
TWIN: A Window System for ‘Sub-PDA’ Devices

Keith Packard
HP Cambridge Research Laboratory

keithp@keithp.com

Abstract

With embedded systems gaining high resolu-
tion displays and powerfulCPUs, the desire for
sophisticated graphical user interfaces can be
realized in even the smallest of systems. While
the CPU power available for a given power
budget has increased dramatically, these tiny
systems remain severely memory constrained.
This unique environment presents interesting
challenges in graphical system design and im-
plementation. To explore this particular space,
a new window system,TWIN, has been de-
veloped. Using ideas from modern window
systems in larger environments,TWIN offers
overlapping translucent windows, anti-aliased
graphics and scalable fonts in a total memory
budget of 100KB.

Motivation

Researchers at the HP Cambridge Research
Laboratory are building a collection of sub-PDA

sized general purpose networked computers as
platforms for dissociated, distributed comput-
ing research. These devices include smallLCD

or OLED screens, a few buttons and occasion-
ally some kind of pointing device.

One of the hardware platforms under de-
velopment consists of aTMS320 seriesDSP

(200MHz, fixed point, 384KB on-chip RAM),
8MB of flash memory, an AgilentADNS-2030
Optical mouse sensor, a Zigbee (802.15.4)
wireless networking interface and an Epson
L2F50176T00 LCD screen (1.1”, 120 x 160
color). At 200MHz, this processor is capable of
significant computation, but 384KB holds little
data.

In contrast, early graphical user interfaces for
desktop platforms was more constrained by
available CPU performance than by memory.
Early workstations had at least a million pixels
and a megabyte of physical memory but only
about 1MIPS of processing power. Software
in this environment was much more a matter
of what could be made fast enough than what
would fit in memory.

While the X window system[7] has been ported
to reasonably small environments[2], a mini-
mal combination of window system server, pro-
tocol library and application toolkit consumes
on the order of 4 to 5MB of memory, some ten
times more than is available in the target plat-
form.

Given the new challenge of providing a graph-
ical user interface in these tiny devices, it
seemed reasonable to revisit the whole graph-
ical architecture and construct a new system
from the ground up. TheTWIN window sys-
tem (for Tiny WINdow system) is the result of
this research.



26 • T WIN: A Window System for ‘Sub-PDA’ Devices

Assumptions

The hardware described above can be general-
ized to provide a framework within which the
TWIN architecture fits. By focusing on specific
hardware capabilities and limitations, the win-
dow system will more completely utilize those
limited resources. Of course, over-constraining
the requirements can limit the potential target
environments. Given the very general nature of
existing window systems, it seems interesting
to explore what happens when less variation is
permitted.

The first assumption made was that little-to-
no graphics acceleration is available within the
frame buffer, and that the frame buffer is at-
tached to theCPU through a relatively slow
link. This combination means that most draw-
ing should be done with theCPU in local mem-
ory, and not directly to the frame buffer. This
has an additional benefit in encouraging syn-
chronized screen updates where intermediate
rendering results are never made visible to the
user. If theCPU has sufficient on-chip storage,
this design can also reduce power consumption
by reducing off-chip data references.

The second limitation imposed was to require a
color screen with fixed color mapping. While
this may appear purely beneficial to the user,
the software advantages are numerous as well.
Imprecise rendering operations can now gener-
ate small nearly invisible errors instead of vis-
ibly incorrect results through the use of anti-
aliased drawing. With smooth gradations of
color available, there is no requirement that
the system support dithering or other color-
approximating schemes.

Finally, TWIN assumes that the target machine
provides respectableCPU performance. This
reduces the need to cache intermediate render-
ing results, like glyph images for text. Hav-
ing a homogeneously performant target market

means thatTWIN need support only one gen-
eral performance class of drawing operations.
For example,TWIN supports only anti-aliased
drawing; non-antialiased drawing would be
faster, but theCPUs supported by twin are re-
quired to be fast enough to make this irrelevant.

The combined effect of these environmental
limitations means thatTWIN can provide sig-
nificant functionality with little wasted code.
Window systems designed for a range of tar-
get platforms must often generalize functional-
ity and expose applications to variability which
will not, in practice, ever been experienced by
them. For example, X provides six different
color models for monochrome, colormapped
and static color displays. In practice, only True-
Color (separate monotonic red, green, blue ele-
ments in each pixel) will ever be used by the
majority of X users. Eliminating choice has
benefits beyond the mere reduction of window
system code, it reflects throughout the applica-
tion stack.

Windowing

Windowing can be thought of as the process of
simulating multiple, separate, two-dimensional
surfaces sharing the same display. These virtual
surfaces, or ‘windows,’ are then combined into
a single presentation. Traditional window sys-
tems do this by presenting a ‘21/2’ dimensional
user interface which assigns different constant
Z values to each object so that the windows ap-
pear to be stacked on top of one another.

TWIN provides this traditional metaphor
through an architecture similar to the X
window system Composite extension in that
all applications draw to off-screen image
buffers which are then combined and placed
in the physical frame buffer. This has many
advantages:



2005 Linux Symposium • 27

• Rendering performance is decoupled from
frame buffer performance. As the embedded
frame buffer controllers include a private frame
buffer, the bandwidth available to theCPU for
that memory is quite restricted. Decoupling
these two operations means that rendering can
operate at full main memory speed instead of
the reduced video controller memory speed
• Rendering operations needn’t clip to over-
lapping windows. Eliminating the need to per-
form clipping reduces the complexity and size
of the window system by eliminating the code
needed to construct and maintain the clip list
data structures.
• Applications need not deal with damage
events. In a traditional clipping-based window
system, applications must be able to reconstruct
their presentation data quickly to provide data
for newly visible portions of windows.
• Multiple window image formats can be sup-
ported, including those with translucency in-
formation. By constructing the physical frame
buffer data from the combination of various
window contents, it is possible to perform ar-
bitrary image manipulation operations on those
window contents, including translucency ef-
fects.

In the model supported in the X window system
by the Composite extension, an external appli-
cation is responsible for directing the system
in constructing the final screen image from the
off-screen window contents. TWIN has a sim-
pler model where window contents are com-
posited together through a fixed mechanism.
This, of course, eliminates significant complex-
ity but at the cost of also eliminating significant
generality. TWIN does not, and is not likely to,
support immersive 3D environments.

TWIN tracks rectangular regions of modified
pixels within each window. When updating the
screen, a single scanline of intermediate stor-
age is used to compute new screen contents.
The list of displayed windows is traversed and

any section* of the window overlapping the
scanline is painted into the intermediate scan-
line. When complete, the scanline is sent to
the frame buffer. This single scanline provides
the benefits of a double buffered display with-
out the need for a duplicate frame buffer.

Graphics

The availability of small color screens using ei-
therLCD or OLED technologies combined with
sufficient CPUpower have encouraged the in-
clusion of a rendering model designed to take
maximal advantage of the limited pixel reso-
lution available. Anti-aliasing and sub-pixel
addressing is used to produce higher fidelity
renderings within the limited screen resolu-
tion. Per-pixel translucency is included to ‘see
through’ objects as well as permit arbitrary ob-
ject shapes to minimize unused space on the
screen.

The complete drawing stack provides a
simacrulum of thePDF 1.4 drawing environ-
ment, complete with affine transforms, color
image blending and PostScript path construc-
tion and drawing tools. Leveraging this classic
and well known environment ensures both that
developers will feel comfortable with the tools
and that the system is ‘complete’ in some infor-
mal sense.

Pixel Manipulation

TWIN uses the rendering operational model
from 81/2[5], the window system developed for
the Plan 9 operating system by Cox and Pike,
the same as used in the X render extension[4].
This three-operand rendering operator forms
the base upon which all drawing is built:



28 • T WIN: A Window System for ‘Sub-PDA’ Devices

dst = (src IN mask) OVER|SOURCE

dst

The IN, OVER and SOURCE operators are as
defined by Porter and Duff.[6] By manipulat-
ing the operands, this single operator performs
all of the rendering facilities in theTWIN sys-
tem. Geometric operations are performed by
constructing a suitable mask operand based on
the shape of the geometry.

Pixel data are limited inTWIN to three formats,
8 bit alpha, 32 bitARGB and 16 bitRGB. Lim-
iting formats in this way along with the lim-
ited number of operators in the rendering equa-
tion provided an opportunity to instantiate each
combination in custom compositing code. With
three formats for each operand and two opera-
tors, there are 54 different rendering functions
in 13KB of code.

Geometric Objects

For geometric operations,TWIN uses the model
from PostScript as implemented in the cairo
graphics system.[8] ‘Paths’ are constructed
from a sequence of lines and Bézier splines. An
arbitrary path can be convolved with a convex
path to construct a new path representing the
original path as stroked by the convex path. The
convolution operation approximates the outline
of the Minkowski sum of the two paths.

A path can then be drawn by scan converting
it to a mask for use in the rendering operation
described above. Because the rendering opera-
tion can handle translucency, this scan conver-
sion operation does anti-aliasing by sampling
the path in a 4×4 grid over each pixel to com-
pute approximate coverage data. This sampling
grid can be easily adjusted to trade quality for
performance.

The application interface includes an affine
transformation from an arbitrary 16.16 fixed
point coordinate space to 12.4 fixed point pixel
space. The 16.16 fixed point values provide
reasonable dynamic range for hardware which
does not include floating point acceleration.
The 12.4 fixed point pixel coordinates provide
sufficient resolution to accurately reproduce
object geometry on the screen. Note that the
screen is therefore implicitly limited to 4096
pixels square.

Glyph Representation

Providing text at multiple sizes allows the user
interface to take maximal advantage of the lim-
ited screen size. This can either be done by
storing pre-computed glyphs at multiple sizes
or preparing glyphs at run-time from scalable
data. Commercial scalable font formats all rep-
resent glyphs in outline form. The resulting
glyph is constructed by filling a complex shape
constructed from lines and splines. The out-
line data for one face for theASCII character
set could be compressed to less than 7KB – sig-
nificantly smaller than the storage needed for a
bitmap face at a single size.

However, a straightforward rasterization of an
outline does not provide an ideal presentation
on the screen. Outline fonts often include hint-
ing information to adjust glyph shapes at small
pixel sizes to improve sharpness and readabil-
ity. This hinting information requires signif-
icantly more code and data than the outlines
themselves, making it impractical for the target
device class.

An alternative representation for glyphs is as
stroke data. With only the path of the pen
recorded, the amount of data necessary to rep-
resent each glyph is reduced. More signifi-
cantly, with the stroke width information iso-



2005 Linux Symposium • 29

lated from the stroke path, it is possible to auto-
matically adjust the stroke positions to improve
the presentation on the screen. A secondary ad-
justment of the pen shape completes the hinting
process. The results compare favorably with
fully hinted outline text.

An additional feature of the stroke representa-
tion is that producing oblique and bold variants
of the face are straightforward; slanting the text
without changing the pen shape provides a con-
vincing oblique while increasing the pen width
produces a usable bold.

The glyphs themselves have a venerable his-
tory. The shapes come from work done by
Dr A.V. Hershey for the US National Bureau
of Standards. Those glyphs were designed for
period pen plotters and were constructed from
straight line segments on a relatively low reso-
lution grid. The complete set of glyphs contains
many different letterforms from simple gothic
shapes to letters constructed from multiple par-
allel strokes that provide an illusion of vary-
ing stroke widths. Many additional decorative
glyphs were also designed.

From this set of shapes, a simple gothic set of
letters, numbers and punctuation was chosen.
Additional glyphs were designed to provide a
completeASCII set. The curves within the Her-
shey glyphs, designed as sequences of short
line segments, were replaced by cubic splines.
This served both to improve the appearance of
the glyphs under a variety of transforms as well
as to reduce the storage required for the glyphs
as a single cubic spline can replace many line
segments. Figure 1 shows a glyph as originally
designed with 33 line segments and the same
glyph described as seven Bézier splines. Stor-
age for this glyph was reduced from 99 to 52
bytes.

Figure 1: Converting Lines To Splines

Glyph Hinting

Given the desire to present text at a variety
of sizes, the glyph shapes need to undergo a
scaling transformation and then be rasterized
to create an image. Unless this scaling is re-
stricted to integer values, the edges of the re-
sulting strokes will not necessarily align with
the pixel grid. The resulting glyphs will appear
fuzzy and will be hard to read.

To improve the appearance of the glyphs on the
screen, a straightforward mechanism was de-
veloped to reposition the glyph control points
to improve the rasterized result. The glyph data
was augmented to include a list of X and a list
of Y coordinates. Each ‘snap’ list contains val-
ues along the respective axis where some point
within the glyph is designed to lie on a pixel
boundary. These were constructed automati-
cally by identifying all vertical and horizon-
tal segments of each glyph, including splines
whose ends are tangent to the vertical or hori-
zontal.

The glyph coordinates are then scaled to the de-
sired size. The two snap lists (X and Y) are
used to push glyph coordinates to the nearest
pixel grid line. Coordinates between points on
a snap list are moved so that the relative dis-
tance from the nearest snapped coordinates re-
main the same. The pen width is snapped to the
nearest integer size. If the snapped pen width
is odd, the entire glyph is pushed1/2 a pixel



30 • T WIN: A Window System for ‘Sub-PDA’ Devices

in both directions to align the pen edges with
the pixel edges. Figure 2 shows a glyph being
hinted in this fashion.

Figure 2: Hinting A Glyph

The effect is to stretch or shrink the glyph to
align vertical and horizontal strokes to the pixel
grid. Glyphs designed with evenly spaced ver-
tical or horizontal stems (like ‘m’) may end up
unevenly spaced; a more sophisticated hinting
systems could take this into account by preserv-
ing the relative spacing among multiple strokes.

User Interface Objects

With the window system supporting a single
screen containing many windows, the toolkit
extends this model by creating a single top-
level widget. This top-level widget contains a
single box for layout purposes. Each box can
contain a number of widgets or other boxes.

Layout within each box is done either hori-
zontally or vertically with an algorithm which
comes from the Layout Widget[3] that the au-
thor developed for Xt[1] library. Each wid-
get has a natural size and stretch in both di-
rections. The natural size and stretch of a box
is computed from the objects it contains. This

forms the sole geometry management mecha-
nism within the toolkit and is reasonably com-
petent at both constructing a usable initial lay-
out and adapting to externally imposed size
changes.

Process & Thread Model

TWIN was initially developed to run on a cus-
tom embedded operating system. This operat-
ing system design initially included simple co-
operative threading support, andTWIN was de-
signed to run different parts of the window sys-
tem in different threads:
• Input would run in one thread, events were
dispatched without queuing directly to the re-
ceiving object.
• Each window would have a thread to redis-
play the window contents. These threads would
block on a semaphore awaiting a change in ap-
plication state before reconstructing the win-
dow contents. Per window locks could block
updates until the application state was consis-
tent.
• The window system had a separate thread
to compose the separate window contents into
the final screen display. The global redis-
play thread would block on a semaphore which
the per-window redisplay threads would signal
when any window content changed. A global
system lock could block updates while any ap-
plication state was inconsistent.

This architecture was difficult to manage as
it required per-task locking between input and
output. The lack of actual multi-tasking of the
application processing eliminated much of the
value of threads.

Once this was working, support for threading
was removed from the custom operating sys-
tem.



2005 Linux Symposium • 31

With no thread support at all,TWIN was re-
designed with a global event loop monitoring
input, timers and work queues. The combi-
nation of these three mechanisms replaced the
collection of threads described above fairly eas-
ily, and the complexities of locking between in-
put and output within a single logical task were
removed.

Of course, once this was all working, the
custom operating system was replaced with
ucLinux.

While the single thread model works fine in
ucLinux, it would be nice to split separate out
tasks into processes. Right now, all of the tasks
are linked into a monolithic executable. This
modularization work is underway.

Input Model

A window system is responsible for collecting
raw input data from the user in the form of but-
ton, pointer and key manipulation and distribut-
ing them to the appropriate applications.

TWIN takes a simplistic approach to this pro-
cess, providing a single immutable model.
Pointer events are delivered to the window con-
taining the pointing device. Transparent areas
of each window are excluded from this contain-
ment, so arbitrary shapes can be used to select
for input.

TWIN assumes that any pointing device will
have at least one associated signal – a mouse
button, a screen touch or perhaps something
else. When pressed, the pointing device is
‘grabbed’ by the window containing the pointer
at that point. Motion information is delivered
only to that window until the button is released.

Device events not associated with a pointer,
such as keyboards, are routed to a fixed ‘active’

window. The active window is set under ap-
plication control, such as when a mouse button
press occurs within an inactive window. The
active window need need not be the top-most
window.

Under both the original multi-threaded model
and the current single-threaded model, there is
no event queueing within the window system;
events are dispatched directly upon being re-
ceived from a device. This is certainly easy to
manage and allows motion events to be easily
discarded when the system is too busy to pro-
cess them. However, with the switch to multi-
ple independent processes running on ucLinux,
it may become necessary to queue events be-
tween the input collection agent and the appli-
cation processing them.

Within the toolkit, events are dispatched
through each level of the hierarchy. Within
each box, keyboard events are statically routed
to the active box or widget while mouse events
are routed to the containing box or widget. By
explicitly dispatching down each level, the con-
taining widgets and boxes can enforce whatever
policy they like for event delivery, including
mouse or keyboard grabs, focus traversal and
event replay.

While this mechanism is fully implemented,
much investigation remains to be done to ex-
plore what kinds of operations are useful and
whether portions of what is now application-
defined behavior should be migrated into com-
mon code.

Window Management

TWIN embeds window management right into
the toolkit. Support for resize, move and min-
imization is not under the control of an exter-
nal application. Instead, the toolkit automat-
ically constructs suitable decorations for each



32 • T WIN: A Window System for ‘Sub-PDA’ Devices

window as regular toolkit objects and the nor-
mal event dispatch mechanism directs window
management activities.

While external management is a valuable archi-
tectural feature in a heterogeneous desktop en-
vironment, the additional space, time and com-
plexity rules this out in today’s Sub-PDA world.

Status and Future Work

As computing systems continue to press into
ever smaller environments, the ability to bring
sophisticated user interface technologies along
greatly increases both the value of such prod-
ucts as well as the scope of the potential mar-
ket.

The TWIN window compositing mechanism,
graphics model and event delivery system have
been implemented using a mock-up of the hard-
ware running on Linux using the X window
system. Figure 3 shows most of the current ca-
pabilities in the system.

While the structure of theTWIN window sys-
tem is complete, the toolkit is far from com-
plete, having only a few rudimentary widgets.
And, as mentioned above, the port to ucLinux is
not yet taking advantage of the multiple process
support in that environment. These changes
will likely be accompanied by others asTWIN

is finally running on the target hardware.

In the x86 emulation environment, the window
system along with a small cadre of demonstra-
tion applications now fits in about 50KB of text
space with memory above that limited largely
to the storage of the off-screen window con-
tents. Performance on a 1.2GHz laptop proces-
sor is more than adequate; it will be rather inter-
esting to see how these algorithms scale down
to the targetCPU.

The current source code is available from via
CVS, follow the link from http://keithp.com.
The code is licensed with anMIT -style license,
permitting liberal commercial use.

References

[1] Paul J. Asente and Ralph R. Swick.X
Window System Toolkit. Digital Press,
1990.

[2] William R. Hamburgen, Deborah A.
Wallach, Marc A. Viredaz, Lawrence S.
Brakmo, Carl A. Waldspurger, Joel F.
Bartlett, Timothy Mann, and Keith I.
Farkas. Itsy: Stretching the Bounds of
Mobile Computing.IEEE Computer,
34(4):28–35, April 2001.

[3] Keith Packard. The LayoutWidget: A TeX
Style Constraint Widget Class.The X
Resource, 5, Winter 1993.

[4] Keith Packard. Design and
Implementation of the X Rendering
Extension. InFREENIX Track, 2001
Usenix Annual Technical Conference,
Boston, MA, June 2001. USENIX.

[5] Rob Pike.draw - screen graphics. Bell
Laboratories, 2000. Plan 9 Manual Page
Entry.

[6] Thomas Porter and Tom Duff.
Compositing Digital Images.Computer
Graphics, 18(3):253–259, July 1984.

[7] Robert W. Scheifler and James Gettys.X
Window System. Digital Press, third
edition, 1992.

[8] Carl Worth and Keith Packard. Xr:
Cross-device Rendering for Vector
Graphics. InProceedings of the Ottawa
Linux Symposium, Ottawa, ON, July 2003.
OLS.



2005 Linux Symposium • 33

Figure 3: Sample Screen Image



34 • T WIN: A Window System for ‘Sub-PDA’ Devices



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


