
Adopting and Commenting the Old Kernel Source Code
for Education

Jiong Zhao
University of TongJi, Shanghai

gohigh@gmail.com

Trent Jarvi
University of Denver

taj@www.linux.uk.org

Abstract

Dissecting older kernels including their prob-
lems can be educational and an entertaining re-
view of where we have been. In this session,
we examine the older Linux kernel version 0.11
and discuss some of our findings. The pri-
mary reason for selecting this historical kernel
is that we have found that the current kernel’s
vast quantity of source code is far too complex
for hands-on learning purposes. Since the 0.11
kernel has only 14,000 lines of code, we can
easily describe it in detail and perform some
meaningful experiments with a runnable sys-
tem effienctly. We then examine several as-
pects of the kernel including the memory man-
agement, stack usage and other aspects of the
Linux kernel. Next we explain several aspects
of using Bochs emulator to perform experi-
ments with the Linux 0.11 kernel. Finally, we
present and describe the structure of the Linux
kernel source including thelib/ directory.

1 Introduction

As Linus once said, if one wants to understand
the details of a software project, one should
“RTFSC—Read The F**king Source Code.”
The kernel is a complete system, the parts re-
late to each other to fulfill the functions of a

operating system. There are many hidden de-
tails in the system. If one ignores these details,
like a blind men trying to size up the elephant
by taking a part for the whole, its hard to under-
stand the entire system and is difficult to under-
stand the design and implementations of an ac-
tual system. Although one may obtain some of
the operating theory through reading classical
books like the “The design of Unix operating
system,” [4] the composition and internal rela-
tionships in an operating system are not easy to
comprehend. Andrew Tanenbaum, the author
of MINIX[1], once said in his book, “teaching
only theory leaves the student with a lopsided
view of what an operating system is really like.”
and “Subjects that really are important, such as
I/O and file systems, are generally neglected
because there is little theory about them.” As
a result, one may not know the tricks involved
in implementing a real operating system. Only
after reading the entire source code of a oper-
ating system, may one get a feeling of sudden
enlightened about the kernel.

In 1991 Linus made a similar statements[5] af-
ter distributing kernel version 0.03, “TheGNU
kernel (Hurd) will be free, but is currently not
ready, and will be too big to understand and
learn.” Likewise, the current Linux kernel is
too large to easily understand. Due to the small
amount of code (only 14,000 lines) as shown
in Figure 1, the usability and the consistency

• 297 •

298 • Adopting and Commenting the Old Kernel Source Code for Education

with the current kernel, it is feasible to choose
Linux 0.11 kernel for students to learn and per-
form experiments. The features of the 0.11 ker-
nel are so limited, it doesn’t even contain job
control or virtual memory swapping. It can,
however, still be run as a complete operating
system. As with an introductory book on oper-
ating systems, we need not deal with the more
complicated components such asVFS, ext3,
networking and more comprehensive memory
management systems in a modern kernel. As
students understand of the main concepts con-
cerning how an operating system is generally
implemented, they can learn to understand the
advanced parts for themselves. Thus, both the
teaching and learning become more efficient
and consume considerably less time. The lower
barrier to entry for learning can even stimulate
many young people to take part in and involve
in the Linux activities.

Comparison of total line counts of Linux kernels

V1.2.13

V1.0

V1.1.52

V0.01

V0.11
V0.12

V0.95 V0.96a

V0.97 V0.98

V0.99

V2.0.38

V2.2.20

V2.4.17 V2.6.0

Y axis unit: 1000 Lines

Figure 1: Lines of code in various kernel ver-
sions

From teaching experience and student feed-
back, we found the most difficult part of study-
ing the 0.11 kernel is the memory management.
Therefore, in the following sections we mainly
deal with how the 0.11 kernel manages and uses
memory in the protected mode of the IntelIA-
32 processor along with the different kinds of
stacks used during the kernel initialization of
each task.

2 Linux Kernel Architecture

The Linux kernel is composed of five mod-
ules: task scheduling, memory management,
file system, interprocess communication (IPC)
and network. The task scheduling module is re-
sponsible for controlling the usage of the pro-
cessor for all tasks in the system. The strat-
egy used for scheduling is to provide reason-
able and fair usage between all tasks in the sys-
tem while at the same time insuring the pro-
cessing of hardware operations. The memory
management module is used to insure that all
tasks can share the main memory on the ma-
chine and provide the support for virtual mem-
ory mechanisms. The file system module is
used to support the driving of and storage in
peripheral devices. Virtual file system modules
hide the various differences in details of the
hardware devices by providing a universal file
interface for peripheral storage equipment and
providing support for multiple formats of file
systems. TheIPC module is used to provide
the means for exchanging messages between
processes. The network interface module pro-
vides access to multiple communication stan-
dards and supports various types of network
hardware.

The relationship between these modules is il-
lustrated in Figure 2. The lines between them
indicates the dependences of each other. The
dashed lines and dashed line box indicate the
part not implemented in Linux 0.1x.

The figure shows the scheduling module rela-
tionship with all the other modules in the kernel
since they all depend on the schedules provided
to suspend and restart their tasks. Generally, a
module may hang when waiting for hardware
operations, and continue running after the hard-
ware operation finishes. The other three mod-
ules have like relationships with the schedule
module for similar reasons.

2005 Linux Symposium • 299

Figure 2: The relationship between Linux ker-
nel modules

The remaining modules have implicit depen-
dences with each other. The scheduling subsys-
tem needs memory management to adjust the
physical memory space used by each task. The
IPC subsystem requires the memory manage-
ment module to support shared memory com-
munication mechanisms. Virtual file systems
can also use the network interface to support
the network file system (NFS). The memory
management subsystem may also use the file
system to support the swapping of memory data
blocks.

From the monolithic model structure, we can
illustrate the main kernel modules in Figure 3
based on the structure of the Linux 0.11 kernel
source code.

3 Memory Usage

In this section, we first describe the usage of
physical memory in Linux 0.1x kernel. Then
we explain the memorysegmentation, paging,
multitasking and theprotection mechanisms.
Finally, we summarize the relationship between
virtual, linear, and physical address for the code
and data in the kernel and for each task.

Figure 3: Kernel structure framework

3.1 Physical Memory

In order to use the physical memory of the ma-
chine efficiently with Linux 0.1x kernel, the
memory is divided into several areas as shown
in Figure 4.

Figure 4: The regions of physical memory

As shown in Figure 4, the kernel code and
data occupies the first portion of the physi-
cal memory. This is followed by the cache
used for block devices such as hard disks and
floppy drives eliminating the memory space
used by the adapters andROM BIOS. When a

300 • Adopting and Commenting the Old Kernel Source Code for Education

task needs data from a block device, it will be
first read into the cache area from the block de-
vice. When a task needs to output the data to a
block device, the data is put into the cache area
first and then is written into the block device
by the hardware driver in due time. The last
part of the physical memory is the main area
used dynamically from programs. When kernel
code needs a free memory page, it also needs
to make a request from the memory manage-
ment subsystem. For a system configured with
virtual RAM disksin physical memory, space
must be reserved in memory.

Physical memory is normally managed by the
processor’s memory management mechanisms
to provide an efficient means for using the sys-
tem resources. The Intel 80X86 CPU provides
two memory management mechanisms: Seg-
mentation and paging. The paging mechanism
is optional and its use is determined by the
system programmer. The Linux operating sys-
tem uses both memory segmentation and pag-
ing mechanism approaches for flexibility and
efficiency of memory usage.

3.2 Memory address space

To perform address mapping in the Linux ker-
nel, we must first explain the three different
address concepts used invirtual or logical ad-
dress space, the CPUlinear address space, and
the actualphysicaladdress space. Thevirtual
addresses used in virtual address space are ad-
dresses composed of thesegment selectorand
offset in the segment generated by program.
Since the two part address can not be used to
access physical memory directly, this address
is referred to as a virtual address and must use
at least one of the address translation mecha-
nisms provided by CPU to map into the phys-
ical memory space. The virtual address space
is composed of theglobal address spacead-
dressed by the descriptors in global descriptor

table (GDT) and thelocal address spacead-
dressed by the local descriptor table (LDT). The
index part of asegment selectorhas thirteen bits
and one bit for the table index. The Intel 80X86
processor can then provide a total of 16384 se-
lectors so it can addresses a maximum of 64T
of virtual address space[2]. The logical address
is the offset portion of a virtual address. Some-
times this is also referred to as virtual address.

Linear address is the middle portion of address
translation from virtual to physical addresses.
This address space is addressable by the pro-
cessor. A program can use alogical address
or offset in a segment and the base address of
the segment to get a linear address. Ifpaging
is enabled, the linear address can be translated
to produced a physical address. If thepagingis
disabled, then the linear address is actually the
same as physical address. The linear address
space provided by Intel 80386 is 4 GB.

Physical addressis the address on the proces-
sor’s external address bus, and is the final result
of address translation.

The other concept that we examine isvirtual
memory. Virtual memory allows the computer
to appear to have more memory than it actu-
ally has. This permits programmers to write a
program larger than the physical memory that
the system has and allows large projects to be
implemented on a computer with limited re-
sources.

3.3 Segmentation and paging mechanisms

In a segmented memory system, the logical ad-
dress of a program is automatically mapped or
translated into the middle 4 GB linear address
space. Each memory reference refers to the
memory in a segment. When programs refer-
ence a memory address, a linear address is pro-
duced by adding the segment base address with

2005 Linux Symposium • 301

Figure 5: The translation between virtual or
logical, linear and physical address

the logical address visible to the programmer.
If pagingis not enabled, at this time, the linear
address is sent to the external address bus of the
processor to access the corresponding physical
address directly.

If pagingis enabled on the processor, the linear
address will be translated by thepagingmech-
anism to get the final physical corresponding
physical address. Similar to the segmentation,
paging allow us to relocate each memory ref-
erence. The basic theory of paging is that the
processor divides the whole linear space into

pages of 4 KB. When programs request mem-
ory, the processor allocates memory in pages
for the program.

Since Linux 0.1x kernel uses only onepage di-
rectory, the mapping function from linear to
physical space is same for the kernel and pro-
cesses. To prevent tasks from interfering with
each other and the kernel, they have to occupy
different ranges in the linear address space. The
Linux 0.1x kernel allocates 64MB of linear
space for each task in the system, the system
can therefor hold at most 64 simultaneous tasks
(64MB * 64 = 4G) before occupying the entire
Linear address space as illustrated in Figure 6.

Figure 6: The usage of linear address space in
the Linux 0.1x kernel

3.4 The relationship between virtual, lin-
ear and physical address

We have briefly described the memory segmen-
tation and paging mechanisms. Now we will
examine the relationship between the kernel
and tasks in virtual, linear and physical address
space. Since the creation oftasks 0and1 are
special, we’ll explain them separately.

3.4.1 The address range of kernel

For the code and data in the Linux 0.1x ker-
nel, the initialization inhead.s has already
set the limit for the kernel and data segments to

302 • Adopting and Commenting the Old Kernel Source Code for Education

be 16MB in size. These two segments over-
lap at the same linear address space starting
from address 0. Thepage directoryandpage
table for kernel space are mapped to 0-16MB
in physical memory (the same address range in
both spaces). This is all of the memory that
the system contains. Since one page table can
manage or map 4MB, the kernel code and data
occupies four entries in thepage directory. In
other words, there are four secondary page ta-
bles with 4MB each. As a result, the address
in the kernel segment is the same in the physi-
cal memory. The relationship of these three ad-
dress spaces in the kernel is depicted in Figure
7.

Figure 7: The relationship of the three address
spaces in a 0.1x kernel

As seen in Figure 7, the Linux 0.1x kernel
can manage at most 16MB of physical mem-
ory in 4096 page frames. As explained ear-
lier, we know that: (1) the address range of
kernel code and data segments are the same as
in the physical memory space. This configura-
tion can greatly reduce the initialization oper-
ations the kernel must perform. (2)GDT and

Interrupt Descriptor Table (IDT) are in the ker-
nel data segment, thus they are located in the
same address in both address spaces. In the
execution of code insetup.s in real mode,
we have setup both temporaryGDT andIDT at
once. These are required before entering pro-
tected mode. Since they are located by physical
address0x90200 and this will be overlapped
and used for block device cache, we have to
recreateGDT and IDT in head.s after en-
tering protected mode. The segment selectors
need to be reloaded too. Since the locations of
the two tables do not change after entering pro-
tected mode, we do not need to move or recre-
ate them again. (3) All tasks excepttask 0need
additional physical memory pages in different
linear address space locations. They need the
memory management module to dynamically
setup their own mapping entries in thepage di-
rectoryandpage table. Although the code and
static data oftask 1are located in kernel space,
we need to obtain new pages to prevent interfer-
ence withtask 0. As a result,task 1also needs
its own page entries.

While the default manageable physical mem-
ory is 16MB, a system need not contain 16MB
memory. A machine with only 4MB or even
2MB could run Linux 0.1x smoothly. For a ma-
chine with only 4MB, the linear address range
4MB to 16MB will be mapped to nonexistent
physical space by the kernel. This does not dis-
rupt or crash the kernel. Since the kernel knows
the exact physical memory size from the initial-
ization stage, no pages will be mapped into this
nonexistent physical space. In addition, since
the kernel has limited the maximum physical
memory to be 16MB at boot time (inmain()
corresponding tostartkernel()), memory
over 16MB will be left unused. By adding
some page entries for the kernel and chang-
ing some of the kernel source, we certainly can
make Linux 0.1x support more physical mem-
ory.

2005 Linux Symposium • 303

3.4.2 The address space relationship for
task 0

Task 0is artificially created or configured and
run by using a special method. The limits of its
code and data segments are set to the 640KB in-
cluded in the kernel address space. Nowtask 0
can use the kernel page entries directly without
the need for creating new entries for itself. As
a result, its segments are overlapped in linear
address space too. The three space relationship
is shown in Figure 8.

Figure 8: The relationship of three address
spaces for task 0

As task 0 is totally contained in the kernel
space, there is no need to allocate pages from
the main memory area for it. The kernel stack
and the user stack fortask 0are included the
kernel space.Task 0still has read and write
rights in the stacks since the page entries used
by the kernel space have been initialized to be
readable and writable with user privileges. In
other words, the flags in page entries are set as
U/S=1, R/W=1.

3.4.3 The address space relationship for
task 1

Similar totask 0, task 1is also a special case in
which the code and data segment are included
in kernel module. The main difference is that
when forkingtask 1, one free page is allocated
from the main memory area to duplicate and
storetask 0’s page table entries fortask 1. As
a result,task 1has its ownpage tableentries in
thepage directoryand is located at range from
64MB to 128MB (actually 64MB to 64MB +
640KB) in linear address space. One additional
page is allocated for task 1 to store itstask
structure (PCB)and is used as its kernel mode
stack. The task’sTask State Segment (TSS)is
also contained in task’s structure as illustrated
in Figure 9.

Figure 9: The relationship of the three address
spaces in task 1

Task 1and task 0will share their user stack
user_stack[] (refer tokernel/sched.
c , lines 67-72). Thus, the stack space should be
‘ ‘clean” beforetask 1uses it to ensure that there

304 • Adopting and Commenting the Old Kernel Source Code for Education

is no unnecessary data on the stack. When fork-
ing task 1, the user stack is shared betweentask
0 andtask 1. However whentask 1starts run-
ning, the stack operating intask 1would cause
the processor to produce a page fault because
the page entries have been modified to be read
only. The memory management module will
therefor need allocate a free page fortask 1’s
stack.

3.4.4 The address space relationship for
other tasks

For task 2and higher, the parent istask 1or the
init process. As described earlier, Linux 0.1x
can have 64 tasks running synchronously in the
system. Now we will detail the address space
usage for these additional tasks.

Beginning withtask 2, if we designatenr as
the task number, the starting location fortask
nr will be at nr * 64MB in linear address
space.Task 2, for example, begins at address 2
* 64MB = 128MB in the linear address space,
and the limits of code and data segments are set
to 64MB. As a result, the address range occu-
pied by task 2is from 128MB to 192MB, and
has 64MB/4MB = 16 entries in the page direc-
tory. The code and data segments both map
to the same range in the linear address space.
Thus they also overlap with the same address
range as illustrated in Figure 10.

After task 2has forked, it will call the func-
tion execve() to run a shell program such as
bash. Just after the creation oftask 2and be-
fore callexecve() , task 2is similar totask 1
in the three address space relationship for code
and data segments except the address range oc-
cupied in linear address space has the range
from 128MB to 192MB. Whentask 2’scode
calls execve() to load and run a shell pro-
gram, the page entries are copied fromtask 1
and corresponding memory pages are freed and

Figure 10: The relationship of the three address
spaces in tasks beginning with task 2

new page entries are set for the shell program.
Figure 10 shows this address space relation-
ship. The code and data segment fortask 1are
replaced with that of the shell program, and one
physical memory page is allocated for the code
of the shell program. Notice that although the
kernel has allocated 64MB linear space fortask
2, the operation of allocating actual physical
memory pages for code and data segments of
the shell program is delayed until the program
is running. This delayed allocation is called de-
mand paging.

Beginning with kernel version 0.99.x, the usage
of memory address space changed. Each task
can use the entire 4G linear space by changing
the page directory for each tasks as illustrated
in Figure 11. There are even more changes are
in current kernels.

2005 Linux Symposium • 305

Figure 11: The relationship of the three address
space for tasks in newer kernels

4 Stack Usage

This section describes several different meth-
ods used during the processing of kernel boot-
ing and during normal task stack operations.
Linux 0.1x kernel uses four different kinds of
stacks: the temporary stack used for system
booting and initialization under real address
mode; The kernel initialization stack used after
the kernel enters protected mode, and the user
stack fortask 0after moving into task 0; The
kernel stack of each task used when running in
the kernel and the user stacks for each task ex-
cept fortasks 0 and 1.

There are two main reasons for using four dif-
ferent stacks (two used only temporarily for
booting) in Linux. First, when entering pro-
tected from real mode, the addressing method
used by the processor has changed. Thus the
kernel needs to rearrange the stack area. In ad-
dition, to solve the protection problems brought
by the new privilege level on processor, we
need to use different stacks for kernel code at

level 0 and for user code at level 3 respectively.
When a task runs in the kernel, it uses the ker-
nel mode stack pointed by the values inss0
andesp0 fields of itsTSSand stores the task’s
user stack pointer in this stack. When the con-
trol returns to the user code or to level 3, the
user stack pointer will be popped out, and the
task continues to use the user stack.

4.1 Initialization period

When theROM BIOScode boots and loads
the bootsect into memory at physical address
0x7C00 , no stack is used until it is moved
to the location0x9000:0 . The stack is then
set at0x9000:0xff00 . (refer to line 61–
62 in boot/bootsect.s). After control is
transferred tosetup.s , the stack remains un-
changed.

When control is transferred tohead.s , the
processor runs in protected mode. At this time,
the stack is setup at the location ofuser_
stack[] in the kernel code segment (line 31
in head.s). The kernel reserves one 4 KB
page for the stack defined at line 67–72 in
sched.c as illustrated in Figure 12.

This stack area is still used after the control
transfers intoinit/main.c until the execu-
tion of move_to_user_mode() to hand the
control over totask 0. The above stack is then
used as a user stack fortask 0.

4.2 Task stacks

For the processor privilege levels 0 and 3 used
in Linux, each task has two stacks: kernel mode
stack and user mode stack used to run kernel
code and user code respectively. Other than the
privilege levels, the main difference is that the
size of kernel mode stack is smaller than that
of the user mode stack. The former is located

306 • Adopting and Commenting the Old Kernel Source Code for Education

Figure 12: The stack used for kernel code after
entering protected mode

at the bottom in a page coexisting with task’s
structure, and no more than 4KB in size. The
later can grow down to nearly 64MB in user
space.

As described, each task has its own 64MB log-
ical or linear address space except fortask 0
and1. When a task was created, the bottom of
its user stack is located close to the end of the
64MB space. The top portion of the user space
contains additional environmental parameters
and command line parameters in a backwards
orientation, and then the user stack as illus-
trated in Figure 13.

Task code at privilege level 3 uses this stack all
of the time. Its corresponding physical memory
page is mapped by paging management code
in the kernel. Since Linux utilizes thecopy-
on-write[3] method, both the parent and child
process share the same user stack memory until
one of them perform a write operation on the

Figure 13: User stack in task’s logical space

stack. Then the memory manager will allocate
and duplicate the stack page for the task.

Similar to the user stack, each task has its own
kernel mode stackused when operating in the
kernel code. This stack is located in the mem-
ory to pointed by the values inss0 , esp0
fields in task’sTSS. ss0 is the stack segment
selector like thedata selectorin the kernel.
esp0 indicates the stack bottom. Whenever
control transfers to the kernel code from user
code, the kernel mode stack for the task always
starts fromss0:esp0 , giving the kernel code
an empty stack space. The bottom of a task’s
kernel stack is located at the end of a mem-
ory page where the task’s data structure begins.
This arrangement is setup by making the privi-
lege level 0 stack pointer inTSSpoint to the end
of the page occupied by the task’s data struc-
ture when forking a new task. Refer to line 93
in kernel/fork.c as below:

p->tss.esp0 = PAGE_SIZE+(long)p;
p->tss.ss0 = 0x10;

p is the pointer of the new task structure,tss
is the structure of the task status segment. The
kernel request a free page to store the task struc-
ture pointed byp. The tss structure is a field in
the task structure. The value oftss.ss0 is
set to the selector of kernel data segment and
the tss.esp0 is set to point to the end of the
page as illustrated in Figure 14.

As a matter of fact,tss.esp0 points to the
byte outside of the page as depicted in the fig-

2005 Linux Symposium • 307

Figure 14: The kernel mode stack of a task

ure. This is because the Intel processor de-
creases the pointer before storing a value on the
stack.

4.3 The stacks used by task 0 and task 1

Both task 0or idle task andtask 1or init task
have some special properties. Althoughtask 0
and task 1have the same code and data seg-
ment and 640KB limits, they are mapped into
different ranges in linear address space. The
code and data segments oftask 0begins at ad-
dress 0, andtask 1 begins at address 64MB
in the linear space. They are both mapped
into the same physical address range from 0
to 640KB in kernel space. After calling the
function move_to_user_mode() , the ker-
nel mode stacks oftask 0andtask 1are located
at the end of the page used for storing their
task structures. The user stack oftask 0is the
same stack originally used after entering pro-
tected mode; the space foruser_stack[]
array defined insched.c program. Sincetask
1 copiestask 0’s user stack when forking, they
share the same stack space in physical memory.
When task 1starts running, however, a page
fault exception will occur whentask 1writes
to its user stack because the page entries for
task 1have been initialized as read-only. At
this moment, the kernel will allocate a free page

in main memory area for the stack oftask 1in
the exception handler, and map it to the loca-
tion of task 1’s user stack in the linear space.
From now on,task 1has its own separate user
stack page. As a result, the user stack fortask
0 should be “clean” beforetask 1uses the user
stack to ensure that the page of stack duplica-
tion does not contain useless data fortask 1.

The kernel mode stack fortask 0is initialized
in its static data structure. Then its user stack is
set up by manipulating the contents of the stack
originally used after entering protected mode
and emulating the interrupt return operation us-
ing IRET instruction as illustrated in Figure 15.

031

Figure 15: Stack contents while returning from
privilege level 0 to 3

As we know, changing the privilege level will
change the stack and the old stack pointers
will be stored onto the new stack. To emu-
late this case, we first push thetask 0’s stack
pointer onto the stack, then the pointer of the
next instruction intask 0. Finally we run the
IRET instruction. This causes the privilege
level change and control to be transferred to
task 0. In the Figure 15, the oldSSfield stores
the data selector ofLDT for task 0(0x17) and
the oldESPfield value is not changed since the
stack will be used as the user stack fortask 0.
The oldCSfield stores the code selector (0x0f)
for task 0. The oldEIP points to the next in-
struction to be executed. After the manipula-
tion, aIRET instruction switches the privileges

308 • Adopting and Commenting the Old Kernel Source Code for Education

from level 0 to level 3. The kernel begins run-
ning in task 0.

4.4 Switch between kernel mode stack and
user mode stack for tasks

In the Linux 0.1x kernel, all interrupts and ex-
ceptions handlers are in mode 0 so they belong
to the operating system. If an interrupt or ex-
ception occurs while the system is running in
user mode, then the interrupt or exception will
cause a privilege level change from level 3 to
level 0. The stack is then switched from the
user mode stack to the kernel mode stack of the
task. The processor will obtain the kernel stack
pointersss0 and esp0 from the task’sTSS
and store the current user stack pointers into
the task’s kernel stack. After that, the processor
pushes the contents of the currentEFLAGSreg-
ister and the next instruction pointers onto the
stack. Finally, it runs the interrupt or exception
handler.

The kernelsystem callis trapped by using a
software interrupt. Thus anINT 0x80 will
cause control to be transferred to the kernel
code. Now the kernel code uses the current
task’s kernel mode stack. Since the privilege
level has been changed from level 3 to level 0,
the user stack pointer is pushed onto the kernel
mode stack, as illustrated in Figure 16.

If a task is running in the kernel code, then
an interrupt or exception never causes a stack
switch operation. Since we are already in the
kernel, an interrupt or exception will never
cause a privilege level change. We are using the
kernel mode stack of the current task. As a re-
sult, the processor simply pushes theEFLAGS
and the return pointer onto the stack and starts
running the interrupt or exception handler.

Figure 16: Switching between the kernel stack
and user stack for a task

5 Kernel Source Tree

Linux 0.11 kernel is simplistic so the source
tree can be listed and described clearly. Since
the 0.11 kernel source tree only has 14 directo-
ries and 102 source files it is easy to find spe-
cific files in comparison to searching the much
larger current kernel trees. The mainlinux/
directory contains only one Makefile for build-
ing. From the contents of the Makefile we can
see how the kernel image file is built as illus-
trated in Figure 17.

Figure 17: Kernel layout and building

There are three assembly files in theboot/
directory: bootsect.s , setup.s , and
head.s . These three files had corresponding
files in the more recent kernel source trees un-
til 2.6.x kernel. Thefs/ directory contains
source files for implementing aMINIX version

2005 Linux Symposium • 309

1.0 file system. This file system is a clone of the
traditional UN*X file system and is suitable for
someone learning to understand how to imple-
ment a usable file system. Figure 18 depicts the
relationship of each files in thefs/ directory.

Figure 18: File relationships in fs/ directory

The fs/ files can be divided into four types.
The first is the block cache manager file
buffer.c . The second is the files concern-
ing with low level data operation files such
inode.c . The third is files used to process
data related to char, block devices and regular
files. The fourth is files used to execute pro-
grams or files that are interfaces to user pro-
grams.

The kernel/ directory contains three kinds
of files as depicted in Figure 19.

The first type is files which deal with hardware
interrupts and processor exceptions. The sec-
ond type is files manipulating system calls from

Figure 19: Files in the kernel/ directory

user programs. The third category is files im-
plementing general functions such as schedul-
ing and printing messages from the kernel.

Block device drivers for hard disks, floppy
disks and ram disks reside in a subdirectory
blk_drv/ in the kernel/ , thus the Linux
0.11 kernel supports only three classical block
devices. Because Linux evolved from a ter-
minal emulation program, the serial terminal
driver is also included in this early kernel in
addition to the necessary console character de-
vice. Thus, the 0.11 kernel contains at least two
types of char device drivers as illustrated in Fig-
ure 20.

The remaining directories in the kernel source
tree include, init, mm, tools, and
math . The include/ contains the head files
used by the other kernel source files.init/
contains only the kernel startup filemain.c ,
in which, all kernel modules are initialized and
the operating system is prepared for use. The
mm/ directory contains two memory manage-
ment files. They are used to allocate and free
pages for the kernel and user programs. As
mentioned, the mm in 0.11 kernel uses demand
paging technology. Themath/ directory only
contains math source code stubs as 387 emula-

310 • Adopting and Commenting the Old Kernel Source Code for Education

Figure 20: Character devices in Linux 0.11 ker-
nel

tion did not appear until the 0.12 kernel.

6 Experiments with the 0.1x kernel

To facilitate understanding of the Linux 0.11
kernel implementation, we have rebuilt a
runnable Linux 0.11 system, and designed sev-
eral experiments to watch the kernel internal
activities using theBochs PC emulator. Bochs
is excellent for debugging operating systems.
TheBochssoftware package contains an inter-
nal debugging tool, which we can use to ob-
serve the dynamic data structures in the kernel
and examine the contents of each register on the
processor.

It is an interesting exercise to install the Linux
0.11 system from scratch. It is a good learning
experience to build a root file system image file
under Bochs.

Modifying and compiling the kernel source
code are certainly the most important experi-
ments for learning about operating systems. To
facilitate the process, we provide two environ-
ments in which, one can easily compile the ker-
nel. One is the originalGNU gcc environment

under Linux 0.11 system in Bochs. The other
is for more recent Linux systems such asRed
Hat 9 or Fedora. In the former environment,
the 0.11 kernel source code needs no modifi-
cations to successfully compile. For the later
environment one needs to modify a few lines
of code to correct syntax errors. For people
familiar with MASM andVC environment un-
der windows, we even provide modified 0.11
kernel source code that can compile. Offer-
ing source code compatible with multiple envi-
ronments and providing forums for discussion
helps popularize linux and the linux community
with new people interested in learning about
operating systems:-)

7 Summary

From observing people taking operating system
courses with the old Linux kernel, we found
that almost all the students were highly inter-
ested in the course. Some of them even started
programming their own operating systems.

The 0.11 kernel contains only the basic features
that an operating system must have. As a result,
there are many important features not imple-
mented in 0.11 kernel. We now plan to adopt
either the 0.12 or 0.98 kernel for teaching pur-
poses to include job control, virtualFS, virtual
console and even network functions. Due to
time limitations in the course, several simpli-
fications and careful selection of material will
be needed.

References

[1] Albert S. Woodhull Andrew
S. Tanenbaum.OPERATING SYSTEMS:
Design and Implementation.
Prentice-Hall, Inc., 1997.

2005 Linux Symposium • 311

[2] Patrick P. Gelsinger John H. Crawford.
Programming the 80386. SYBEX Inc.,
1987.

[3] Robert Love.Linux Kernel Development.
Sams Inc., 2004.

[4] M.J.Bach.The Design of Unix Operating
System. Prentice-Hall, Inc., 1986.

[5] Linus Torvalds. LINUX – a free unix-386
kernel. October 1991.

312 • Adopting and Commenting the Old Kernel Source Code for Education

Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

