
PCI Express Port Bus Driver Support for Linux

Tom Long Nguyen, Dely L. Sy, & Steven Carbonari
Intel R© Corporation∗

{tom.l.nguyen, dely.l.sy, steven.carbonari}@intel.com

Abstract

PCI ExpressR©1 is a high performance gen-
eral purpose I/O Interconnect defined for a
wide variety of computing and communication
platforms. It defines PCI Express Ports and
switches to provide a fabric based point-to-
point topology. PCI Express categorizes PCI
Express Ports into three types: the Root Ports,
the Switch Upstream Ports, and the Switch
Downstream Ports. Each PCI Express Port
can provide up to four distinct services: na-
tive hot-plug, power management, advanced er-
ror reporting, and virtual channels[1][3]. To
fit within the existing LinuxR©2 PCI Driver
Model but provide a clean and modular solu-
tion, in which each service driver can be built
and loaded independently, requires the PCI Ex-
press Port Bus Driver architecture. The PCI Ex-
press Port Bus Driver initializes all services and
distributes them to their corresponding service
drivers. This paper is targeted toward kernel
developers and architects interested in the de-
tails of enabling service drivers for PCI Express
Ports. The i386 Linux implementation will be
used as a reference model to provide insight
into the implementation of the PCI Express

∗Intel is a trademark or registered trademark of Intel
Corporation in the United States, other countries, or both.
This work represents the view of the authors and does not
necessarily represent the view of Intel.

1PCI Express is a trademark of the Peripheral Com-
ponent Interchange Special Interest Group (PCI-SIG)

2Linux is a registered trademark of Linus Torvalds

Port Bus Driver and specific service drivers like
the advanced error reporting root service driver
and the native hot-plug root service driver.

1 Introduction

The Linux PCI Driver Model restricts a device
to a single driver. Drivers in Linux are loaded
based off the PCI Device ID and function. Once
a driver is loaded, no other drivers for that de-
vice can be loaded[2]. Referring to Figure 1,
if the Root Port hot-plug driver is loaded first,
it claims the Root Port device. The Linux PCI
Driver Model therefore prevents the support of
multiple services per PCI Express Port using
individual service drivers.

Figure 1: Service Drivers under the Linux PCI
Driver Model

A PCI Express Port may have multiple distinct
services operating independently. A PCI Ex-
press Port is not required to support all ser-
vices, so some PCI Express Ports within a PCI
Express hierarchy may support none, some or
all the services. A possible solution is to im-
plement a single driver to handle all services

• 1 •



2 • PCI Express Port Bus Driver Support for Linux

per PCI Express Port. However, this solution
would lack the ability to have each service built
and loaded independently from each other, pre-
venting extensibility for addition of future ser-
vices and the ability to have a service driver
loaded on more than one PCI Express Port.
Separate service drivers are required to support
addition of new features and loading of services
based on the PCI Express Port capabilities.

To support multiple drivers per device without
changing the existing Linux PCI Driver Model
requires a new architecture that fits within
the existing Linux PCI Driver Model but pro-
vides the flexibility required to support multi-
ple service drivers per PCI Express Port. As
shown in Figure 2, the PCI Express Port Bus
Driver (PBD)[5] fits into the existing Linux PCI
Driver Model while providing an interface to
allow multiple independent service drivers to
be loaded for a single PCI Express Root Port.
The PBD acts as a service manager that owns
all services implemented by the Ports. Each of
these services is then distributed and handled
by a unique service driver. The PBD achieves
the following key advantages:

• Allows multiple service drivers to run
simultaneously and independently from
each other and to service more than one
PCI Express Port.

• Allows service drivers to be designed and
implemented in a modular fashion.

• Centralizes management and distribution
of resources of the PCI Express Port de-
vices to requested service drivers.

This paper describes the PCI Express Port Bus
Driver architecture. Following the port bus
driver architecture are two examples of service
drivers. The first example is the advanced er-
ror reporting service driver that was designed to

Figure 2: Service Drivers under the PBD

work with the port bus architecture. The second
example is the hot-plug service driver that was
originally designed as an independent driver
then converted to a service driver to operate
with the Port Bus Driver. Lastly, an overview
of the impact to device drivers and future ser-
vice drivers is outlined.

2 PCI Express Port Bus Driver

2.1 PCI Express Port Topology

To understand the Port Bus Driver architecture,
it helps to begin with the basics of PCI Express
Port topology. Figure 3 illustrates two types of
PCI Express Port devices: the Root Port and
the Switch Port. The Root Port originates a
PCI Express Link from a PCI Express Root
Complex. The Switch Port, which has its sec-
ondary bus representing switch internal rout-
ing logic, is called the Switch Upstream Port.
The Switch Port which is bridging from switch
internal routing buses to the bus representing
the downstream PCI Express Link is called the
Switch Downstream Port[1].

Each PCI Express Port device can be imple-
mented to support up to four distinct services:
native hot plug (HP), power management event
(PME), advanced error reporting (AER), virtual
channels (VC). The PCI Express services dis-
cussed are optional, so in any given PCI Ex-
press hierarchy a port may support none, some,
or all of the services.



2005 Linux Symposium • 3

Figure 3: PCI Express Port Topology

2.2 PCI Express Port Bus Driver Architec-
ture

The design of the PCI Express Port Bus Driver
achieves a clean and modular solution in which
each service driver can be built and loaded in-
dependently from each other. The PCI Express
Port Bus Driver serves as a service manager
that loads and unloads the service drivers ac-
cordingly, as illustrated in Figure 4.

Figure 4: PCI Express Port Bus Driver System
View

The PCI Express Port Bus Driver is a PCI-
PCI Bridge device driver, which attaches to PCI
Express Port devices. For each PCI Express
Port device, the PCI Express Port Bus Driver
searches for all possible services, such as na-
tive HP, PME, AER, and VC, implemented by
PCI Express Port device. For each service

found, the PCI Express Port Bus Driver creates
a corresponding service device, named pcieXY
where X indicates the PCI Express Port type
and Y indicates the PCI Express service type
as described in Table 1, and then registers this
service device into a system device hierarchy.
Figure 5 shows an example of how the PCI Ex-
press Port Bus Driver creates service devices
on a system populated with two Root Port de-
vices, one Switch Upstream Port device, and
two Switch Downstream Port devices.

Port Service Service Entity Description (pcieXY)
Type Type
(X) (Y)
0 0 PME service on PCI Express Root Port (PMErs)
0 1 AER service on PCI Express Root Port (AERrs)
0 2 HP service on PCI Express Root Port (HPrs)
0 3 VC service on PCI Express Root Port (VCrs)
1 0 PME service on PCI Express Switch Upstream Port (PMEus)
1 1 AER service on PCI Express Switch Upstream Port (AERus)
1 2 Not a supported PCI Express configuration
1 3 VC service on PCI Express Switch Upstream Port (VCus)
2 0 PME service on PCI Express Switch Downstream Port (PMEds)
2 1 AER service on PCI Express Switch Downstream Port (AERds)
2 2 HP service on PCI Express Switch Downstream Port (HPds)
2 3 VC service on PCI Express Switch Downstream Port (VCds)

Table 1: Service Entity Description

Figure 5: Service Devices in a PCI Express Port
Bus Driver Architecture

Once service devices are discovered and added
in the system device hierarchy, a service driver
is loaded accordingly if it registers its ser-
vice with the PCI Express Port Bus Driver.
The PCI Express Port Bus Driver provides
an interface, namedpcie_port_service_
register , to allow a service driver to register
its service[4]. The registration enables the user



4 • PCI Express Port Bus Driver Support for Linux

to configure services during kernel configura-
tion regardless of HW support. It enables de-
bugging and adding of new services in a modu-
lar fashion. When a service driver callspcie_
port_service_register , the PCI Ex-
press Port Bus Driver loads a service driver
by invoking the PCI subsystem, which walks
through a system device hierarchy for a service
match. If the port bus finds a match, it loads a
service driver for that service device.

In addition, the PCI Express Port Bus
Driver provides pcie_port_service_

unregister , to undo the effects of calling
function pcie_port_service_register

[4]. Note that a service driver should always
call pcie_port_service_unregister

when a service driver is unloading.

2.3 The Service Driver

To maintain modularity in the PCI Express Port
Bus Driver design, individual service drivers
are required. In some cases a driver may al-
ready exist for a PCI Express Port. In these in-
stances the driver must be ported to the service
driver to allow other service drivers to load on
the PCI Express Port. To port drivers to service
drivers, the following three basic steps are re-
quired. Refer to Sections 3.1.1 to 3.1.3 for a
specific example.

• Specify service ID. The PCI Express Port
Bus Driver defines the data structure of
service ID similar to the data structure
of pci_device_id except with two
additional fields: theport_type and
service_type fields as described in
Table 1. Note that failure to specify a cor-
rect service ID will prevent the port bus
from loading a service driver.

• Initialize service driver. The PCI Express
Port Bus Driver defines the data struc-
ture of service driver similar to thepci_

driver data structure. The pointer to the
pci_dev data structure is replaced with a
pointer to thepcie_device data struc-
ture in each callback function.

• Call pcie_port_service_register

insteadpci_register_driver .

Once a service driver is loaded, a service driver
should always configure and initialize its own
capability structure and required IOs to oper-
ate normally without any support from the PCI
Express Port Bus Driver. However, a service
driver is prohibited from doing the following:

• Switch the interrupt mode on a device.
The interrupt mode can be INTx legacy,
MSI or MSI-X. A service driver should al-
ways use the assigned service IRQ to call
request_irq to have its software in-
terrupt service routine hookup. Note that
the assigned service IRQ may be shared
among service drivers; therefore, a service
driver should always treat this assigned
service IRQ as shared interrupt.

• Access resources that are not directly re-
quired by the service. For example, the
advanced error reporting service driver is
prohibited from accessing any configura-
tion registers other than the Advanced Er-
ror Reporting Capability structure. A ser-
vice driver uses theport pointer, a mem-
ber of thepcie_device data structure
defined by PBD, to access PCI configura-
tion and memory mapped IO space.

• Call pci_enable_device and pci_
set_master functions. This is no
longer necessary because these functions
now get called by the PCI Express Port
Bus Driver.



2005 Linux Symposium • 5

2.4 Resource Allocation and Distribution

Service drivers must adhere to the guidelines in
this document to deal with resource allocation
and distribution. Since all service drivers of a
PCI Express Port device are allowed to run si-
multaneously, a decision of which driver (Port
Bus Driver vs. service driver) owns which re-
source is described in Sections 2.4.1 to 2.4.3.
These resources include the MSI capability
structure, the MSI-X capability structure, and
PCI IO resources.

2.4.1 The MSI Capability Structure

The MSI capability structure enables a device
software driver to callpci_enable_msi to
request an MSI based interrupt. Once MSI is
enabled on a device, it stays in this mode un-
til a device driver callspci_disable_msi
to return to INTx emulation. Since each ser-
vice driver runs independently from each other,
changing the interrupt mode on the PCI Ex-
press Port by an individual service driver may
result in unpredictable behavior. Each ser-
vice driver is therefore prohibited from call-
ing these APIs. The PCI Express Port Bus
Driver is responsible for determining the in-
terrupt mode and assigning the service IRQ
to each service device accordingly. A service
driver must use its service vector when calling
request_irq /free_irq .

2.4.2 The MSI-X Capability Structure

Similar to MSI a device driver for an MSI-X ca-
pable device can callpci_enable_msix to
request MSI-X interrupts. The key difference
is that the MSI-X capability structure enables
a PCI Express Port device to generate multi-
ple messages. Managing multiple MSI-X vec-
tors is handled by the PCI Express Port Bus

driver. The PCI Express Port Bus Driver is re-
sponsible for determining the interrupt mode
transparent to the service drivers. A service
driver must use its service vector when calling
request_irq /free_irq .

If a PCI Express Port device supports MSI-X,
the PCI Express Port Bus Driver will request
the number of MSI-X messages equal to the
number of supported services for the device.
This allows each service to have it own hard-
ware interrupt resource independently gener-
ated from other services.

2.4.3 PCI IO Resources

PCI IO resources include PCI memory/IO
ranges and PCI configuration registers are as-
signed by BIOS during boot. For PCI mem-
ory/IO ranges, the service driver is responsible
for initializing its PCI memory/IO maps during
service startup. There is possibly where the PCI
memory/IO ranges are shared. If this occurs,
each service driver is responsible for mapping
its PCI memory/IO regions without overstep-
ping on resources of others. The PCI Express
Port Bus Driver does not arbitrate access to the
regions and assumes service drivers to be well
behaved.

For PCI configuration registers, each service
runs PCI configuration operation on its own ca-
pability structure except the PCI Express ca-
pability structure, in which the Device Con-
trol register and the Root Control register have
unique control bits assigned to AER service
and PME service. A read-modify-write should
always be handled by the AER/PME service
driver. Again this paper assumes that all service
drivers are responsible for not overstepping on
resources of others.



6 • PCI Express Port Bus Driver Support for Linux

3 PCI Express Advanced Error Re-
porting Root Service Driver

PCI Express error signaling can occur on the
PCI Express link itself or on behalf of trans-
actions initiated on the link. PCI Express de-
fines the Advanced Error Reporting capability,
which is implemented with the PCI Express
Advanced Error Reporting Extended Capabil-
ity Structure, to allow a PCI Express compo-
nent (agent) to send an error reporting message
to the Root Port. The Root Port, a host receiver
of all error messages associated with its hierar-
chy, decodes an error message into an error type
and an agent ID and then logs these into its PCI
Express Advanced Error Reporting Extended
Capability Structure. Depending on whether an
error reporting message is enabled in the Root
Error Command Register, the Root Port device
generates an interrupt if an error is detected[1].
The PCI Express advanced error reporting ser-
vice driver is implemented to service AER in-
terrupts generated by the Root Ports[6].

Once the PCI Express advanced error report-
ing service driver is loaded, it claims all AER
Root service devices in a system device hierar-
chy, as shown in Figure 6. For each AERrs ser-
vice device, the advanced error reporting ser-
vice driver configures its service device to gen-
erate an interrupt when an error is detected. For
each detected error, the advanced error report-
ing service driver performs the followings[6]:

• Gather comprehensive error information.

• Guide error recovery associated with the
hierarchy in question based on the com-
prehensive error information gathered.

• Report error to user in a format with more
precise what error type and severity.

Figure 6: AER Root Service Driver

3.1 Register AER Service

The advanced error reporting service driver is
implemented based on the service driver frame-
work as defined in Section 2.3. Sections 3.1.1
to 3.1.3 below illustrate how the advanced er-
ror reporting service driver follows three basic
steps as required.

3.1.1 Specify AER Service ID

Since the PCI Express advanced error reporting
service driver is implemented to serve only the
Root Ports, the data structure of AER service
ID is defined below[7]:

static struct pcie_port_service_id aer_id[]={{
.vendor = PCI_ANY_ID,
.device = PCI_ANY_ID,
.port_type = PCIE_RC_PORT,
.service_type = PCIE_PORT_SERVICE_AER,
}, {}

};

3.1.2 Initialize AER Service Driver

Once the AER service ID is defined, the ad-
vanced error reporting service driver initial-
izes the service callbacks as defined in the
pcie_port_service_driver data struc-
ture. The data structure of service callbacks is
defined below[7]:



2005 Linux Symposium • 7

static struct pcie_port_service_driver aerdrv={
.name = "aer",
.id_table = &aer_id[0],

.probe = aer_probe,

.remove = aer_remove,

.suspend = aer_suspend,

.resume = aer_resume,
};

3.1.3 Calling pcie_port_service_
register

The final step in initialization of the advanced
error reporting service driver is calling func-
tion pcie_port_service_register to reg-
ister AER service with the PBD. During driver
initialization, the module routine is called for
initialization when the kernel calls the ad-
vanced error reporting service driver. Call-
ing pcie_port_service_register /pcie_

port_service_unregister should always
be done inmodule_init /module_exit as
depicted below[7]:

static int __init aer_service_init(void)
{

return pcie_port_service_register(&aerdrv);
}

static void __exit aer_service_exit(void)
{

pcie_port_service_unregister(&aerdrv);
}

module_init(aer_service_init);
module_exit(aer_service_exit);

Figure 7 depicts the state diagram once the ad-
vanced error reporting service driver’s module
routine is called.

4 PCI Express Native Hot-Plug
Service Driver

The PCI Express Hot-Plug standard usage
model is derived from the standard usage

Figure 7: State Diagram of Registering AER
Service with PBD

model defined in the PCI Standard Hot-Plug
Controller and Subsystem Specification, Rev.
1.0[8].

4.1 PCI Express Native Hot Plug Features

PCI Express Native Hot-Plug features are:

• Root ports and downstream ports of
switches are hot-pluggable ports in PCI
Express hierarchy.

• Interrupt driven hot plug events will result
in hot-plug interrupts.

• Hot plug registers are part of the PCI Ex-
press Capability register set; hot-plug op-
erations are invoked by writing to these
registers.

• Based on SHPC usage model, but not the
bus centric SHPC register set.

4.2 Porting the PCI Express Hot-Plug
Driver to a Service Driver

As mentioned in Section 2.2, the PCI Express
Port Bus Driver provides a mechanism for a



8 • PCI Express Port Bus Driver Support for Linux

service driver to register its service. If the re-
quested service is found in a service device
hierarchy, the service driver can successfully
load. This section focuses on showing what the
changes are required to port the PCI Express
native hot-plug driver to a service driver.

4.2.1 Registering the Hot Plug Service
Driver

The pciehp driver calls pcie_port_

service_register (struct pcie_

port_service_driver *driver ) to
register its hot-plug service with the PBD.
The pciehp driver is responsible for set-
ting up the data structures before calling
pcie_port_service_register . Below
shows the difference in the data structures used
when the driver is used as a standard driver or
as a service driver[9].

+ static struct pcie_port_service_id
+ port_pci_ids[] = {{
+ .vendor = PCI_ANY_ID,
+ .device = PCI_ANY_ID,
+ .port_type = PCIE_ANY_PORT,
+ .service_type = PCIE_PORT_SERVICE_HP,
+ .driver_data = 0,
+ }, { /* end: all zeroes */ }
+ };

- static struct pci_device_id pcied_pci_tbl[]={
- {
- .class = ((PCI_CLASS_BRIDGE_PCI << 8) |
- 0x00),
- .class_mask = ~0,
- .vendor = PCI_ANY_ID,
- .device = PCI_ANY_ID,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- }, { /* end: all zeroes */ }
- };

4.2.2 Initialize the Hot-Plug Service Driver

Once the HP service ID is defined, the ser-
vice driver initializes the service callbacks as
defined in thepcie_port_service_driver

data structure. The following shows the

changes that need to be made in porting the PCI
Express hot-plug driver to a service driver[9].

+ static struct pcie_port_service_driver
+ hpdriver_portdrv = {
+ .name = "hpdriver",
+ .id_table = &port_pci_ids[0],
+ .probe = pciehp_probe,
+ .remove = pciehp_remove,
+ .suspend = pciehp_suspend,
+ .resume = pciehp_resume,
+ };

- static struct pci_driver pcie_driver = {
- .name = "pciehp",
- .id_table = pcied_pci_tbl,
- .probe = pcie_probe,
- .remove = pcie_remove,
- };

4.2.3 Calling pcie_port_service_
register API

The final step in initialization of the HP ser-
vice driver is callingpcie_port_service_

register to register HP service with the PBD.
The following shows the changes that need to
be made in the standalone driver to port it to a
service driver[9].

static int __init pcied_init(void)
{

:
+ retval = pcie_port_service_register(
+ &hpdriver_portdrv);
- retval = pci_register_driver(
- &pcie_driver);

:
}

static void __exit pcied_cleanup(void)
{

:
+ pcie_port_service_unregister(
+ &hpdriver_portdrv);
- pci_unregister_driver(&pcie_driver);

:
}

Figure 8 depicts the state diagram once HP ser-
vice driver’s module routine is called.



2005 Linux Symposium • 9

Figure 8: State Diagram of Registering HP Ser-
vice with PBD

4.2.4 Available Resources

As a service driver, dev->irq is provided by the
PCI Express Port Bus Driver and is passed to
the pciehp driver. Whether dev->irq is a reg-
ular system interrupt, MSI or MSI-X, the PCI
Express Port Bus Driver assigns the value to
it. The pciehp service driver does not need
to call pci_enable_msi to request use of
MSI/MSI-X if the OS supports that.

5 Impacts to PCI Express Drivers

The Port Bus Driver design does not directly
impact existing PCI Express endpoint device
drivers. However, a service driver may impact
a PCI Express endpoint driver. Additional PCI
Express services may require endpoint driver
changes to take full advantage of the new func-
tionality. For example, to take full advantage of
AER error recovery will require drivers to sup-
port the AER callback API. Driver writers for
PCI Express components should be well versed
with this architecture and evaluate driver im-
pacts as new services (VC or PME) become
available.

The Port Bus perspective impacts device
drivers for PCI Express Switch components.

The PCI Express Port Bus Driver claims all PCI
Express Ports in a system device hierarchy, in-
cluding ports in a PCI Express switch. Switch
service drivers must follow the port bus driver
framework. Switch vendors can use existing
root service drivers as a reference while writ-
ing their own service drivers.

When developing a switch service driver the
usage model at each level in the PCI Express
hierarchy needs to be considered. A service
driver for a downstream switch port may be
required to provide different functionality than
a similar root port service driver. For exam-
ple, the AER Root service driver cannot be
reusedas-is . The usage model is differ-
ent. AER Switch service driver should pro-
vide error-handling callbacks and AER initial-
ization of the switch, while the AER Root ser-
vice driver provides the primary mechanism to
handle the error recovery process. However, in
the case of the hot-plug driver, the same service
driver may be used for both the Root Ports and
the Switch Downstream Ports because the hot-
plug usage model is identical.

6 Conclusion

The design of the PCI Express Port Bus Driver
delivers a clean and modular solution to sup-
port the multiple features of PCI Express while
remaining compatible with the Linux Driver
Model. Each feature can have its own soft-
ware service driver that can be built and loaded
as a separate module. In addition when/if fu-
ture PCI Express features come available or are
added to future specification revisions, the PCI
Express Port Bus architecture is extensible to
support those additions. The PCI Express Port
Bus Driver and changes to port the native PCI
Express hot-plug driver has been incorporated
Linux kernel version 2.6.11. The advanced er-
ror reporting service driver is currently under
review on the LKML.



10 • PCI Express Port Bus Driver Support for Linux

7 Acknowledgements

Special thanks to Greg Kroah-Hartman for his
contributions to the architecture design of PCI
Express Port Bus driver.

References

[1] PCI Express Base Specification Revision
1.1. March 28, 2005.
http://www.pcisig.com/
specifications/pciexpress/ .

[2] Linux Device Drivers, 3rd Edition.
Publisher: O’Reilly & Associates; 3
edition (February 10, 2005) by Jonathan
Corbet, Alessandro Rubini, Greg
Kroah-Hartman.

[3] Renato John Recio. Promises and
Reality: Server I/O networks, past,
present, and future. In Proceedings of the
ACM SIGCOMM Workshop on
Network-I/O Convergence: Experience,
Lessons, Implications. Pages 163-178,
Karlsruhe, Germany, August 2003.

[4] PCIEBUS-HOWTO.txt. Available from:
2.6.11/Documentation .

[5] PCI Express Port Bus Driver code.
Available from:
2.6.11/drivers/pci/pcie .

[6] PCIEAER-HOWTO.txt, under review. If
being accepted:
2.6.x/Documentation .

[7] PCI Express advanced error reporting
driver code, under review. If accepted:
2.6.x/drivers/pci/pcie/aer.

[8] PCI Standard Hot-Plug Controller and
Subsystem Specification Revision 1.0.
June 20, 2001.

http://www.pcisig.com/

specifications/conventional/

pci_hot_plug/SHPC_10/ .

[9] PCI Express hot-plug driver code.
Available from:
2.6.11/drivers/pci/hotplug .



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


