
Examining Linux 2.6 Page-Cache Performance

Sonny Rao, Dominique Heger, Steven Pratt
IBM Corporation

{sonnyrao, dheger, slpratt}@us.ibm.com

Abstract

Given the current trends towards ubiquitous
64-bit server/desktop computing with large
amounts of cheap system memory, the perfor-
mance and structure of the LinuxR© page-cache
will undoubtedly become more important in the
future. An empirical and analytical examina-
tion of performance will be valuable in guiding
future development.

The current 2.6 radix-tree based design repre-
sents a huge leap forward from the old global
hash-table design, but there may be some issues
with the current radix-tree structure itself.

The main goal is to understand performance
of the current implementation, examine per-
formance with respect to other potential data-
structures, and look at ways to improve concur-
rency.

1 The Radix-Tree based Page
Cache in Linux 2.6

The Linux 2.6 page cache is basically a collec-
tion of pages that normally belong to files. The
pages are kept in memory for performance rea-
sons. As on other UNIXR© operating systems,
the page cache may take up the majority of the
available memory. Whenever a thread reads

from or writes to a file, takes a page fault, or
is paged out, the page cache becomes involved.
Hence, the performance of the page cache has
a rather dramatic impact on the performance of
the system. As a particular page is referenced,
the page cache has to be able to locate the page,
or has to determine that the page is not in the
cache, in as efficient and effective way as possi-
ble with a focus on minimal memory overhead.

1.1 Evolution of the Page Cache

In older versions the Linux kernel utilized a
global hash-table based approach to maintain
the pages in the cache. The hash based ap-
proach had some performance issues:

1. A hash key is normally not unique; hence
the system has to resolve collisions. A
hash chain had to be built to hold entries
(each entry used up 8 bytes per referenced
page).

2. A single global lock governed the page
cache; causing scalability issues on SMP
based systems.

The radix-tree based page cache solution ad-
dresses the issues discussed above.

Technically, the Linux 2.6 system consists of
many smaller page cache subsystems, or more

• 79 •



80 • Examining Linux 2.6 Page-Cache Performance

specifically, one for each open file in the sys-
tem.

Segregating page caches has a few advantages:

First, each page cache can have its own lock,
avoiding the global page cache lock that was
necessary in older versions.

Second, search operations work on a smaller
address space, and complete more quickly.

Third, as there is one page cache per open file,
the only index required to look up a specific
page is the offset within the file.

In the radix-tree, the 32-bit or 64-bit file off-
set is divided into subsets whose size is based
on the value ofMAP_SHIFT as defined in
lib/radix.c. The current implementation uses
a MAP_SHIFT of six for 6-bit indices. The
highest-order sub-field (or set) is used to branch
into a 64-entry table in the root of the radix-
tree. An entry in that sub-table serves as a
pointer to the next node in the tree. The next
lower sub-field (from the index) is used to in-
dex that particular node, yielding a third ab-
straction. Eventually, the algorithm will reach
the bottom of the tree and obtain the actual page
pointer or finds an empty entry, signifiying that
the page is not present. Table 2 shows maxi-
mum file offset and number of pages versus tree
height for the shift value of six.

There is some precedent for using a value other
than six for theMAP_SHIFT. Originally, seven
was used for theMAP_SHIFTwhen the struc-
ture was first introduced [7]. Larger values
mean smaller trees in terms of height and the
possiblity of shorter search times. This possi-
bility comes at the expense of bigger nodes in
the slab cache, which means that there is more
potential for wasted entries.

Shift through- delta profile delta
put

6 4.61 N/A 13.21 N/A
8 4.745 (+3)% 12.09 (–8.7)%

10 4.705 (+2)% 12.40 (–6.14)%
12 4.695 (+1.8)% 12.31 (–6.72)%
4 4.683 (+1.6)% 17.22 (+30.4)%

Table 1. Sequential read throughput and
percent of profile ticks forradix_tree_
lookup results for different values ofMAP_
SHIFT . The units for throughput are GB/sec,
and the profile column represents time spent in
radix_tree_lookup . These values repre-
sent the average of four runs.

height maximum maximum
pages file

offset
0 0 0
1 64 256 KB
2 4096 16 MB
3 262144 1 GB
4 16777216 64 GB
5 1073741823 4 TB
6 4294967296 16 TB

Table 2. Max number of pages by radix-tree
height with a 32-bit key andMAP_SHIFTof 6,
file offset assumes 4k pages

One optimization criterion was to ensure that
the radix-tree would only be as deep as nec-
essary. In the case where the system operates
on small files (smaller than 65 pages), only one
level of abstraction (one node) will be used. In
other words, only the least significant sub-field
of the offset is being utilized. This property of
the current implementation allows the normally
detrimental effects of a large key on a radix-
tree to be minimized. The only potential down-
side is in the case of a sparse file where nodes
located at relatively large offsets will force a
higher tree depth than might otherwise be nec-
essary.



2005 Linux Symposium • 81

1.2 Newer Features in 2.6

One of the newer features incorporated in
Linux revolves around ‘tagging’ dirty pages in
the radix-tree. In other words, a dirty page is
only flagged in the radix-tree, and not moved
to a separate list as in the pre 2.6.6 design.
Along the same lines, pages that are being writ-
ten back to disk are flagged as well. A new
set of radix-tree functions was implemented to
locate these pages as necessary. Searching an
entire tree structure for these pages is not as
efficient as just traversing trough a dedicated
list, but based on the feedback from the Linux
community, the performance delta is not con-
sidered a big issue. There is some concern in
the Linux community that with very large files
the 2.6 lock-per-file based approach will be as
bad as the global lock based 2.4 implementa-
tion. The tagging of these pages in the new
design required a lot of changes to the page
cache and the VM subsystems, respectively.
One implication of the changes is that the dirty
pages are now always written in file offset or-
der out to disk. As the Linux community re-
ports, this may cause some performance issues
involving parallel write() operations on large
SMP systems. The tagging of all these pages
in the radix-tree contributes to the complexity
of switching from a radix-tree based approach
to another data structure (if needed). Based
on the current implementation, improving the
radix-tree seems more feasible than a complete
re-design and should therefore be explored first.
TheMAP_SHIFTparameters in the radix code
reveal some potential for performance work.

There is a scalability issue when dealing with
only a small amount of very large files and a
workload that consists of many concurrent read
operations on the files. The single lock govern-
ing the radix-tree will basically eliminate any
potential scalability on SMP systems while ex-
posed to such a workload. Scalability of course
is achieved when the workload consists of n

worker threads reading from n separate files,
hence the locking is distributed over the set of
files being accessed. Table 3 shows the sever-
ity of the locking problems of the current spin-
lock design vs the rwlock design and shows that
even the rwlock implementation spends a good
deal of time overall CPU time in locking func-
tions.

Table 3 shows throughput on an IBM p650 8-
CPU POWER4+ server with 16GB of RAM
and two 7GB files fully cached with differing
numbers of threads attempting to sequentially
read the files. Throughput is in GB/sec and
the profile columns show the percentage of time
from the profile spent in locking functions.

Threads Spinlock Profile Rwlock Profile
1 1.11 0.10% 1.04 0.80%
4 2.26 12.4% 2.47 4.33%
8 2.01 54.1% 2.82 9.75%

12 2.20 51.6% 2.98 9.86%
14 2.31 49.3% 3.03 9.74%
16 2.34 48.9% 3.13 9.52%

Table 3. Read throughput and time spent in
lock functions for spinlock and rwlock kernels.

There has been some ongoing debate over
whether a rwlock solution would be more ac-
ceptable, however as of this writing it has been
held out of mainline due to specific concerns
over the performance of the rwlock solution on
Pentium-4 machines [9, 10]. Although the cost
of locking is substantial on all architectures,
this architecture seems to exhibit particularly
high latency on the unlock operation. This also
seems to indicate that the radix-nodes tend to
be cached and that search times are small [8].

2 Alternative Data-Structures

Given the unique nature of the radix implemen-
tation in the Linux kernel, comparative analysis



82 • Examining Linux 2.6 Page-Cache Performance

of the radix-tree with alternative data-structures
should provide insights into its strengths and
weaknesses. In general, for the application of
page-cache lookup, speed should be paramount
since in the case of a cache hit, the entire read or
write operation should occur at memory speed.
Inserts, on the other hand, will typically be fol-
lowed by disk I/O, and that I/O should become
the limiting factor for the operation rather than
the cache update. Deletes are initiated from a
truncate operation or by the page-scanner when
the system is under memory pressure. This
case of memory pressure is performance crit-
ical since the VM wants to release the pages
selected as soon as possible, and updates to
the caching structures represent pure overhead.
Operations such as “tagging” pages as dirty
are also interesting because they involve both
a lookup and a modification to the state of the
data structure. However this operation is spe-
cific to the Linux 2.6 radix-tree implementation
and is not available on all data-structures. In
some cases it may be possible to graft these ad-
ditional pieces of state information onto other
standard data-structures, but it is not practical
in all cases.

Given these qualities, it seemed appropriate to
test the Linux kernel implementation of radix-
trees against a number of other data-structures
each with slightly different design trade-offs.

2.1 Extendible-Hashing

One idea suggested was that of extendible-
hashing, which is a technique developed for
optimizing lookup operations in database sys-
tems [6]. Among other interesting properties,
extendible hashing guarantees that data can be
accessed in just two “page-faults” in database
terminology, which translates to two pointer
dereferences for our purposes. As the name
suggests, it is capable of extending itself as the
amount of data stored increases, and it can do

this without costly re-hashing of the entire data-
set. Conversely, the extendible hash-table can
be implemented to contract itself as elements
are removed. Naturally, these characteristics
are not free and represent a trade-off for the
fixed number of memory dereferences in the
lookup path.

The extendible hash-table typically is imple-
mented using two structures: buckets, which
contain the pointers to the data, and a directory,
which contains the pointers to the buckets. The
directory is just a large array with a power-of-
two size. The logarithm of the current size is
called the directory depth.

Elements are inserted by computing a hash key
and taking the n most-significant bits of that
key, where n is equal to the directory depth. Us-
ing this value to index into the directory yields
a pointer to the bucket where the new element
will reside. Different strategies exist for plac-
ing an element into a bucket. Depending on the
size of the bucket, the object’s hash value can
be used again to place the item, or if the bucket
is fairly small, a simple linear insert can be ef-
fective.

Each pointer in the directory is not necessarily
unique, and there can be mulitple pointers to
a certain bucket. For this reason, the buckets
keep a local-depth value, which can be used to
compute the number of pointers to it in the di-
rectory. When a bucket becomes full, it must
be split into two separate buckets in an oper-
ation called a bucket-split. After the bucket-
split, each new bucket will get half of the old
pointers in the directory, and the local depth of
the buckets will increase by one. If the bucket
has a local depth equal to the directory depth,
then the directory must be first doubled in size
before the bucket can be split. In this case,
there is only one pointer in the directory to this
particular bucket before the directory doubling
operation, and afterwards there are two point-
ers and the bucket-split can proceed. When a



2005 Linux Symposium • 83

bucket-split occurs, the elements in the original
bucket are redistributed into the new buckets in
such a way that their hash-keys will lead to the
correct bucket from the directory. In this way,
the extendible hash-table avoids having to ever
globally re-hash and instead limits redistribu-
tion to bucket-splits while retaining the original
hash function.

One additional characteristic of the extendible-
hashing is its ability to handle random se-
quences of keys equally as well as sequential
sequences. Though many typical applications
will primarily use sequential I/O patterns, some
applications might find this characteristic ben-
eficial.

2.2 Threaded Red-Black Tree

Threaded red-black trees are a twist on the no-
tion of a traditional red-black tree, which try to
optimize for sequential access sequences by us-
ing normally NULL leaf pointers as “threads”
which keep track of nodes with neighboring
keys [12]. So, if one already has a reference
to a particular leaf node, access to the previous
node (in terms of key order ) only requires ac-
cessing that node’s left “thread.”

The regular red-black tree properties still ap-
ply [1,2], but since almost all child pointers
are used in some way, additional state informa-
tion must be kept in the nodes to differentiate
children from threads. Luckily, red-black trees,
such as the one in the Linux kernel, already use
an extra word per node to keep track of color.
This extra word can be overloaded to keep track
of thread information as well with no additional
space cost.

Since one cannot simply test for NULL during
lookups, one must also alter any open-coded
lookup sequences to be thread-aware, which is
to say such code must examine the state infor-
mation in the node. Ideally, this should not be

a significant cost because the flags should typ-
ically have reasonable spatial locality with the
other pointers in the node and would be kept in
the same cache-line.

As with regular red-black trees, performance of
inserts and deletes is traded off to keep the tree
balanced and keep average lookup times down.
In the case of the threaded version this is even
more true as thread information must be kept
consistent through rebalancing operations.

The implementation tested was similar to the
Linux kernel’s present red-black tree imple-
mentation which assumes the node contents are
embedded into another object and passes off re-
sponsibility for memory allocation and imple-
menting lookups onto the tree’s user.

2.3 Treap

A treap is the basic data structure (BST) under-
lying randomized search trees [3]. The name
itself refers to the synthesis of a tree and a heap
structure. More specifically, a treap represents
a set of items where each item has associated
with it a key and a priority. In general a pri-
ority is randomly assigned to a given key by
the implementation. A treap represents a spe-
cial case of a binary search tree, in which the
node set is arranged in order (with respect to
the keys) as well as in heap fashion with re-
gards to the priority. The procedure for lookup
in a treap is the same as for a normal binary
search-tree and the node priorities are simply
ignored. In a treap, the access time is propor-
tional to the depth of an element in the tree. An
insert of a new item basically consists of a two
step process. The first step consists of utiliz-
ing the item’s key to attach to the treap at the
appropriate leaf position, and second to use the
priority of the new element to rotate the new en-
try up in the structure until the item locates the
parent node that has a larger priority. Interest-
ingly, it can be shown in the general case that



84 • Examining Linux 2.6 Page-Cache Performance

an insert will only cause two rotations, which
means updates are much less costly then in the
case of a strictly balanced tree such as an AVL
tree or red-black tree.

The implementation tested used a simple poly-
nomial hash function on the key to generate the
priority. This approach was used instead of the
kernel’s random number generator to keep the
implementation as self-contained as possible.

Again, the implementation tested follows the
Linux kernel’s convention of assuming the user
must allocate the nodes and open-code the
lookup sequences.

2.4 Linux Radix-Tree

The Linux implementation of the radix-tree is
highly optimized and customized for use in
the kernel and differs signifcantly from what
is commonly referred to as a radix-tree [1,4,5]
It avoids paying the memory cost of explictly
keeping keys, child-pointers, and separate data-
pointers on each object but instead uses implicit
ordering along with node height to determine
the meaning of these pointers. For example, if
the tree has a global height of three, then the
pointers on the first two levels only point to
child nodes and the lowest level uses its point-
ers for data objects. Data pointers only exist at
the lowest level.

By aggressively conserving memory and reduc-
ing the tree’s overall size, the radix-tree has an
extremely small cache footprint which is vital
to its success at larger tree sizes.

The main disadvantage of using implicit or-
dering in the implementation is that a highly
sparse file will force the use of more tree-levels
across the entire tree for all offsets. The cur-
rent implementation uses aMAP_SHIFTof six
which means sixty-four pointers per node, and

in the worst case all but one of those pointers
is wasted from the root all the way down to the
leaf. The height is directly related to the offset
of the last object inserted into the tree.

The kernel implementation also supports tag-
ging which means each node not only consists
of an array of pointers but a set of bit-fields for
each pointer which can be used somewhat ar-
bitrarily by the subsystem utilizing the tree. In
the case of the page-cache, these tags are used
to keep track of whether a page is dirty or un-
dergoing writeback.

The meaning of these tags is clear at the leaf
nodes, but at higher levels, tags are used to refer
to the state of any objects in or below the child
node at the corresponding offset.

For example, given a three level radix-tree, and
the page at offset one is dirty, then the dirty-tag
for bit one on the leaf node is set and the tags
for bit zero are set in the two nodes above. This
way, gang-lookups searching for tagged nodes
can be optimized to skip over subtrees without
any tagged descendants.

2.5 Analysis

In all three operations tested, there was no sig-
nificant difference between the data structures
until roughly 128K elements where the differ-
ences begin and are highlighted by the remain-
ing data points.

The extendible-hashing results were initially
very surprising as it seems to perform much
worse than the tree structures at high object
counts. After analyzing performance counter
information, it was determined that the ex-
tremely poor spatial and temporal locality of
the the hash directory and buckets were causing
TLB and similar translation cache misses and
thus large amounts of time were spent doing



2005 Linux Symposium • 85

Figure 1: Sequential Lookup Performance

Figure 2: Sequential Insert Performance



86 • Examining Linux 2.6 Page-Cache Performance

Figure 3: Sequential Delete Performance

page-table walk operations. Also, the poor spa-
tial locality caused a great deal of data-cache
misses which compounded the problems. On
the other hand, for the tree structures, the se-
quential nature of the test yielded significant
benefits to their cache interactions.

The two binary-tree structures offer mixed per-
formance with generally worse performance on
lookups and inserts with only the treap nar-
rowly beating the radix-tree in deletes. The
threaded red-black tree also seems to do worse
than expected in lookups which will require
some further analysis.

The radix-tree scales extremely well into the
very large numbers of pages because the tree it-
self fits into processor caches much better than
the alternative designs. In the case of the delete
operations the radix-tree still does well, but is
beaten in some cases by the treap. Most likely,
this is because of the extensive updates which
must occur to the tagging information up the
tree which typically would not have good spa-

tial or temporal locality with respect to the ini-
tial lookup.

This result has also been observed under a
‘real’ data-base workload where theradix_

tree_delete call shows up higher in ker-
nel profiles than theradix_tree_lookup op-
erations, which was initially rather confus-
ing, as it was expected that most of the time
in the radix-tree code would be spent doing
lookup operations. Table 4 shows this ef-
fect, whereradix_tree_delete shows up as
the third highest kernel function andradix_

tree_lookup is number ten. Overall, this
particular database query is heavily I/O bound,
as dedicated_idle represents time spent
waiting on I/O to complete, and the rest of the
functions indicate memory pressure (shrink_

list , shrink_cache , refill_inactive_

zone , and radix_tree_delete ) and other
filesystem activity (find_get_block ).



2005 Linux Symposium • 87

DB Workload: Top 10 Kernel Functions

dedicated_idle
__copy_tofrom_user

radix_tree_delete
_spin_lock_irq

__find_get_block
shrink_list

refill_inactive_zone
__might_sleep

shrink_cache
radix_tree_lookup

Table 4: Kernel functions reported by OProfile
from a standard commercial database bench-
mark which simulates a business decision sup-
port workload. The tests were run on IBM
OpenPower 720 4-CPU machine running on
Ext3 with 92% of time spent in the kernel
for this query. Other querys in the work-
load showed similar results where in all cases
radix_tree_delete was ordered higher
thanradix_tree_lookup .

2.6 Continuing Work

In the interests of time, all of these results
were collected in userspace. As time permits,
the tests can be re-done using kernel-space im-
plementations to keep user-space biases to a
minium and to avoid any bias due to the mem-
ory allocator.

These tests also represent best-case cache-
behavior, because actual data pages were not
being moved through the memory sub-system.
Again, these structures should be re-examined
in the future with a mixed workload with sub-
optimal caching behaviors.

3 Going Forward with Improve-
ments to the Page-Cache

As far as improving the radix-tree, there does
not appear to be any reason to outright replace
the current implementation, however perfor-
mance could probably be improved for the class
of workloads desiring concurrent access to the
radix-tree structure by improving the locking
behaviors for the radix-tree. As an example,
a database system using large files for storing
tables and using the page-cache could run into
this issue.

3.1 A Lockless Design

Ultimately, it would be beneficial to imple-
ment a fully lockless design (for readers) us-
ing a Read-Copy-Update (RCU) approach [11].
This would allow the tree to better scale with
many concurrent readers, and should not cause
any difference in performance for a writers.
This could cause a number of issues and race-
conditions where readers seeing “stale” data
could cause problems, and these issues must be



88 • Examining Linux 2.6 Page-Cache Performance

fully explored and understood before an imple-
mentation can be attempted.

Of the data-structures mentioned above, the
radix-tree and the extendible hash-table would
be the best structures suited for a lockless de-
sign, while the binary-tree structures are some-
what more difficult to modify for RCU.

In the case of the extendible hash-table, there
are two cases to consider: bucket-splits and
directory-expansion. In the case of bucket-
splits, two new buckets are typically allocated
to replace the original, so the original could be
left in place for other readers, while the writing
thread copied the data from the original bucket
to the new ones and then updated the point-
ers in the directory. The race between readers
looking at the directory and seeing the origi-
nal bucket and seeing one of the new buckets is
not problematic, since in either case, the appro-
priate data will be in whichever bucket is seen.
The release of the memory for the old bucket
would simply have to wait until all processors
had reached a quiescent state. In the case of
the directory expansion (or contraction) a sim-
ilar technique would apply, where the writing
thread works to update the new directory while
leaving the old one in place. Then it can update
the pointer to the directory after it finishes and
use a deferred release for the old directory.

For the radix-tree, the main update case is
radix-tree extension, where a new offset is in-
serted which requires an increase in the height
of the tree. Luckily, the radix-tree is fairly sim-
ple and does not require complex restructuring
in this case, but instead merely adds new levels
ontop of the exisiting tree. So, in this case the
writer thread creates these new nodes and sets
them up while letting concurrent readers see
the pre-exisiting tree, then when all of the new
radix-nodes are set up, the height of the tree can
be incremented and a new root installed. There
is one problem with doing this today, the radix-
tree root object currently consists of three fields

including the height and a pointer to the root.
For the RCU design to work, it must be able to
atomically update a single field for the readers
to look at, however both the height and the root
pointer require updates. The solution to this is
to add another level of indirection and simply
keep that information in a separate dynamic ob-
ject.

3.2 An Evolutionary Improvement

An alternative approach using gang-lookups,
which is more evolutionary with respect to the
current locking design, was suggested by Su-
parna Bhattacharya1.

The current locking design works one page at
a time where the radix-tree lock is acquired
and released for each page locked. This is one
reason why the rwlock approach may not be
faster, since it uses an atomic operation both
on acquisition and release whereas a spin-lock
only uses one atomic operation on a success-
ful lock acquisition. Her suggestion was to in-
stead use a gang-lookup and lock each page re-
quested one after the other before releasing the
tree-lock. This approach would drastically re-
duce the number of costly atomic operations.
This would come at the cost of increased lock
hold times for the tree, but this could be mit-
igated somewhat by going back to the rwlock
approach. Further, in this case the rwlock be-
comes a more effective solution since the num-
ber of unlock operations is drastically reduced.

method spin-lock rwlock
page by page 2n 3n
gang-lookup n + 1 n + 2

1This idea was suggested in a private email to the au-
thors, where she is working on converting the write-path
to do something similar



2005 Linux Symposium • 89

Table 5. Table showing number of atomic oper-
ations required to lock n pages for the different
locking strategies.

4 Summary

Overall, the performance of the current Linux
2.6 radix-tree is quite good as compared to the
other data-structures chosen. Probably the area
which is most ripe for improvement is the lock-
ing strategy for the radix-tree. A few different
alternatives have been suggested, and hopefully
by using these or other approaches, page-cache
performance can be improved so that it even
better than it is today.

5 Legal

Copyrightc© 2005 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registerd trademark of The Open Group,
Ltd. in the United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

Disclaimer: The benchmarks discussed in this paper
were conducted for research purposes only, under

laboratory conditions. Results will not be realized
in all computing environments.

This document is provied “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

6 References

[1] Cormen, T.,Algorithms, Second Edition,
MIT Press, 2001.

[2] Wirth, N., Algorithms + Data Structures =
Programs, Prentice-Hall.

[3] Seidel, R., Aragon, C.,Randomized Search
Trees, Algorithmica 16, 1996.

[4] Andersson, A., Nielsson, S.,A New
Efficient Radix Sort, FOCS, 1994.

[5] Weiss, M.,Data Structures and C
ProgramsAddison-Wesley, 1997.

[6] R. Fagin, J. Nievergelt, N. Pippenger, and
H.R. Strong.Extendible hashing—a fast
access method for dynamic files, September
1979, ACM Transactions on Database
Systems, 4(3):315–344.

[7] Hellwig, C. [PATCH] Radix-tree
pagecache for 2.5, January 2001,
http://www.ussg.iu.edu/hypermail/

linux/kernel/0201.3/1234.html

[8] Morton, A. 2.5.67-mm1, April 2003,
http://www.uwsg.iu.edu/hypermail/

linux/kernel/0304.1/0049.html .

[9] Morton, A. Re: 67-mjb2 vs 68-mjb1 (sdet
degredation), April 2003,
http://www.cs.helsinki.fi/linux/

linux-kernel/2003-16/0426.html .



90 • Examining Linux 2.6 Page-Cache Performance

[10] Morton, A.Re: [PATCH] Fixing address
space lock contention in 2.6.11, March 2005,
http://www.ussg.iu.edu/hypermail/

linux/kernel/0503.0/1098.html .

[11] McKenney, P., Appavoo, J., et al.
Read-Copy Update, July 2001, Ottawa Linux
Symposium.

[12] Pfaff, B.GNU Libavl 2.0.2
Documentationhttp://www.stanford.

edu/~blp/avl/libavl.html/ .



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


