environments, the crashing CPU
sends NMI IPIs to other CPUs to halt
them.

3. In SMP environments, each IPI receiving
processor disables interrupts and saves its
context in a special-purpose area. After
this, the processor busy loops until the
dump process ends.
Note: Some kexec-based crash dump cap-
turing mechanisms relocate to boot CPU
after a crash, so this step becomes differ-
ent in those cases (see Section 7.4 for de-
tails).

4. The crashing CPU waits a certain amount
of time for IPIs to be processed by the
other CPUs, if any, and resumes execution.

5. Device shutdown/reinitialization, if done
at all, is kept to a minimum, for it is not
safe after a crash.

6. Jump into the crash dump capturing code.

2.3 Crash dump capture

Once the minimal machine shutdown is com-
pleted the system jumps into the crash dump
capturing code, which takes control of the sys-
tem to do the dirty work of capturing the dump
and saving the dump image in a safe place.

Before continuing, it is probably worth defining
what is understood by kernel crash dump. A
kernel crash dump is an image of the resources
in use by the kernel at the time of the crash, and
whose analysis is an essential element to clarify
what went wrong. This usually comprises an
image of the memory available to the crashed
kernel and the register states of all the proces-
sors in the system. Essentially, any information
deemed useful to figure out the source of the
problem is susceptible of being included in the
dump image.

This final and decisive stage is probably the one
that varies more between implementations. At-
tending to the design principles two big groups
can be identified though:

• In-kernel solutions: LKCD, Diskdump,
Netdump.

• kexec-based solutions: Kdump, MK-
Dump, Tough Dump.

2.3.1 In-kernel solutions

The main characteristic of the in-kernel ap-
proach is, as the name suggests, that the crash
dumping code uses the resources of the crash-
ing kernel. Hence, these mechanisms, among
other things, make use of the drivers and the
memory of the crashing kernel to capture the
crash dump. As might be expected this ap-
proach has many reliability issues (see Sec-
tion 5.1 for an explanation and Table 2 for test
results).

2.3.2 kexec-based solutions

The core design principle behind the kexec-
based approach is that the dump is captured
from an independent kernel (the crash dump

158 • Evaluating Linux Kernel Crash Dumping Mechanisms

kernel or second kernel) that is soft-booted af-
ter the crash. Here onwards, for discussion pur-
poses, crashing kernel is referred to as first ker-
nel and the kernel which captures the dump as
either capture kernel or second kernel.

As a general rule, the crash dumping mecha-
nism should avoid fiddling with the resources
(such as memory and CPU registers) of the
crashing kernel. And, when this is inevitable,
the state of these resources should be saved be-
fore they are used. This means that if the cap-
ture kernel wants to use a memory region the
first kernel was using, it should first save the
original contents so that this information is not
missing in the dump image. These considera-
tions along with the fact that we are soft boot-
ing into a new kernel determines the possible
implementations of the capture kernel:

• Booting the capture kernel from the stan-
dard memory location
The capture kernel is loaded in a reserved
memory region and in the event of a crash
it is copied to the memory area from where
it will boot. Since this kernel is linked
against the architecture’s default start ad-
dress, it needs to reside in the same place
in memory as the crashing kernel. There-
fore, the memory area necessary to accom-
modate the capture kernel is preserved by
copying it to a backup region just before
doing the copy. This was the approach
taken by Tough Dump.

• Booting the second kernel from a reserved
memory region
After a crash the system is unstable and the
data structures and functions of the crash-
ing kernel are not reliable. For this rea-
son there is no attempt to perform any kind
of device shutdown and, as a consequence,
any ongoing DMAs at the time of the crash
are not stopped. If the approach discussed
before is used the capture kernel is prone

to be stomped by DMA transactions initi-
ated in the first kernel. As long as IOMMU
entries are not reassigned, this problem
can be solved by booting the second ker-
nel directly from the reserved memory re-
gion it was loaded into. To be able to boot
from the reserved memory region the ker-
nel has to be relocated there. The reloca-
tion can be accomplished at compile time
(with the linker) or at run-time (see dis-
cussion in Section 7.2.1). Kdump and mk-
dump take the first and second approach,
respectively.

For the reliability reasons mentioned above the
second approach is considered the right solu-
tion.

3 LKDTT

3.1 Outline

LKDTT is a test suite that forces the kernel
to crash by artificially recreating realistic crash
scenarios. LKDTT accomplishes this by taking
into account both the state of the hardware (for
example, execution context and DMA state)
and the load conditions of the system for the
tests.

LKDTT has kernel-space and user-space com-
ponents. It consists of a kernel patch that im-
plements the core functionality, a small utility
to control the testing process (ttutils), and
a set of auxiliary tools that help recreating the
necessary conditions for the tests.

Usually tests proceed as follows:

• If it was not built into the kernel, load the
DTT (Dump Test Tool) module (see Sec-
tion 3.2.2).

2006 Linux Symposium, Volume One • 159

• Indicate the point in the kernel where the
crash is to be generated using ttutils
(see Section 3.3). This point is called
Crash Point (CP).

• Reproduce the necessary conditions for
the test using the auxiliary tools (see Sec-
tion 3.4).

• Configure the CP using ttutils. The
most important configuration item is the
crash type.

• If the CP is located in a piece of code
rarely executed by the kernel, it may be-
come necessary to use some of the aux-
iliary tools again to direct the kernel to-
wards the CP.

A typical LKDTT session is depicted in Ta-
ble 1.

3.2 Implementation

LKDTT is pretty simple and specialized
on testing kernel crash dumping solutions.
LKDTT’s implementation is sketched in Fig-
ure 1, which will be used throughout this sec-
tion for explanation purposes.

The sequence of events that lead to an artificial
crash is summarized below:

• Kernel execution flow reaches a crash
point or CP (see 3.2.1). In the picture the
CP is called HD_CP and is located in the
hard disk device driver.

• If the CP is enabled the kernel jumps into
the DTT module. Otherwise execution re-
sumes from the instruction immediately
after the CP.

crash0

>=1

DTT

HD driver

Tasklet

HD_CP

HD_CP_CNT--

Figure 1: Crash points implementation

• The DTT module checks the counter as-
sociated with the CP. This counter (HD_
CP_CNT in the example) keeps track of
the number of times the CP in question has
been crossed.

• This counter is a reverse counter in reality,
and when it reaches 0 the DTT (Dump Test
Tool) module induces the system crash as-
sociated with the CP. If the counter is still
greater than zero execution returns from
the module and continues from the instruc-
tion right after the CP.

Both the initial value of the counter and the
crash type to be generated are run-time con-
figurable from user space using ttutils
(see 3.3). Crash points, however, are inserted
in the kernel source code as explained in the
following section.

160 • Evaluating Linux Kernel Crash Dumping Mechanisms

modprobe dtt
./ttutils ls
id crash type crash point name count location
1 none INT_HARDWARE_ENTRY 0 kern
3 none FS_DEVRW 0 kern
4 panic MEM_SWAPOUT 7 kern
5 none TASKLET 0 kern
./ttutils add -p IDE_CORE_CP -n 50
./ttutils ls
id crash type crash point name count location
1 none INT_HARDWARE_ENTRY 0 kern
3 none FS_DEVRW 0 kern
4 panic MEM_SWAPOUT 7 kern
5 none TASKLET 0 kern
50 none IDE_CORE_CP 0 dyn
./helper/memdrain
./ttutils set -p IDE_CORE_CP -t panic -c 10

Table 1: LKDTT usage example

3.2.1 Crash Points

Each of the crash scenarios covered by the test
suite is generated at a Crash Point (CP), which
is a mere hook in the kernel. There are two
different approaches to inserting hooks at arbi-
trary points in the kernel: patching the kernel
source and dynamic probing. At first glance,
the latter may seem the clear choice, because
it is more flexible and it would not be neces-
sary to recompile the kernel to insert a new CP.
Besides, there is already an implementation of
dynamic probing in the kernel (Kprobes [12]),
with which the need of a kernel recompilation
disappears completely.

Despite all these advantages dynamic probing
was discarded because it changes the execution
mode of the processor (a breakpoint interrupt
is used) in a way that can modify the result of
a test. Using /dev/mem to crash the kernel
is another option, but in this case there is no
obvious way of carrying out the tests in a con-
trolled manner. These are the main motives be-
hind LKDTT’s election of the kernel patch ap-

proach. Specifically, the current CP implemen-
tation is based on IBM’s Kernel Hooks.

In any case, a recent extension to Kprobes
called Djprobe [13] that uses the breakpoint
trap just once to insert a jump instruction at
the desired probe point and uses this thereafter
looks promising (the jump instruction does not
alter the CPU’s execution mode and, conse-
quently, should not alter the test results).

As pointed out before, each CP has two at-
tributes: number of times the CP is crossed be-
fore causing the system crash and the crash type
to be generated.

At the time of writing, 5 crash types are sup-
ported:

• Oops: generates a kernel oops.

• Panic: generates a kernel panic.

• Exception: dereferences a null pointer.

• Hang: simulates a locking error by busy
looping.

2006 Linux Symposium, Volume One • 161

• Overflow: bloats the stack.

As mentioned before, crash points are inserted
in the kernel source code. This is done using
the macro CPOINT provided by LKDTT’s ker-
nel patch (see 3.5). An example can be seen in
code listing 1.

3.2.2 DTT module

The core of LKDTT is the DTT (Dump Test
Tool) kernel module. Its main duties are: man-
aging the state of the CPs, interfacing with
the user-space half of LKDTT (i.e. ttutils)
through the /proc file system, and generat-
ing the crashes configured by the user using the
aforementioned interface.

Figure 2 shows the pseudo state diagram of a
CP (the square boxes identify states). From
LKDTT’s point of view, CPs come to existence
when they are registered. This is done auto-
matically in the case of CPs compiled into the
kernel image. CPs residing in kernel modules,
on the other hand, have to be registered either
by calling a CP registration function from the
module’s init method, or from user space using
a special ttutils’ option (see add in ttutils,
Section 3.3, for a brief explanation and Table 1
for a usage example). The later mechanism is
aimed at reducing the intrusiveness of LKDTT.

Once a CP has been successfully registered
the user can proceed to configure it using
ttutils (see set in ttutils, Section 3.3, and
Table 1 for an example). When the CP is en-
abled, every time the CP is crossed the DTT
module decreases the counter associated with it
by one and, when it reaches 0, LKDTT simu-
lates the corresponding failure.

If it is an unrecoverable failure, the crash dump-
ing mechanism should assume control of the

CP enabled

Countdown

CP registered

.

fatal?

0?

CP disabled

CP deleted

Yes

Yes

No

No

Dump capturecrash

CP configuration

CP reached

CP deletion

CP configuration

Init

CP registration

CP deactivation

Crash generation

Figure 2: State diagram of crash points

system and capture a crash dump. However, if
the kernel manages to recover from this even-
tuality the CP is marked as disabled, and re-
mains in this state until it is configured again
or deleted. There is a caveat here though: in-
kernel CPs cannot be deleted.

LKDTT can be enabled either as a kernel mod-
ule or compiled into the kernel. In the modular
case it has to be modprobed:

modprobe dtt [rec_num={>0}]

rec_num sets the recursion level for the stack
overflow test (default is 10). The stack growth
is approximately rec_num*1KB.

3.3 ttutils

ttutils is the user-space bit of LKDTT. It
is a simple C program that interfaces with the

162 • Evaluating Linux Kernel Crash Dumping Mechanisms

DTT module through /proc/dtt/ctrl and
/proc/dtt/cpoints. The first file is used
to send commands to the DTT module, com-
monly to modify the state of a CP. The second
file, on the other hand, can be used to retrieve
the state of crash points. It should be fairly easy
to integrate the command in scripts to automate
the testing process.

The ttutils command has the following format:

ttutils command [options]

The possible commands being:

• help: Display usage information.

• ver(sion): Display version number of
LKDTT.

• list|ls: Show registered crash points.

• set: Configure a Crash Point (CP). set
can take two different options:
-p cpoint_name: CP’s name.
-t cpoint_type: CP’s crash type.
Currently the available crash types are:
none (do nothing), panic, bug (oops), ex-
ception (generates an invalid exception),
loop (simulates a hang), and overflow.
-c pass_num: Number of times the
crash point has to be crossed before the
failure associated with its type is induced.
The default value for pass_num is 10.

• reset: Disable a CP. Besides, the asso-
ciated counter that keeps track of the num-
ber of times the crash point has been tra-
versed is also reset. The options available
are:
-p cpoint_name: CP’s name.
-f: Reset not only the CP’s counter but
also revert its type to none.

• add: Register a CP from a kernel mod-
ule so that it can be actually used. This
is aimed at modules that do not register
the CPs inserted in their own code. Please
note that registering does not imply acti-
vation. Activation is accomplished using
set. add has two options:
-p cpoint_name: CP’s name.
-n id: ID to be associated with the CP.

• rmv: Remove a CP registered using add.
rmv has one single option:
-p cpoint_name: CP’s name.

3.4 Auxiliary tools

One of the main problems that arises when test-
ing crash dumping solutions is that artfully in-
serting crash points in the kernel does not al-
ways suffice to recreate certain crash scenar-
ios. Some execution paths are rarely trodden
and the kernel has to be lured to take the right
wrong way.

Besides, the tester may want the system to be
in a particular state (ongoing DMA or certain
memory and CPU usage levels, for example).

This is when the set of auxiliary tools included
in LKDTT comes into play to reproduce the de-
sired additional conditions.

A trivial example is memdrain (see Table 1
for a usage example), a small tool included in
the LKDTT bundle. memdrain is a simple C
program that reserves huge amounts of mem-
ory so that swapping is initiated. By doing so
the kernel is forced to traverse the CPs inserted
in the paging code, so that we can see how
the crash dumping functionality behaves when
a crash occurs in the middle of paging anony-
mous memory.

2006 Linux Symposium, Volume One • 163

3.5 Installation

First, the kernel patch has to be applied:

cd <PATH_TO_KERNEL_X.Y.Z>

zcat <PATH_TO_PATCH>/dtt-full-X.

Y.Z.patch.gz | patch -p1

Once the patch has been applied we can pro-
ceed to configure the kernel as usual, but mak-
ing sure that we select the options indicated be-
low:

make menuconfig
Kernel hacking --->
Kernel debugging [*]
Kernel Hook support [*] or [M]
Crash points [*] or [M]

The final steps consist of compiling the kernel
and rebooting the system:

make
make modules_install
make install
shutdown -r now

The user space tools (ttutils and the auxil-
iary tools) can be installed as follows:

tar xzf dtt_tools.tar.gz
cd dtt_tools
make

4 Test results

The results of some tests carried out with
LKDTT against LKCD and two different ver-
sions of the vanilla kernel with kdump enabled
can be seen in Table 2.

For each crash point all the crash types sup-
ported by LKDTT were tried: oops, panic, ex-
ception, hang, and overflow. The meaning of
the crash points used during the tests is ex-
plained in Section 3.2.1.

The specifications of the test machine are as
follows:

• CPU type: Intel Pentium 4 Xeon Hyper-
threading.

• Number of CPUs: 2.

• Memory: 1GB.

• Disk controller: ICH5 Serial ATA.

The kernel was compiled with the options be-
low turned on (when available): CONFIG_

PREEMPT, CONFIG_PREEMPT_BKL, CONFIG_
DETECT_SOFTLOCKUP, CONFIG_4KSTACKS,
CONFIG_SMP. And the kernel command line
for the kdump tests was:

root=/dev/sda1 ro crashkernel=32M@

16M nmi_watchdog=1 console=ttyS0,

38400 console=tty0

The test results in Table 2 are indicated using
the convention below:

• O: Success.

• O(nrbt): The system recovered from
the induced failure. However, a subse-
quent reboot attempt failed, leaving the
machine hanged.

• O(nrbt, nmiw): The dump image
was captured successfully but the system
hanged when trying to reboot. The NMI
watchdog detected this hang and, after
determining that the crash dump had al-
ready been taken, tried to reboot the sys-
tem again.

164 • Evaluating Linux Kernel Crash Dumping Mechanisms

Crash point Crash type LKCD 6.1.0 kdump 2.6.13-rc7 kdump 2.6.16
INT_HARDWARE_ENTRY panic X 0 0

oops X (nmiw, nrbt) X (nmiw) 0
exception X (nmiw, nrbt) X (nmiw) 0

hang X 0 0
overflow X X X

INT_HW_IRQ_EN panic X 0 0
oops X 0 X(2c)

exception X 0 0
hang X X X

overflow X X X
INT_TASKLET_ENTRY panic 0(nrbt, nmiw) 0 0

oops 0(nrbt, nmiw) 0 0
exception 0(nrbt, nmiw) 0 0

hang X X (SysRq) X(det,SysRq)
overflow X X X

TASKLET panic 0(nrbt, nmiw) 0 0
oops 0(nrbt, nmiw) 0 0

exception 0(nrbt, nmiw) 0 0
hang 0(nrbt, nmiw) 0 0

overflow X X X
FS_DEVRW panic 0(nrbt, nmiw) 0 X(2c)

oops 0(nrbt, nmiw) 0 X (log,SysRq)
exception 0(nrbt, nmiw) 0 X (log,SysRq)

hang X X (SysRq) X (SysRq)
overflow X X X

MEM_SWAPOUT panic 0(nrbt, nmiw) 0 0
oops 0(nrbt, nmiw) 0 0 (nrbt)

exception 0(nrbt, nmiw) 0 0 (nrbt)
hang X X X (unk,SysRq,2c)

overflow X X X
TIMERADD panic 0(nrbt, nmiw) 0 0

oops 0(nrbt, nmiw) 0 0
exception 0(nrbt, nmiw) 0 0

hang X 0 0
overflow X X X

SCSI_DISPATCH_CMD panic X 0 0
oops X 0 0

exception X 0 0
hang X X (SysRq) X (det,SysRq)

overflow X X X

Table 2: LKDTT results

2006 Linux Symposium, Volume One • 165

• X: Failed to capture dump.

• X(2c): After the crash control of the
system was handed to the capture kernel,
but it crashed due to a device initialization
problem.

• X(SysRq): The crash not detected by the
kernel, but the dump process was success-
fully started using the Sys Rq key.
Note: Often, when plugged after the crash
the keyboard does not work and the Sys
Rq is not effective as a trigger for the
dump.

• X(SysRq, 2c): Like the previous case,
but the capture kernel crashed trying to ini-
tialize a device.

• X(det, SysRq): The hang was de-
tected by the soft lockup watchdog
(CONFIG_DETECT_SOFTLOCKUP). Since
this watchdog only notifies about the
lockup without taking any active measures
the dump process had to be started using
the Sys Rq key.
Note: Even though the dump was success-
fully captured the result was marked with
an X because it required user intervention.
The action to take upon lockup should be
configurable.

• X(log, SysRq): The system became
increasingly unstable, eventually becom-
ing impossible to login into the system
anymore (the prompt did not return af-
ter introducing login name and password).
After the system locked up like this, the
dump process had to be initiated using the
Sys Rq key, because neither the NMI
watchdog nor the soft lockup watchdog
could detect any anomaly.

• X(nmiw): The error was detected but the
crashing kernel failed to hand control of

the system to the crash dumping mecha-
nism and hanged. This hang was subse-
quently detected by the NMI watchdog,
who succeed in invoking the crash dump-
ing functionality. Finally, the dump was
successfully captured.
Note: The result was marked with an X be-
cause the NMI watchdog sometimes fails
to start the crash dumping process.

• X(nmiw, nrbt): Like the previous
case, but after capturing the dump the sys-
tem hanged trying to reboot.

• X(unk,SysRq,2c): The auxiliary tool
used for the test (see Section 3.4) became
unkillable. After triggering the dump pro-
cess using the Sys Rq key, the capture
kernel crashed attempting to reinitialize a
device.

4.1 Crash points

Even though testers are free to add new CPs,
LKDTT is furnished with a set of essential CPs,
that is, crash scenarios considered basic and
that should always be tested. The list follows:

IRQ handling with IRQs disabled (INT_
HARDWARE_ENTRY) This CP is crossed when-
ever an interrupt that is to be handled with IRQs
disabled occurs (see code listing 1).

IRQ handling with IRQs enabled (INT_
HW_IRQ_EN) This is the equivalent to the pre-
vious CP with interrupts enabled (see code list-
ing 2).

Tasklet with IRQs disabled (TASKLET) If
this CP is active crashes during the service of
Linux tasklets with interrupts disabled can be
recreated.

166 • Evaluating Linux Kernel Crash Dumping Mechanisms

fastcall unsigned int __do_IRQ(
unsigned int irq, struct
pt_regs *regs)

{
.....

CPOINT(INT_HARDWARE_ENTRY);
for (;;) {

irqreturn_t action_ret;

spin_unlock(&desc->lock);

action_ret = handle_IRQ_event(
irq, regs, action);

.....
}

Listing 1: INT_HARDWARE_ENTRY crash
point (kernel/irq/handle.c)

Tasklet with IRQs enabled (INT_
TASKLET_ENTRY) Using this CP it is possible
to cause a crash when the kernel is in the
middle of processing a tasklet with interrupts
enabled.

Block I/O (FS_DEVRW) This CP is used to
bring down the system while the file system
is performing low-level access to block devices
(see code listing 3).

Swap-out (MEM_SWAPOUT) This CP is lo-
cated in the code that tries to allocate space for
anonymous process memory.

Timer processing (TIMERADD) This is a CP
situated in the code that starts and re-starts high
resolution timers.

SCSI command (SCSI_DISPATCH_CMD)
This CP is situated in the SCSI command
dispatching code.

fastcall int handle_IRQ_event(
.....

if (!(action->flags &
SA_INTERRUPT)) {

local_irq_enable();
CPOINT(INT_HW_IRQ_EN);

}

do {
ret = action->handler(irq,

action->dev_id, regs);
if (ret == IRQ_HANDLED)

status |= action->flags;
.....

}

Listing 2: INT_HW_IRQ_EN crash point
(kernel/irq/handle.c)

IDE command (IDE_CORE_CP) This CP is
situated in the code that handles I/O operations
on IDE block devices.

5 Interpretation of the results and
possible improvements

5.1 In-kernel crash dumping mechanisms
(LKCD)

The primary cause of the bad results obtained
by LKCD, and in-kernel crash dumping mech-
anism in general, is the flawed assumption that
the kernel can be trusted and will in fact be op-
erating in a normal fashion. This creates two
major problems.

First, there is a problem with resources, notably
with resources locking up, because it is not pos-
sible to know the locking status at the time of
the crash. LKCD uses drivers and services of
the crashing kernel to capture the dump. As a

2006 Linux Symposium, Volume One • 167

void ll_rw_block(int rw, int nr,
struct buffer_head *bhs[])

{
.....

get_bh(bh);
submit_bh(rw, bh);
continue;

}
}
unlock_buffer(bh);
CPOINT(FS_DEVRW);

}
}

Listing 3: FS_DEVRW crash point
(fs/buffer.c)

consequence, if the operation that has caused
the crash was locking resources necessary to
capture the dump, the dump operation will end
up deadlocking. For example, the driver for the
dump device may try to obtain a lock that was
held before the crash occurred and, as it will
never be released, the dump operation will hang
up. Similarly, on SMP systems as operations
being run on other CPUs are forced to stop in
the event of a crash, there is the possibility that
resources needed during the dumping process
may be locked, because they were in use by any
of the other CPUs and were not released before
they halted. This may put the dump operation
into a lockup too. Even if this doesn’t result in a
lock-up, insufficient system resources may also
cause the dump operation to fail.

The source of the second problem is the reli-
ability of the control tables, kernel text, and
drivers. A kernel crash means that some kind
of inconsistency has occurred within the ker-
nel and that there is a strong possibility a con-
trol structure has been damaged. As in-kernel
crash dump mechanisms employ functions of
the crashed system for outputting the dump,
there is the very real possibility that the dam-
aged control structures will be referenced. Be-

sides, page tables and CPU registers such as
the stack pointer may be corrupted too, which
can potentially lead to faults during the crash
dumping process. In these circumstances, even
if a crash dump is finally obtained, the result-
ing dump image is likely to be invalid, so that it
cannot be properly analyzed.

For in-kernel crash dumping mechanisms there
is no obvious solution to the memory corrup-
tion problems. However, the locking issues
can be alleviated by using polling mode (as op-
posed to interrupt mode) to communicate with
the dump devices.

Setting up a controllable dump route within the
kernel is very difficult, and this is increasingly
true as the size and complexity of the kernel
augments. This is what sparked the apparition
of methods capable of capturing a dump inde-
pendent from the existing kernel.

5.2 Kdump

Even though kdump proved to be much more
reliable than in-kernel crash dumping mecha-
nisms there are still issues in the three stages
that constitute the dump process (see Sec-
tion 2):

• Crash detection: hang detection, stack
overflows, faults in the dump route.

• Minimal machine shutdown: stack over-
flows, faults in the dump route.

• Crash dump capture: device reinitializa-
tion, APIC reinitialization.

5.2.1 Stack overflows

In the event of a stack overflow critical data
that usually resides at the bottom of the stack

168 • Evaluating Linux Kernel Crash Dumping Mechanisms

is likely to be stomped and, consequently, its
use should be avoided.

In particular, in the i386 and IA64 architec-
tures the macro smp_processor_id() ul-
timately makes use of the cpu member of
struct thread_info, which resides at the
bottom of the stack. x86_64, on the other hand,
is not affected by this problem because it bene-
fits from the use of the PDA infrastructure.

Kdump makes heavy use of smp_
processor_id() in the reboot path to
the second kernel, which can lead to unpre-
dictable behaviour. This issue is particularly
serious in SMP systems because not only the
crashing CPU but also the rest of CPUs are
highly dependent on likely-to-be-corrupted
stacks. The reason it that during the minimal
machine shutdown stage (see Section 2.2 for
details) NMIs are used to stop the CPUs, but
the NMI handler was designed on the premise
that stacks can be trusted. This obviously does
not hold good in the event of a crash overflow.

The NMI handler (see code listing 4) uses
the stack indirectly through nmi_enter(),
smp_processor_id(), default_do_nmi,
nmi_exit(), and also through the crash-
time NMI callback function (crash_nmi_
callback()).

Even though the NMI callback function can be
easily made stack overflow-safe the same does
not apply to the rest of the code.

To circumvent some of these problems at the
very least the following measures should be
adopted:

• Create a stack overflow-safe replacement
for smp_processor_id, which could be
called safe_smp_processor_id (there
is already an implementation for x86_64).

fastcall void do_nmi(struct
pt_regs * regs, long error_code
)

{
int cpu;

nmi_enter();
cpu = smp_processor_id();
++nmi_count(cpu);

if (!rcu_dereference(
nmi_callback)(regs, cpu))

default_do_nmi(regs);

nmi_exit();
}

Listing 4: do_nmi (i386)

• Substitute smp_processor_id with
safe_smp_processor_id, which is
stack overflow-safe, in the reboot path to
the second kernel.

• Add a new NMI low-level handling rou-
tine (crash_nmi) in arch/*/kernel/
entry.S that invokes a stack overflow
safe NMI handler (do_crash_nmi) in-
stead of do_nmi.

• In the event of a system crash replace the
default NMI trap vector so that the new
crash_nmi is used.

If we want to be paranoid (and being paranoid
is what crash dumping is all about after all), all
the CPUs in the system should switch to new
stacks as soon as a crash is detected. This in-
troduces the following requirements:

• Per-CPU crash stacks: Reserve one stack
per CPU for use in the event of a system
crash. A CPU that has entered the dump
route should switch to its respective per-
CPU stack as soon as possible because the

2006 Linux Symposium, Volume One • 169

cause of the crash might have a stack over-
flow, and continuing to use the stack in
such circumstances can lead to the gener-
ation of invalid faults (such as double fault
or invalid TSS). If this happens the system
is bound to either hang or reboot sponta-
neously. In SMP systems, the rest of the
CPUs should follow suit, switching stacks
at the NMI gate (crash_nmi).

• Private stacks for NMIs: The NMI watch-
dog can be used to detect hard lockups and
invoke kdump. However, this dump route
consumes a considerable amount of stack
space, which could cause a stack overflow,
or contribute to further bloating the stack
if it has already overflowed. As a conse-
quence of this, the processor could end up
faulting inside the NMI handler which is
something that should be avoided at any
cost. Using private NMI stacks would
minimize these risks.

To limit the havoc caused by bloated stacks, the
fact that a stack is about to overflow should be
detected before it spills out into whatever is ad-
jacent to it. This can be achieved in two differ-
ent ways:

• Stack inspection: Check the amount of
free space in the stack every time a
given event, such as an interrupt, oc-
curs. This could be easily implemented
using the kernel’s stack overflow de-
bugging infrastructure (CONFIG_DEBUG_
STACKOVERFLOW).

• Stack guarding: The second approach is
adding an unmapped page at the bottom
of the stack so that stack overflows are de-
tected at the very moment they occur. If a
small impact in performance is considered
acceptable this is the best solution.

5.2.2 Faults in the dump route

Critical parts of the kernel such as fault han-
dlers should not make assumptions about the
state of the stack. An example where proper
checking is neglected can be observed in the
code listing 5. The mm member of the
struct tsk is dereferenced without making
any checks on the validity of current. If
current happens to be invalid, the seemingly
inoffensive dereference can lead to recursive
page faults, or, if things go really bad, to a triple
fault and subsequent system reboot.

fastcall void __kprobes
do_page_fault(struct pt_regs *
regs, unsigned long error_code)

{
struct task_struct *tsk;
struct mm_struct *mm;

tsk = current;
.....
[no checks are made on

tsk]
mm = tsk->mm;
.....

}

Listing 5: do_page_fault (i386)

Finally, to avoid risks, control should be handed
to kdump as soon as a crash is detected. The
invocation of the dump mechanism should not
be deferred to panic or BUG, because many
things can go bad before we get there. For
example, it is not guaranteed that the possible
code paths never use any of the things that make
assumptions about the current stack.

5.2.3 Hang detection

The current kernel has the necessary infrastruc-
ture to detect hard lockups and soft lockups, but
they both have some issues:

170 • Evaluating Linux Kernel Crash Dumping Mechanisms

• Hard lockups: This type of lockups are de-
tected using the NMI watchdog, which pe-
riodically checks whether tasks are being
scheduled (i.e. the scheduler is alive). The
Achilles’ heel of this detection method is
that it is strongly vulnerable to stack over-
flows (see Section 5.2.1 for details). Be-
sides, there is one inevitable flaw: hangs
in the NMI handler cannot be detected.

• Soft lockups: There is a soft lockup detec-
tion mechanism implemented in the kernel
that, when enabled (CONFIG_DETECT_
SOFTLOCKUP=y), starts per-CPU watch-
dog threads which try to run once per sec-
ond. A callback function in the timer inter-
rupt handler checks the elapsed time since
the watchdog thread was last scheduled,
and if it exceeds 10 seconds it is consid-
ered a soft lockup.
Currently, the soft lockup detection mech-
anism limits itself to just printing the cur-
rent stack trace and a simple error mes-
sage. But, the possibility of triggering the
crash dumping process instead should be
available.

Using LKDTT a case in which the existing
mechanisms are not effective was discovered:
hang with interrupts enabled (see IRQ handling
with IRQs enabled in Section 4.1). In such
scenario timer interrupts continue to be deliv-
ered and processed normally so both the NMI
watchdog and the soft lockup detector end up
judging that the system is running normally.

5.2.4 Device reinitialization

There are cases in which after the crash the cap-
ture kernel itself crashes attempting to initialize
a hardware device.

In the event of a crash kdump does not do any
kind of device shutdown and, what is more, the

firmware stages of the standard boot process
are also skipped. This may leave the devices
in a state the second kernel cannot get them
out of. The underlying problem is that the soft
boot case is not handled by most drivers, which
assume that only traditional boot methods are
used (after all, many of the drivers were written
before kexec even existed) and that all devices
are in a reset state.

Sometimes even after a regular hardware reboot
the devices are not reset properly. The culprit in
such cases is a BIOS not doing its job properly.

To solve this issues the device driver model
should be improved so that it contemplates the
soft boot case, and kdump in particular. In
some occasions it might be impossible to reini-
tialize a certain device without knowing its pre-
vious state. So it seems clear that, at least in
some cases, some type information about the
state of devices should be passed to the sec-
ond kernel. This brings the power management
subsystem to mind, and in fact studying how it
works could be a good starting point to solve
the device reinitialization problem.

In the meantime, to minimize risks each ma-
chine could have a dump device (a HD or NIC)
set aside for crash dumping, so that the crash
kernel would use that device and have no other
devices configured.

5.2.5 APICs reinitialization

Kdump defers much of the job of actually sav-
ing the dump image to user-space. This means
that kdump relies on the scheduler and, conse-
quently, the timer interrupt to be able to capture
a dump.

This dependency on the timer represents a
problem, specially in i386 and x86_64 SMP
systems. Currently, on these architectures, dur-
ing the initialization of the kernel the legacy

2006 Linux Symposium, Volume One • 171

i8259 must exist and be setup correctly, even if
it will not be used past this stage. This implies
that, in APIC systems, before booting into the
second kernel the interrupt mode must return to
legacy. However, doing this is not as easy as
it might seem because the location of the i8259
varies between chipsets and the ACPI MADT
(Multiple APIC Description Table) does not
provide this information. The return to legacy
mode can accomplished in two different ways:

• Save/restore BIOS APIC states: All the
APIC states are saved early in the boot
process of the first kernel before the ker-
nel attempts to initialize them, so that the
APIC configuration as performed by the
BIOS can be obtained. In the event of a
crash, before booting into the capture ker-
nel the BIOS APIC settings are restored
back. Treating the APICs as black boxes
like this has the benefit that the origi-
nal states of the APICs can be restored
even in systems with a broken BIOS. Be-
sides, this method is theoretically immune
to changes in the default configuration of
APICs in new systems.
There is one issue with this method
though. It makes sure that the BIOS-
designated boot CPU will always see timer
interrupts in legacy mode, but this does
not hold good if the second kernel boots
on some other CPU as is possible with
kdump. Therefore, for this method to
work CPU relocation is necessary. It
should also be noted that under certain
rather unlikely circumstances relocation
might fail (see Section 7.4 for details).

• Partial save/restore: Only the informa-
tion that cannot be obtained any other way
(i.e. i8259’s location) is saved off at boot
time. Upon a crash, taking into account
this piece of information the APICs are re-
configured in such a way that all interrupts

get redirected to the CPU in which the sec-
ond kernel is going to be booted, which in
kdump’s case is the CPU where the crash
occurred. This is the approach adopted by
kdump.

6 LKDTT status and TODOS

Even though using LKDTT it is possible to
test rather thoroughly the first two stages of the
crash dumping process, that is crash detection
and minimal machine crash shutdown (see Sec-
tion 2), the capture kernel is not being suffi-
ciently tested yet. The author is currently work-
ing on the following test cases:

• Pending IRQs: Leave the system with
pending interrupts before booting into the
capture kernel, so that the robustness of
device drivers against interrupts coming at
an unexpected time can be tested.

• Device reinitialization: For each device
test whether it is correctly initialized after
a soft boot.

Another area that is under development at the
moment is test automation. However, due to the
special nature of the functionality being tested
there is a big roadblock for automation: the sys-
tem does not always recover gracefully from
crashes so that tests can resume. That is, in
some occasions the crash dumping mechanism
that is being tested will fail, or the system will
hang while trying to reboot after capturing the
dump. In such cases human intervention will
always be needed.

7 Other kdump issues

The kernel community has been expecting that
the various groups which are interested in crash

172 • Evaluating Linux Kernel Crash Dumping Mechanisms

dumping would converge around kdump once it
was merged. And the same was expected from
end-users and distributors. However, so far, this
has not been the case and work has continued
on other strategies.

The causes of this situation are diverse and, to a
great extent, unrelated to reliability aspects. In-
stead, the main issues have to do with availabil-
ity, applicability and usability. In some cases it
is just a matter of time before they get naturally
solved, but, in others, improvements need to be
done to kdump.

7.1 Availability and applicability

Most of the people use distribution-provided
kernels that are not shipped with kdump yet.
Certainly, distributions will eventually catch up
with the mainstream kernel and this problem
will disappear.

But, in the mean time, there are users who
would like to have a reliable crash dumping
mechanism for their systems. This is especially
the case of enterprise users, but they usually
have the problem that updating or patching the
kernel is not an option, because that would im-
ply the loss of official support for their enter-
prise software (this includes DBMSs such as
Oracle or DB2 and the kernel itself). It is an
extreme case but some enterprise systems can-
not even afford the luxury of a system reboot.

This situation along with the discontent with
the crash dumping solutions provided by dis-
tributors sparked the apparition of other kexec-
based projects (such as mkdump and Tough
Dump), which were targeting not only main-
stream adoption but also existing Linux distri-
butions. This is why these solutions sometimes
come in two flavors: a kernel patch for vanilla
kernels and a fully modularized version for dis-
tribution kernels.

7.2 Usability

There are some limitations in kdump that have
an strong impact in its usability, which affects
both end-users and distributors as discussed be-
low.

7.2.1 Hard-coding of reserved area’s start
address

To use kdump it is necessary to reserve a mem-
ory region big enough to accommodate the
dump kernel. The start address and size of this
region is indicated at boot time with the com-
mand line parameter crashkernel=Y@X, Y
denoting how much memory to reserve, and X
indicating at what physical address the reserved
memory region starts. The value of X has to be
used when configuring the capture kernel, so
that it is linked to run from that start address.
This means a displacement of the reserved area
may render the dump kernel unusable. Besides
it is not guaranteed that the memory region in-
dicated at the command line is available to the
kernel. For example, it could happen that the
memory region does not exist, or that it over-
laps system tables, such as ACPI’s. All these
issues make distribution of pre-compiled cap-
ture kernels cumbersome.

This undesirable dependency between the sec-
ond and first kernel can be broken using a run-
time relocatable kernel. The reason is that, by
definition, a run-time relocatable kernel can run
from any dedicated memory area the first kernel
might reserve for it. To achieve run-time relo-
cation a relocation table has to be added to the
kernel binary, so that the actual relocation can
be performed by either a loader (such as kexec)
or even by the kernel itself. The first calls
for making the kernel an ELF shared object.
The second can be accomplished by resolving
all the symbols in arch/*/kernel/head.S

(this is what mkdump does).

2006 Linux Symposium, Volume One • 173

7.2.2 Memory requirements

Leaving the task of writing out the crash dump
to user space introduces great flexibility at the
cost of increasing the size of the memory area
that has to be reserved for the capture kernel.
But for systems with memory restrictions (such
as embedded devices) a really small kernel with
just the necessary drivers and no user space
may be more appropriate. This connects with
the following point.

7.3 Kernel-space based crash dumping

After a crash the dump capture kernel might not
be able to restore interrupts to a usable state, be
it because the system has a broken BIOS, or be
it because the interrupt controller is buggy. In
such circumstances, processors may end up not
receiving timer interrupts. Besides, the possi-
bility of a timer failure should not be discarded
either.

In any case, being deprived of timer inter-
rupts is an insurmountable problem for user-
space based crash dumping mechanisms such
as kdump, because they depend on a working
scheduler and hence the timer.

To tackle this problem a kernel-space driven
crash dumping mechanism could be used, and
even cohabit with the current user-space cen-
tered implementation. Which one to employ
could be made configurable, or else, the kernel-
space solution could be used as a fallback
mechanism in case of failure to bring up user-
space.

7.4 SMP dump capture kernel

In some architectures, such as i386 and x86_64,
it is not possible to boot a SMP kernel from a

CPU that is not the BIOS-designated boot CPU.
Consequently, to do SMP in the capture kernel
it is necessary to relocate to the boot CPU be-
forehand. Kexec achieves CPU relocation us-
ing scheduler facilities, but kdump cannot use
the same approach because after a crash the
scheduler cannot be trusted.

As a consequence, to make kdump SMP-
capable a different solution is needed. In
fact, there is a very simple method to relo-
cate to the boot CPU that takes advantage of
inter-processor NMIs. As discussed in Sec-
tion 2.2 (Minimal machine shutdown), this type
of NMIs are issued by the crashing CPU in
SMP systems to stop the other CPUs before
booting into the capture kernel. But this be-
havior can be modified so that relocation to the
boot CPU is performed too. Obviously, if the
crashing CPU is the boot CPU nothing needs to
be done. Otherwise, upon receiving NMI the
boot CPU should assume the task of capturing
the kernel, so that the NMI-issuing CPU (i.e.
the crashing the CPU) is relieved from that bur-
den a can halt instead. This is the CPU reloca-
tion mechanism used by mkdump.

Even though being able to do SMP would boost
the performance of the capture kernel, it was
suggested that in some extreme cases of crash
the boot CPU might not even respond to NMIs
and, therefore, relocation to the boot CPU will
not be possible. However, after digging through
the manuals the author could only find (and
reproduce using LKDTT) one such scenario,
which occurs when the two conditions below
are met:

• The boot CPU is already attending a dif-
ferent NMI (from the NMI watchdog for
example) at the time the inter-processor
NMI arrives.

• The boot CPU hangs inside the handler of
this previous NMI, so it does not return.

174 • Evaluating Linux Kernel Crash Dumping Mechanisms

The explanation is that during the time a CPU
is servicing an NMI other NMIs are blocked, so
a lockup in the NMI handler guarantees a sys-
tem hang if relocation is attempted as described
before. The possibility of such a hang seems
remote and easy to evaluate. But it could also
be seen as a trade-off between performance and
reliability.

8 Conclusion

Existing testing methods for kernel crash dump
capturing mechanisms are not adequate be-
cause they do not take into account the state of
the hardware and the load conditions of the sys-
tem. This makes it impossible to recreate many
common crash scenarios, depriving test results
of much of their validity. Solving these issues
and providing controllable testing environment
were the major motivations behind the creation
of the LKDTT (Linux Kernel Dump Test Tool)
testing project.

Even though LKDTT showed that kdump is
more reliable than traditional in-kernel crash
dumping solutions, the test results revealed
some deficiencies in kdump too. Among these,
minor hang detection deficiencies, great vulner-
ability to stack overflows, and problems reini-
tializing devices in the capture kernel stand out.
Solutions to some of these problems have been
sketched in this paper and are currently under
development.

Since the foundation of the testing project the
author could observe that new kernel releases
(including release candidates) are sometimes
accompanied by regressions. Regressions con-
stitute a serious problem for both end-users and
distributors, that requires regular testing and
standardised test cases to be tackled properly.
LKDTT aims at filling this gap.

Finally, several hurdles that are hampering the
adoption of kdump were identified, the need
for a run-time relocatable kernel probably be-
ing the most important of them.

All in all, it can be said that as far as kernel
crash dumping is concerned Linux is heading
in the right direction. Kdump is already very
robust and most of the remaining issues are al-
ready being dealt with. In fact, it is just a matter
of time before kdump becomes mature enough
to focus on new fields of application.

9 Future lines of work

All the different crash dumping solutions do
just that after a system crash: capture a crash
dump. But there is more to a crashed system
kexec than crash dumping. For example, in
high availability environments it may be desir-
able to notify the backup system after a crash,
so that the failover process can be initiated ear-
lier.

In the future, kdump could also benefit from the
current PID virtualization efforts, which will
provide the foundation for process migration in
Linux. The process migration concept could be
extended to the crash case, in such a way that
after doing some sanity-checking, tasks that
have not been damaged can be migrated and re-
sume execution in a different system.

Acknowledgements

I would like to express my gratitude to Itsuro
Oda for his original contribution to LKDTT and
valuable comments, as well as to all those who
have laid the foundation for a reliable kernel
crash dumping mechanism in Linux.

2006 Linux Symposium, Volume One • 175

References

[1] Diskdump patches. http:
//www.redhat.com/support/
wpapers/redhat/netdump/.

[2] Michael K. Johnson. Red Hat, Inc.’s
network console and crash dump facility,
2002. http:
//www.redhat.com/support/
wpapers/redhat/netdump/.

[3] Linux kernel crash dump (LKCD) home
page, 2005. http:
//lkcd.sourceforge.net/.

[4] Hariprasad Nellitheertha. Reboot linux
faster using kexec, 2004.
http://www-128.ibm.com/
developerworks/linux/
library/l-kexec.html.

[5] Kexec-tools code.
http://www.xmission.com/
~ebiederm/files/kexec/.

[6] Vivek Goyal, Eric W. Biederman, and
Hariprasad Nellitheertha. A kexec based
dumping mechanism. In Ottawa Linux
Symposium (OLS 2005), July 2005.

[7] Kdump home page. http://lse.
sourceforge.net/kdump/.

[8] Itsuro Oda. Mini Kernel Dump
(MKDump) home page, 2006. http:
//mkdump.sourceforge.net/.

[9] Linux tough dump (TD) home page
(japanese site), 2006.
http://www.hitachi.co.jp/
Prod/comp/linux/products/
solution.html.

[10] Fernando Luis Vázquez Cao. Linux
kernel dump test tool (LKDTT) home
page, 2006. http:
//lkdtt.sourceforge.net/.

[11] EDAC wiki.
http://buttersideup.com/
edacwiki/FrontPage.

[12] Prasanna Panchamukhi. Kernel
debugging with kprobes, 2004.
http://www-128.ibm.com/
developerworks/linux/
library/l-kprobes.html.

[13] Djprobe documentation and patches.
http://lkst.sourceforge.
net/djprobe.html.

176 • Evaluating Linux Kernel Crash Dumping Mechanisms

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

