Adopting and Commenting the Old Kernel Source Code
for Education

Jiong Zhao Trent Jarvi
University of TongJi, Shanghai University of Denver
gohigh@gmail.com taj@www.linux.uk.org
Abstract operating system. There are many hidden de-

tails in the system. If one ignores these details,
like a blind men trying to size up the elephant

Di ing older kernels including their prob- : .
ssecting olde €rnels inc uding the P ob by taking a part for the whole, its hard to under-
lems can be educational and an entertaining re- : A
. ; - _stand the entire system and is difficult to under-
view of where we have been. In this session . . .
. . . 5tand the design and implementations of an ac-
we examine the older Linux kernel version 0.11 .
. - - tual system. Although one may obtain some of
and discuss some of our findings. The pri-) . :
. Lo the operating theory through reading classical
mary reason for selecting this historical kernel : ; . . .
. . books like the “The design of Unix operating
is that we have found that the current kernel's y I)
. . system,” [4] the composition and internal rela-
vast quantity of source code is far too comple onshins in an operating Svstem are not easy to
for hands-on learning purposes. Since the 0.1 b b gsy y

kernel has only 14,000 lines of code, we Cancomprehend. Andrew Tanenbaum, the author

easily describe it in detail and perform someOf MINIX[1], once said in his book, *teaching

. . : only theory leaves the student with a lopsided
meaningful experiments with a runnable sys-". : . L

. . view of what an operating system is really like.
tem effienctly. We then examine several as-

pects of the kernel including the memory man_and Subjects that really are important, such as

I/O and file systems, are generally neglected
agement, stack usage and other aspects of the e .

. : bécause there is little theory about them.” As
Linux kernel. Next we explain several aspects

. .a result, one may not know the tricks involved
of using Bochs emulator to perform experi-

ments with the Linux 0.11 kernel. Finally, we in implementing a real operating system. Only

present and describe the structure of the Linufgncter reading the entire source code of a oper-

kernel source including thié/ directory. :Eﬁghst)e/ifénébrgﬁztﬁgigrer:e? feeling of sudden

In 1991 Linus made a similar statements[5] af-
ter distributing kernel version 0.03, “TH@NU
kernel (Hurd) will be free, but is currently not
As Linus once said, if one wants to understandeady, and will be too big to understand and
the details of a software project, one shouldearn.” Likewise, the current Linux kernel is
“RTFSC—Read The F**king Source Code.” too large to easily understand. Due to the small
The kernel is a complete system, the parts reamount of code (only 14,000 lines) as shown
late to each other to fulfill the functions of a in Figure 1, the usability and the consistency

1 Introduction

e 297 o

298 e Adopting and Commenting the Old Kernel Source Code for Education

with the current kernel, it is feasible to choose2 Linux Kernel Architecture

Linux 0.11 kernel for students to learn and per-

form experiments. The features of the 0.11 ker-

nel are so limited, it doesn’t even contain jobThe Linux kernel is composed of five mod-
control or virtual memory swapping. It can, ules: task scheduling, memory management,
however, still be run as a complete operatindile system, interprocess communication (IPC)
system. As with an introductory book on oper-and network. The task scheduling module is re-
ating systems, we need not deal with the moreponsible for controlling the usage of the pro-
complicated components such ¥§&S, ext3 cessor for all tasks in the system. The strat-
networking and more comprehensive memoryegy used for scheduling is to provide reason-
management systems in a modern kernel. Aable and fair usage between all tasks in the sys-
students understand of the main concepts coriem while at the same time insuring the pro-
cerning how an operating system is generallycessing of hardware operations. The memory
implemented, they can learn to understand thenanagement module is used to insure that all
advanced parts for themselves. Thus, both theasks can share the main memory on the ma-
teaching and learning become more efficienthine and provide the support for virtual mem-
and consume considerably less time. The loweory mechanisms. The file system module is
barrier to entry for learning can even stimulateused to support the driving of and storage in
many young people to take part in and involveperipheral devices. Virtual file system modules

in the Linux activities. hide the various differences in details of the
hardware devices by providing a universal file
ooy ——Comparison of total Tine counts of Linux kernels interface for peripheral storage equipment and

V2417e V260 providing support for multiple formats of file
ﬁf systems. ThéPC module is used to provide
205 the means for exchanging messages between
processes. The network interface module pro-
vides access to multiple communication stan-
dards and supports various types of network

hardware.

1000

100

10

Vo1 Y axis unit: 1000 Lines The relationship between these modules is il-

lustrated in Figure 2. The lines between them
Figure 1: Lines of code in various kernel ver-indicates the dependences of each other. The
sions dashed lines and dashed line box indicate the
part not implemented in Linux 0.1x.

From teaching experience and student feed¥he figure shows the scheduling module rela-
back, we found the most difficult part of study- tionship with all the other modules in the kernel
ing the 0.11 kernel is the memory managementsince they all depend on the schedules provided
Therefore, in the following sections we mainly to suspend and restart their tasks. Generally, a
deal with how the 0.11 kernel manages and usesiodule may hang when waiting for hardware
memory in the protected mode of the Int&l operations, and continue running after the hard-
32 processor along with the different kinds of ware operation finishes. The other three mod-
stacks used during the kernel initialization ofules have like relationships with the schedule
each task. module for similar reasons.

2005 Linux Symposium e 299

User Program]

R User Level t - -
\ 4 \ | Function Library |

Virtual Fs
File systerﬂ_)[TaSk iched.](_—[1PC] """"""""" 3 """""

") | System Call Interface |
|
|

\\‘~\ Lasssssnssnssass . : : :

§~~)§ Network ; ' Kernel

............................... File subsysten les | Tnmage
Cache Scheduleihégﬁéﬁﬂigr

Figure 2: The relationship between Linux ker- T T control I program
nel modules Chdw:BM(kv p——

Memory

Dev Drivers manage

$ $ 3
The remaining modules have implicit depen- | Hardware interface |
dences with each other. The scheduling subsys- _ _ _ __ ______- ﬁ ______________

tem needs memory management to adjust the | Hardware |

physical memory space used by each task. The
IPC subsystem requires the memory manage-
ment module to support shared memory com-
munication mechanisms. Virtual file systems

can also use the network interface to support
the network file systemNFS. The memory 3.1 Physical Memory
management subsystem may also use the file

system to support the swapping of memory data _
blocks. In order to use the physical memory of the ma-

chine efficiently with Linux 0.1x kernel, the
memory is divided into several areas as shown
in Figure 4.

Figure 3: Kernel structure framework

From the monolithic model structure, we can
illustrate the main kernel modules in Figure 3
based on the structure of the Linux 0.11 kernel

main memory

source code. kernel cache ram disk arca
~ A ~— N
[I N 2 YA
0 end G4oKb\IMb aup 4.5Mb 16Mb

video & BIOS

Figure 4: The regions of physical memory

3 Memory Usage

In this section, we first describe the usage of

physical memory in Linux 0.1x kernel. Then As shown in Figure 4, the kernel code and
we explain the memorgegmentation, paging, data occupies the first portion of the physi-

multitaskingand the protection mechanisms. cal memory. This is followed by the cache

Finally, we summarize the relationship betweerused for block devices such as hard disks and
virtual, linear, and physical address for the coddloppy drives eliminating the memory space

and data in the kernel and for each task. used by the adapters aRDM BIOS When a

300 e Adopting and Commenting the Old Kernel Source Code for Education

task needs data from a block device, it will betable GDT) and thelocal address spacad-
first read into the cache area from the block dedressed by the local descriptor taldl®(T). The
vice. When a task needs to output the data to andex part of ssegment selectdras thirteen bits
block device, the data is put into the cache areand one bit for the table index. The Intel 80X86
first and then is written into the block device processor can then provide a total of 16384 se-
by the hardware driver in due time. The lastlectors so it can addresses a maximum of 64T
part of the physical memory is the main areaof virtual address space[2]. The logical address
used dynamically from programs. When kernelis the offset portion of a virtual address. Some-
code needs a free memory page, it also needsnes this is also referred to as virtual address.
to make a request from the memory manage-

ment subsystem. For a system configured witthinear address is the middle portion of address

virtual RAM disksin physical memory, space translation from virtual to physical addresses.
must be reserved in memory. This address space is addressable by the pro-

cessor. A program can usel@gical address
Physical memory is normally managed by theor offsetin a segment and the base address of
processor's memory management mechanisnthe segment to get a linear addresspdfjing
to provide an efficient means for using the sys4s enabled, the linear address can be translated
tem resources. The Intel 80X86 CPU providego produced a physical address. If thagingis
two memory management mechanisms: Segdisabled, then the linear address is actually the
mentation and paging. The paging mechanisrsame as physical address. The linear address
is optional and its use is determined by thespace provided by Intel 80386 is 4 GB.
system programmer. The Linux operating sys-
tem uses both memory segmentation and pad?hysical addresss the address on the proces-
ing mechanism approaches for flexibility andsor’s external address bus, and is the final result
efficiency of memory usage. of address translation.

The other concept that we examinewvistual

3.2 Memory address space memory Virtual memory allows the computer
to appear to have more memory than it actu-
ally has. This permits programmers to write a
program larger than the physical memory that
the system has and allows large projects to be
implemented on a computer with limited re-
sources.

To perform address mapping in the Linux ker-
nel, we must first explain the three different
address concepts usedvimtual or logical ad-
dress space, the CRIbear address space, and
the actualphysicaladdress space. Thartual
addresses used in virtual address space are ad-

dresses composed of tsegment selectaand 3 3 Segmentation and paging mechanisms
offsetin the segment generated by program.

Since the two part address can not be used to

access physical memory directly, this addres$n a segmented memory system, the logical ad-
is referred to as a virtual address and must usdress of a program is automatically mapped or
at least one of the address translation mecharanslated into the middle 4 GB linear address
nisms provided by CPU to map into the phys-space. Each memory reference refers to the
ical memory space. The virtual address spacenemory in a segment. When programs refer-
is composed of thglobal address spacad- ence a memory address, a linear address is pro-
dressed by the descriptors in global descriptoduced by adding the segment base address with

2005 Linux Symposium e 301

Global Space Local Space pages of 4 KB. When programs request mem-
8192 Segs, each 8192 Segs, each h Il .
pax 46 i len nax 4G, in len ory, the processor allocates memory in pages
p N N for the program.
T T T T O O I Y O Since Linux 0.1x kernel uses only opage di-
Lo rectory, the mapping function from linear to
ST N0 T T s physical space is same for the kernel and pro-
U A N O ear 77T cesses. To prevent tasks from interfering with
Logical Linear 16
5 Yo 31 0 each other and the kernel, they have to occupy
[Selector|[Offset | different ranges in the linear address space. The
Linux 0.1x kernel allocates 64MB of linear
oot space for each task in the system, the system
imit can therefor hold at most 64 simultaneous tasks
(64MB * 64 = 4G) before occupying the entire
Desc. |
. Base Linear address space as illustrated in Figure 6.
GDTR K 0
_____________ v T Task 0 Task 1 Task 2
31 22 21 12 11 0 : as
Physical
| Dir. | Page | Offset | 4G - ™ 2/ \ /_Cl
D il K 0 640K 16M 64 128M 192M 4G
TR Kernel
DTE , base
|cr3 —\ ! .] . .
Ly ¢ Figure 6: The usage of linear address space in
31 : 0 the Linux 0.1x kernel
| Physical address |

Figure 5. The translation between virtual or

) .) 3.4 The relationship between virtual, lin-
logical, linear and physical address P

ear and physical address

the logical address visible to the programmer V& have briefly described the memory segmen-

If pagingis not enabled, at this time, the linear (2ion and paging mechanisms. Now we will

address is sent to the external address bus of tff@mine the relationship between the kernel

processor to access the corresponding physic81d tasks in virtual, linear and physical address
address directly. space. Since the creation tafsks Oand 1 are

special, we’ll explain them separately.

If pagingis enabled on the processor, the linear

address will be translated by tipagingmech-

anism to get the final physical corresponding?"‘l'1 The address range of kernel
physical address. Similar to the segmentation,

paging allow us to relocate each memory ref+or the code and data in the Linux 0.1x ker-
erence. The basic theory of paging is that thenel, the initialization inhead.s has already
processor divides the whole linear space intset the limit for the kernel and data segments to

spaces in a 0.1x kernel

302 e Adopting and Commenting the Old Kernel Source Code for Education

be 16MB in size. These two segments overinterrupt Descriptor TabldDT) are in the ker-

lap at the same linear address space startingel data segment, thus they are located in the
from address 0. Thpage directoryandpage

same address in both address spaces. In the
table for kernel space are mapped to 0-16MBexecution of code irsetup.s

in real mode,
in physical memory (the same address range iwe have setup both temporaBDT andIDT at
both spaces). This is all of the memory thatonce. These are required before entering pro-
the system contains. Since one page table caected mode. Since they are located by physical

manage or map 4MB, the kernel code and dataddres$x90200 and this will be overlapped
occupies four entries in theage directory In

and used for block device cache, we have to
other words, there are four secondary page taecreateGDT and IDT in head.s after en-

bles with 4MB each. As a result, the addresdering protected mode. The segment selectors
in the kernel segment is the same in the physineed to be reloaded too. Since the locations of
cal memory. The relationship of these three adthe two tables do not change after entering pro-
dress spaces in the kernel is depicted in Figuréected mode, we do not need to move or recre-
7.

ate them again. (3) All tasks excdpsk Oneed
additional physical memory pages in different
4GB linear address space locations. They need the
KData} [~ memory management module to dynamically
Seg. |\ setup their own mapping entries in thage di-
rectoryandpage table Although the code and

static data ofask lare located in kernel space,

we need to obtain new pages to prevent interfer-

ence withtask Q As a resultfask lalso needs
- its own page entries.

GDT

KCode
Seg.

KData
KCode
NULL

While the default manageable physical mem-
ory is 16MB, a system need not contain 16MB
memory. A machine with only 4MB or even
2MB could run Linux 0.1x smoothly. For a ma-
Virtual Linear Physical 0 chine with only 4MB, the linear address range
space space 4MB to 16MB will be mapped to nonexistent

physical space by the kernel. This does not dis-
Figure 7: The relationship of the three addresgupt or crash the kernel. Since the kernel knows

A40K

space

the exact physical memory size from the initial-

ization stage, no pages will be mapped into this
nonexistent physical space. In addition, since

As seen in Figure 7, the Linux 0.1x kernelthe kernel has limited the maximum physical
can manage at most 16MB of physical mem-memory to be 16MB at boot time (imain()

ory in 4096 page frames. As explained ear-corresponding tstartkernel()), memory
lier, we know that: (1) the address range ofover 16MB will be left unused. By adding
kernel code and data segments are the same ssme page entries for the kernel and chang-
in the physical memory space. This configuraing some of the kernel source, we certainly can

tion can greatly reduce the initialization oper-make Linux 0.1x support more physical mem-
ations the kernel must perform. (BDT and ory.

2005 Linux Symposium e 303

3.4.2 The address space relationship for 3.4.3 The address space relationship for
task O task 1

Similar totask Q task 1lis also a special case in
Task Ois artificially created or configured and which the code and data segment are included

run by using a special method. The limits of itsin kernel module. The main difference is that
code and data segments are set to the 640KB iRyhen forkingtask 1, one free page is allocated
cluded in the kernel address space. Negk O from the main memory area to duplicate and
can use the kernel page entries directly withouttoretask Os page table entries faask 1 As
the need for creating new entries for itself. Asg resulttask lhas its owrpage tableentries in

a result, its segments are overlapped in lineaghe page directoryand is located at range from
address space too. The three space relationshgaMB to 128MB (actually 64MB to 64MB +
is shown in Figure 8.

640KB) in linear address space. One additional
page is allocated for task 1 to store tisk
structure (PCB)and is used as its kernel mode
HG] 4G stack. The task'Jask State Segment (TSS)
[also contained in task’s structure as illustrated

in Figure 9.
GDT Ly Tasko
Data|s 4G
Data B . 16M
Code \ ﬁ% i 5 _—
LDTO S 64M+640K
7SS0 Data g \
Seg. | \
-> ' “
KData 640K GDT LDT s ' 64M
KCode] Data ’,’ ,\"“ |‘
NULL Code| , Ve
-> 0 Code ' Vi
Virtual Linear Physical LDTL [” Seg. T e 16M
Space space space TSS1) \ \
LD10 AR VRS
. . . 1SS0 1ssils .
Figure 8: The relationship of three address 3 610K
spaces for task O KData \|code
KCode l‘. data
NULL L1 N 0
Virtual Linear Physical
As task Ois totally contained in the kernel space

Space space

space, there is no need to allocate pages from

the main memory area for it. The kernel stackFigure 9: The relationship of the three address
and the user stack faask Oare included the spacesintask 1

kernel space.Task Ostill has read and write
rights in the stacks since the page entries used

by the kernel space have been initialized to b&ask landtask Owill share their user stack
readable and writable with user privileges. Inuser_stack]]

(refer tokernel/sched.
other words, the flags in page entries are set as, lines 67-72). Thus, the stack space should be
U/S=1, R/W=1

‘‘clean” beforetask luses it to ensure that there

304 e Adopting and Commenting the Old Kernel Source Code for Education

is no unnecessary data on the stack. When fork- Task? 4
ing task] the user stack is shared betweask Data|*« [~
0 andtask 1 However whertask 1starts run- Seg- | I—19m

ning, the stack operating task 1would cause !
the processor to produce a page fault because !
the page entries have been modified to be read '

only. The memory management module will GDT

therefor need allocate a free page task 1's LDT
stack. EZZ: Code| 4) 128

L2 > s

1SS2 l\“\-“ 16M
3.4.4 The address space relationship for ?;g

other tasks D10

1550 i N
Fortask 2and higher, the parentiask lor the 640K
.. . . . KData] i
init process. As described earlier, Linux 0.1x [~
can have 64 tasks running synchronously inthe [y . 0
system. Now we will detail the address space Virtual — Linear Physical
usage for these additional tasks. space space space

Beginning withtask 2 if we designatenr as Figure 10: The relationship of the three address
the task number, the Starting location fask spaces in tasks beginning with task 2

nr will be at nr * 64MB in linear address

space.Task 2 for example, begins at address 2

* 64MB = 128MB in the linear address space,

and the limits of code and data segments are s@lew page entries are set for the shell program.

to 64MB. As a result, the address range occuFigure 10 shows this address space relation-

pied bytask 2is from 128MB to 192MB, and ship. The code and data segmenttfsk lare

has 64MB/4MB = 16 entries in the page direc-replaced with that of the shell program, and one

tory. The code and data segments both maphysical memory page is allocated for the code

to the same range in the linear address spacef the shell program. Notice that although the

Thus they also overlap with the same addreskernel has allocated 64MB linear spacetask

range as illustrated in Figure 10. 2, the operation of allocating actual physical
o memory pages for code and data segments of

After task 2has forked, it will call the func- ihe shell program is delayed until the program

tion execve() to run a shell program such as is rynning. This delayed allocation is called de-
bash. Just after the creation sk 2and be- and paging.

fore callexecve() , task 2is similar totask 1

in the three address space relationship for code

and data segments except the address range d@eginning with kernel version 0.99.x, the usage
cupied in linear address space has the rangaef memory address space changed. Each task
from 128MB to 192MB. Whertask 2'scode can use the entire 4G linear space by changing
callsexecve() to load and run a shell pro- the page directory for each tasks as illustrated
gram, the page entries are copied frtask 1 in Figure 11. There are even more changes are
and corresponding memory pages are freed and current kernels.

2005 Linux Symposium e 305

Datal level 0 and for user code at level 3 respectively.
Seg. |\ 4 When a task runs in the kernel, it uses the ker-
GDT \ 6 nel mode stack pointed by the valuesssO
v andespO fields of itsTSSand stores the task’s
~ 1N B user stack pointer in this stack. When the con-
LDT2 1DT | ' trol returns to the user code or to level 3, the
1552 [\ |Data \ ‘ \ user stack pointer will be popped out, and the
;gg Code) roogaTc” 3G task continues to use the user stack.
LDTO Seg. lll ‘\‘ ‘\‘
1550 \ Ny 4.1 |Initialization period
\ \ 640K
KData ~ \ \
KCod \ \
ST K e When theROM BIOScode boots and loads
Virtual Linear Physical

the bootsect into memory at physical address
space space 0x7C00, no stack is used until it is moved

to the location0x9000:0 . The stack is then
Figure 11: The relationship of the three addresset at0x9000:0xff00

(refer to line 61—
space for tasks in newer kernels). After control is
, the stack remains un-

space

62 in boot/bootsect.s
transferred tsetup.s
changed.

4 Stack Usage When control is transferred thead.s , the

processor runs in protected mode. At this time,
This section describes several different methihe stack is setup at the location o$er_

ods used during the processing of kernel bootstack[] in the kernel code segment (line 31
ing and during normal task stack operationsin head.s). The kernel reserves one 4 KB
Linux 0.1x kernel uses four different kinds of page for the stack defined at line 67-72 in
stacks: the temporary stack used for systengched.c as illustrated in Figure 12.

booting and initialization under real address_ . L

mode; The kernel initialization stack used afterThIS stack area 1S .St'" used after the control
the kernel enters protected mode, and the usé!;ansfers intanit/main.c

stack fortask Oafter moving into task O; The tion of move_to_user_mode() to han_d the
kernel stack of each task used when running iff@ntrol over totask @ The above stack is then

the kernel and the user stacks for each task e)y_sed as a user stack farsk Q
cept fortasks 0 and 1

until the execu-

: . .. 4.2 Task stacks
There are two main reasons for using four dif-
ferent stacks (two used only temporarily for

booting) in Linux. First, when entering pro- For the processor privilege levels 0 and 3 used
tected from real mode, the addressing methoth Linux, each task has two stacks: kernel mode
used by the processor has changed. Thus tletack and user mode stack used to run kernel
kernel needs to rearrange the stack area. In adode and user code respectively. Other than the
dition, to solve the protection problems broughtprivilege levels, the main difference is that the

by the new privilege level on processor, wesize of kernel mode stack is smaller than that

need to use different stacks for kernel code aof the user mode stack. The former is located

306 e Adopting and Commenting the Old Kernel Source Code for Education

system module

[Oxlee50 Code Cmd Line|Environ.
———————— (end) and data Params. | Params.
esp Data 0 0 64
En Current Stack
user stack[1k]
Data area for < one page esp bottom
kernel, mm, fs.
Data
*task[] Figure 13: User stack in task’s logical space
task 0 init data
\ Data
> 0x17000
— .
Code £ —— stack. Then the memory manager will allocate
ode Tor .
kernel mm, 5. Code and duplicate the stack page for the task.
s 0x664c Similar to the user stack, each task has its own
GDT (2k) kernel mode stacksed when operating in the
ChOded& data of IDT_(2K) kernel code. This stack is located in the mem-
ea rogram. . .
pro&rall < | Code and data ory to pointed by the values issO, esp0
Page tables (4k+4) fields in task’sTSS ssO is the stack segment
| [Page directory(k)] , 00 selector like thedata selectorin the kernel.

espO indicates the stack bottom. Whenever
Fontrol transfers to the kernel code from user
code, the kernel mode stack for the task always
starts fromss0:esp0 , giving the kernel code
an empty stack space. The bottom of a task’s
kernel stack is located at the end of a mem-
at the bottom in a page coexisting with task’sory page where the task’s data structure begins.
structure, and no more than 4KB in size. TheThis arrangement is setup by making the privi-
later can grow down to nearly 64MB in user lege level O stack pointer iIRSSpoint to the end

Figure 12: The stack used for kernel code afte
entering protected mode

space. of the page occupied by the task’s data struc-
ture when forking a new task. Refer to line 93
As described, each task has its own 64MB log4in kernel/fork.c as below:

ical or linear address space except fask 0
andl. When a task was created, the bottom of
its user stack is located close to the end of the
64MB space. The top portion of the user space
contains additional environmental parameters
and command line parameters in a backwardp is the pointer of the new task structutes
orientation, and then the user stack as illusis the structure of the task status segment. The
trated in Figure 13. kernel request a free page to store the task struc-
ture pointed byp. The tss structure is a field in
Task code at privilege level 3 uses this stack althe task structure. The value tfs.ssO is
of the time. Its corresponding physical memoryset to the selector of kernel data segment and

page is mapped by paging management codgetss.esp0 s set to point to the end of the
in the kernel. Since Linux utilizes theopy- page as illustrated in Figure 14.

on-writg 3] method, both the parent and child
process share the same user stack memory unfls a matter of factiss.espO points to the
one of them perform a write operation on thebyte outside of the page as depicted in the fig-

p->tss.esp0 = PAGE_SIZE+(long)p;
p->tss.ssO = 0x10;

2005 Linux Symposium e 307

Stack botton — pu—m in main memory area for the stack sk 1in
(esp0) the exception handler, and map it to the loca-
tion of task Is user stack in the linear space.
Stack pointer | From now ontask 1lhas its own separate user
(esp) >1 Page stack page. As a result, the user stacktémk
0 should be “clean” befortask luses the user
Task stack to ensure that the page of stack duplica-
Task pointer Structure tion does not contain useless datatésk 1
(current) —» J

The kernel mode stack fdask Ois initialized
Figure 14: The kernel mode stack of a task in its static data structure. Then its user stack is

set up by manipulating the contents of the stack

originally used after entering protected mode

. and emulating the interrupt return operation us-
ure. This is because the Intel processor de- g P P

:) ing IRET instruction as illustrated in Figure 15.
creases the pointer before storing a value on the g g
stack.
31 0
| old SS
4.3 The stacks used by task 0 and task 1 old ESP

EFLAGS
| old CS

<— SPO - (SS:ESP)

Both task Oor idle task andtask 1or init task SERIT
have some special properties. Althougisk O «—SP1 - Before TRET
andtask 1have the same code and data seg-
ment and 640KB limits, they are mapped into
different ranges in linear address space. The&igure 15: Stack contents while returning from
code and data segmentstask Obegins at ad- privilege level 0 to 3

dress 0, andask 1begins at address 64MB

in the linear space. They are both mapped

into the same physical address range from @s we know, changing the privilege level will
to 640KB in kernel space. After calling the change the stack and the old stack pointers
functionmove_to_user_mode() , the ker- will be stored onto the new stack. To emu-
nel mode stacks dhsk Oandtask lare located late this case, we first push thask Os stack

at the end of the page used for storing theipointer onto the stack, then the pointer of the
task structures. The user stacktask Ois the next instruction intask Q Finally we run the
same stack originally used after entering prodRET instruction. This causes the privilege
tected mode; the space faser_stack]] level change and control to be transferred to
array defined irsched.c program. Sincéask task Q In the Figure 15, the ol&Sfield stores

1 copiestask Os user stack when forking, they the data selector dfDT for task 0(0x17) and
share the same stack space in physical memorthe oldESPfield value is not changed since the
Whentask 1starts running, however, a pagestack will be used as the user stack fask Q
fault exception will occur whernask 1writes The oldCSfield stores the code selector (0xO0f)
to its user stack because the page entries fdor task Q The oldEIP points to the next in-
task 1have been initialized as read-only. At struction to be executed. After the manipula-
this moment, the kernel will allocate a free pagetion, alRET instruction switches the privileges

308 e Adopting and Commenting the Old Kernel Source Code for Education

from level O to level 3. The kernel begins run- kernel stack INT user stack
ning intask Q _ |01d ss| —=
= TRET
old ESP

EFLAGS
| Cs
EIP

4.4 Switch between kernel mode stack and
user mode stack for tasks

In the Linux 0.1x kernel, all interrupts and ex-
ceptions handlers are in mode 0 so they belonfjigure 16: Switching between the kernel stack
to the operating system. If an interrupt or ex-and user stack for a task

ception occurs while the system is running in

user mode, then the interrupt or exception will

cause a privilege level change from level 3 t0® Kernel Source Tree

level 0. The stack is then switched from the
user mode stack to the kernel mode stack of thE

ta;k. The processor will obtain the kernel StaCliree can be listed and described clearly. Since
pointersss0 andesp0 from the task'sTSS the 0.11 kernel source tree only has 14 directo-

and store the current user stack pointers int?ies and 102 source files it is easy to find spe-
the task's kernel stack. After that, the ProceSSOEisic files in comparison to searching the much
pushes the contents of the currefL AGSreg- larger current kernel trees. The mdimux/

ister and the next instruction pointers onto thedirectory contains only one Makefile for build-

f]tac(;. Finally, it runs the interrupt or exceptloning_ From the contents of the Makefile we can
andier. see how the kernel image file is built as illus-

trated in Figure 17.
The kernelsystem callis trapped by using a

software interrupt. Thus alNT 0x80 will i|head||main| [kernel | [mm] [s][1ib |\I
cause control to be transferred to the kernel J
code. Now the kernel code uses the current

task’s kernel mode stack. Since the privilege [|bootsect|] [|Setup|] [[evsten |]

level has been changed from level 3 to level O,

the user stack pointer is pushed onto the kernel \

mode stack, as illustrated in Figure 16.

If a task is running in the kernel code, then Figure 17: Kernel layout and building

an interrupt or exception never causes a stack

switch operation. Since we are already in the

kernel, an interrupt or exception will never There are three assembly files in theot/
cause a privilege level change. We are using thdirectory: bootsect.s , setup.s , and
kernel mode stack of the current task. As a rehead.s . These three files had corresponding
sult, the processor simply pushes tELAGS files in the more recent kernel source trees un-

and the return pointer onto the stack and startsl 2.6.x kernel. Thefs/ directory contains
running the interrupt or exception handler. source files for implementing MINIX version

inux 0.11 kernel is simplistic so the source

Kernel Image

bt

2005 Linux Symposium e 309

1.0 file system. This file system is a clone of the
traditional UN*X file system and is suitable for
someone learning to understand how to imple-
ment a usable file system. Figure 18 depicts the
relationship of each files in tHs/ directory.

Int & exception System ca}ls

\ e

~

N

sched.c| |panic.c|| mktime. ¢ | X
1

’
1

’ ‘\\~~|printk.c | |Vsprintf.c| -

_-

'| char/dev |file7dev|

\

\ T

\ .
‘\plpellblockidevl

Data access

user programs. The third category is files im-
/ plementing general functions such as schedul-
/ ing and printing messages from the kernel.

Block device drivers for hard disks, floppy
disks and ram disks reside in a subdirectory
blk_drv/ in the kernel/ , thus the Linux
----------------------------- 0.11 kernel supports only three classical block
devices. Because Linux evolved from a ter-
minal emulation program, the serial terminal
Figure 18: File relationships in fs/ directory driver is also included in this early kernel in
addition to the necessary console character de-
vice. Thus, the 0.11 kernel contains at least two

Thefs/ files can be divided into four types. types of char device drivers as illustrated in Fig-
The first is the block cache manager fileure 20.

Cache
Managementf
\

’

buffer.c . The second is the files concern-
ing with low level data operation files such The remaining directories in the kernel source
inode.c . The third is files used to processtree include, init, mm, tools, and

data related to char, block devices and regulafath . Theinclude/ contains the head files
files. The fourth is files used to execute pro-used by the other kernel source fileigit/

grams or files that are interfaces to user procontains only the kernel startup fifeain.c ,
grams. in which, all kernel modules are initialized and

the operating system is prepared for use. The
The kernel/ directory contains three kinds mm/ directory contains two memory manage-
of files as depicted in Figure 19. ment files. They are used to allocate and free

pages for the kernel and user programs. As
The first type is files which deal with hardware mentioned, the mm in 0.11 kernel uses demand
interrupts and processor exceptions. The se@aging technology. Thmath/ directory only
ond type is files manipulating system calls fromcontains math source code stubs as 387 emula-

310 e Adopting and Commenting the Old Kernel Source Code for Education

Upper_interface under Linux 0.11 system in Bochs. The other
e = is for more recent Linux systems suchRed
W Lttydo.c |“UOC‘91- cl Hat 9 or Fedora In the former environment,

RREEY4 I the 0.11 kernel source code needs no modifi-
o> cations to successfully compile. For the later

/|serial.c N eonsole. o environment one needs to modify a few lines

: ') of code to correct syntax errors. For people

| rs io. s keyboard. S familiar with MASM andVVC environment un-
der windows, we even provide modified 0.11

kernel source code that can compile. Offer-
ing source code compatible with multiple envi-
ronments and providing forums for discussion
"helps popularize linux and the linux community
with new people interested in learning about
operating systems)

Serial driver Console driver

Figure 20: Character devices in Linux 0.11 ker
nel

tion did not appear until the 0.12 kernel.

7 Summary

6 Experiments with the 0.1x kernel
From observing people taking operating system

courses with the old Linux kernel, we found
To facilitate understanding of the Linux 0.11 that almost all the students were highly inter-
kernel implementation, we have rebuilt aested in the course. Some of them even started
runnable Linux 0.11 system, and designed seyprogramming their own operating systems.
eral experiments to watch the kernel internal
activities using thé8ochs PC emulatorBochs The 0.11 kernel contains only the basic features
is excellent for debugging operating systemsthat an operating system must have. As a result,
The Bochssoftware package contains an inter-there are many important features not imple-
nal debugging tool, which we can use to ob-mented in 0.11 kernel. We now plan to adopt
serve the dynamic data structures in the kernegither the 0.12 or 0.98 kernel for teaching pur-

and examine the contents of each register on theoses to include job control, virtu&sS, virtual
processor. console and even network functions. Due to

time limitations in the course, several simpli-
It is an interesting exercise to install the Linuxfications and careful selection of material will
0.11 system from scratch. It is a good learningoe needed.
experience to build a root file system image file
under Bochs.

Modifying and compiling the kernel source References

code are certainly the most important experi-

ments for learning about operating systems. T¢l] Albert S. Woodhull Andrew

facilitate the process, we provide two environ- S. TanenbaumOPERATING SYSTEMS:
ments in which, one can easily compile the ker- Design and Implementation

nel. One is the originabNU gcc environment Prentice-Hall, Inc., 1997.

[2] Patrick P. Gelsinger John H. Crawford.
Programming the 803865SYBEX Inc.,
1987.

[3] Robert Love.Linux Kernel Development
Sams Inc., 2004.

[4] M.J.Bach.The Design of Unix Operating
SystemPrentice-Hall, Inc., 1986.

[5] Linus Torvalds. LINUX — a free unix-386
kernel. October 1991.

2005 Linux Symposium e 311

312 e Adopting and Commenting the Old Kernel Source Code for Education

Proceedings of the
Linux Symposium

Volume Two

July 20nd-23th, 2005
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.

C. Craig Rossl.inux Symposium
Stephanie Donovaiinux Symposium

Review Committee

Gerrit HuizengalBM

Matthew Wilcox,HP

Dirk Hohndel,Intel

Val Henson Sun Microsystems
Jamal Hadi SalimiZnyx

Matt Domsch Dell
Andrew Hutton Steamballoon, Inc.

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

