
The Frysk Execution Analysis Architecture

Andrew Cagney
Red Hat Canada Limited
cagney@redhat.com

Abstract

The goal of the Frysk project is to create
an intelligent, distributed, always-on system-
monitoring and debugging tool. Frysk will
allow GNU/Linux developers and system ad-
ministrators: to monitor running processes
and threads (including creation and destruction
events); to monitor the use of locking prim-
itives; to expose deadlocks, to gather data.
Users debug any given process by either choos-
ing it from a list or by accepting Frysk’s offer to
open a source code or other window on a pro-
cess that is in the process of crashing or that
has been misbehaving in certain user-definable
ways.

1 Introduction

This paper will first present a typical Frysk use-
case. The use-case will then be used to illus-
trate how Frysk differs from a more traditional
debugger, and how those differences benefit the
user. This paper will then go on to provide a
more detailed overview of Frysk’s internal ar-
chitecture and show how that architecture facil-
itates Frysk’s objectives. Finally, Frysk’s future
development will be reviewed, drawing atten-
tion areas of the Linux Kernel that can be en-
hanced to better facilitate advanced debugging
tools.

2 Example — K. the Compiler En-
gineer

K., a compiler engineer, spends a lot of time
running a large, complex test-suite involving
lots of processes and scripts, constantly mon-
itoring each run for compiler crashes. When a
crash occurs, K. must first attempt to reproduce
the problem in isolation, then reproduce it un-
der a command-line debugging tool, and then
finally attempt to diagnose the problem.

Using Frysk, K. creates a monitored terminal:

Terminal

From within that terminal, K. can directly run
the test framework:

$ make −j5 check

$ ls
Makefile



148 • The Frysk Execution Analysis Architecture

When a crash occurs, K. is alerted by the blink-
ing Frysk icon in the toolbar. K. can then click
on the Frysk icon and bring up the source win-
dow displaying the crashing program at the lo-
cation at which the crash occurred:

3 Frysk Compared To Traditional
Debugger Technology

In the 1980s, at the time when debuggers such
as GDB, SDB, and DBX were first developed,
UNIX application complexity was typically
limited to single-threaded, monolithic applica-
tions running on a single machine and written
in C. Since that period, applications have grown
both in complexity and sophistication utiliz-
ing: multiple threads and multiple processes;
shared libraries; shared-memory; a distributed
structure, typically as a client-server architec-
ture; and implemented using C++, Java, C#,
and scripting languages.

Unfortunately, the debugger tools developed at
that time have failed to keep pace of these ad-
vances. Frysk, in contrast, has the goal of sup-
porting these features from the outset.

3.1 Frysk Supports Multiple Threads, Pro-
cesses, and Hosts

Given that even a simple application, such as
firefox, involves both multiple processes and
threads, Frysk was designed from the outset

to follow Threads, Processes, and Hosts. That
way the user, such as K., is provided with a sin-
gle consistent tool that monitors the entire ap-
plication.

3.2 Frysk is Non-stop

Historically, since an application had only a
single thread, and since any sign of a prob-
lem (e.g., a signal) was assumed to herald dis-
aster, the emphasis on debugging tools was to
stop an application at the earliest sign of trou-
ble. With modern languages, and their man-
aged run-times, neither of those these assump-
tions apply. For instance, where previously a
SIGSEGV was indicative of a fatal crash, it is
now a normal part of an application’s execution
being used by the system’s managed run-time
as part of memory management.

With Frysk, the assumption is that the user re-
quires the debugging tool to be as unobtrusive
as possible, permitting the application to run
freely. Only when the user explicitly requests
control over one or more threads, or when a fa-
tal situation such as that K. encountered is de-
tected, will Frysk halt a thread or process.

3.3 Frysk is Event Driven

Unlike simpler command-line debugging tools,
which are largely restricted to exclusively mon-
itoring just the user’s input or just the running
application, Frysk is event-driven and able to
co-ordinate both user and application events si-
multaneously. When implementing a graphical
interface, this becomes especially important as
the user expects Frysk to always be responsive.



2006 Linux Symposium, Volume One • 149

3.4 Frysk has Transparent Attach and De-
tach

With a traditional debugging tool, a debugging
session for an existing process takes the form:

• attach to process

• examine values, continue, or stop

• detach from process

That is, the user is firstly very much aware of
the state of the process (attached or detached),
and secondly, is restricted to just manipulating
attached processes. With Frysk, the user can
initiate an operation at any time, the need to at-
tach being handled transparently.

For instance, when a user requests a stack back-
trace from a running process, Frysk automati-
cally attaches to, and then stops, the process.

3.5 Frysk is Graphical, Visual

While a command-line based tool is useful for
examining a simple single-threaded program,
it is not so effective when examining an ap-
plication that involves tens if not hundreds of
threads. In contrast, Frysk strongly emphasizes
its graphical interface providing visual mech-
anisms for examining an application. For in-
stance, to examine the history of processes and
events, Frysk provides an event line:

3.6 Frysk Handles Optimized and In-line
Code

Rather than limiting debugging to applications
that are written in C and compiled unoptimized,
Frysk is focused on supporting application that
have been compiled with optimized and in-
lined code. Frysk exploits its graphical inter-
face by permitting the user to examine the in-
lined code in-place. For instance, an in-lined
function b() with a further in-line call to f()
can be displayed as:

3.7 Frysk Loads Debug Information On-
demand

Given that a modern application often has gi-
gabytes of debug information, the traditional
approach of reading all debug information into
memory is not practical. Instead Frysk, using
libelf and libdw, reads the debug informa-
tion on demand, and hence ensures that Frysk’s
size is minimized.

3.8 Frysk Itself is Multi-Threaded and Ob-
ject Oriented

It is often suggested that a debugging tool is
best suited at debugging itself. This view be-
ing based on the assumption that since devel-
opers spend most of their time using their own



150 • The Frysk Execution Analysis Architecture

tools for debugging their own tools, they will be
strongly motivated to at least make debugging
their tool easy. Consequently, a single-threaded
procedural debugging tool written in C would
be best suited for debugging C, while devel-
opers working on a multi-threaded, object-
oriented, event-driven debugging tool are going
to have a stronger motivation to make the tool
work with that class of application.

3.9 Frysk is Programmable

In addition to a graphical interface, the Frysk
architecture facilitates the rapid development
of useful standalone command-line utilities im-
plemented using Frysk’s core. For instance
the command line utility ftrace, similar to
strace, was implemented by adding a system
call observer that prints call information to the
threads being traced, and the program fstack
was implemented by adding a stop observer to
all threads of a process so that as each thread
stopped its stack back-trace could be printed.

4 The Frysk Architecture

4.1 Overview

At a high level, Frysk’s architecture can be
viewed as a collection of clients that interact
with Frysk’s core. The core provides clients
with alternate models or views of the system.

gui

public
interfaces

eclipse

utilities cli

lang model

proc model

kernel

FRYSK’s
core

...

Frysk’s core then uses the target system’s ker-
nel interfaces to maintain the internal models of
the running system.

4.2 The Core, A Layered Architecture

Aspects of a Linux system can be viewed, or
modeled, at different levels of abstraction. For
instance:

• a process model: as a set of processes,
each containing threads and each thread
having registers and memory

• a language model: a process executing a
high-level program, written in C++, hav-
ing a stack, variables, and code

Conceptually, the models form sequence of lay-
ers, and each layer is implemented using the
one below:



2006 Linux Symposium, Volume One • 151

Kernel

Process
Model

Language
Model

host, process,
thread

stack, variable,
source code

For instance, the language model, which ab-
stracts a stack, would construct that stack’s
frames using register information obtained
from the process model.

The core then makes each of those models
available to client applications.

4.2.1 Frysk’s Process Model

Frysk’s process model implements a process-
level view of the Linux system. The model con-
sists of host, process, and task (or thread) ob-
jects corresponding to the Linux system equiv-
alents:

Host

Proc

ProcProc Proc

Proc

Frysk then makes this model available to the
user as part of the process window:

When a user requests that Frysk monitor for a
process model event, such as a process exiting,
that request is implemented by adding an ob-
server (or monitor) to the objects to which the
request applies. When the corresponding event
occurs, the observers are notified.

4.2.2 Frysk’s Language Model

Corresponding to the run-time state of a high-
level program, Frysk provides a run-time lan-
guage model. This model provides an abstrac-
tion of a running-program’s stack (consisting of
frames), variables and objects.

foo

bar

calls

baz

inlines

The model is then made available to the user
through the source window’s stack and source
code browsers:



152 • The Frysk Execution Analysis Architecture

5 Future Direction

Going forward, Frysk’s development is ex-
pected to be increasingly focused on large
complex and distributed applications. Conse-
quently Frysk is expected to continue pushing
its available technology.

Internally, Frysk has already identified limita-
tions of the current Linux Kernel debugging in-
terfaces (ptrace and proc). For instance:
that only the thread that did the attach be per-
mitted to manipulate the debug target, or that
waiting on kernel events still requires the jug-
gling of SIGCHLD and waitpid. Addressing
these issues will be critical to ensuring Frysk’s
scalability.

At the user level, Frysk will continue its ex-
ploration of interfaces that allow the user to
analyze and debug increasingly large and dis-
tributed applications. For instance, Frysk’s in-
terface needs to be extended so that it is capa-
ble of visualizing and managing distributed ap-
plications involving hundreds or thousands of
nodes.

6 Conclusion

Through the choice of a modern programming
language, and the application of modern soft-
ware design techniques, Frysk is well advanced
in its goal of creating an intelligent, distributed,
always-on monitoring and debugging tool.

7 Acknowledgments

Thanks goes to Michael Behm, Stan Cox,
Adam Jocksch, Rick Moseley, Chris Moller,
Phil Muldoon, Sami Wagiaalla, Elena Zannoni,
and Wu Zhou, who provided feedback, code,
and screenshots.



Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


