
Clusterproc: Linux Kernel Support for Clusterwide
Process Management

Bruce J. Walker
Hewlett-Packard

bruce.walker@hp.com

Laura Ramirez
Hewlett-Packard

laura.ramirez@hp.com

John L. Byrne
Hewlett-Packard

john.l.byrne@hp.com

Abstract

There are several kernel-based clusterwide pro-
cess management implementations available
today, providing different semantics and ca-
pabilities (OpenSSI, openMosix, bproc, Ker-
righed, etc.). We present a set of hooks to allow
various installable kernel module implementa-
tions, with a high degree of flexibility and vir-
tually no performance impact. Optional capa-
bilities that can be implemented via the hooks
include: clusterwide unique pids, single init,
heterogeneity, transparent visibility and access
to any process from any node, ability to dis-
tribute processes at exec or fork or thru mi-
gration, file inheritance and full controlling ter-
minal semantics, node failure cleanup, cluster-
wide /proc/<pid> , checkpoint/restart and
scale to thousands of nodes. In addition, we
describe an OpenSSI-inspired implementation
using the hooks and providing all the features
described above.

1 Background

Kernel based cluster process management
(CPM) has been around for more than 20
years, with versions on Unix by Locus[1] and
Mosix[2]. The Locus system was a general pur-
pose Single System Image (SSI) cluster, with a

single root filesystem and a single namespace
for processes, files, networking and interpro-
cess communication objects. It provided high
availability as well as a simple management
paradigm and load balancing of processes.
Mosix focused on process load balancing. The
concepts of Locus have moved to Linux via the
OpenSSI[3] open source project. Mosix has
moved to Linux via the openmosix[4] project.

OpenSSI and Mosix were not initially tar-
geted at large scale parallel programming clus-
ters (eg. those using MPI). The BProc[5]
CPM project has targeted that environment to
speed up job launch and simplify process man-
agement and cluster management. More re-
cent efforts by Kerrighed[6] and USI[7] (now
Cassat[8]) were also targeted at HPC environ-
ments, although Cassat is now interested in
commercial computing.

These 5 CPM implementations have somewhat
different cluster models (different forms of SSI)
and thus fairly different implementations, in
part driven by the environment they were orig-
inally developed for. The “Introduction to SSI”
paper[10] details some of the differences. Here
we outline some of the characteristics relevant
to CPM. Mosix started as a workstation tech-
nology that allowed a user on one workstation
to utilize cpu and memory from another work-
station by moving running processes (process
migration) to the other workstation. The mi-

• 251 •



252 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

grated processes had to see the OS view of the
original workstation (home node) since there
was no enforced common view of resources
such as processes, filesystem, ipc objects, bina-
ries, etc. To accomplish the home-node view,
most system calls had to be executed back on
the home node—the process was effectively
split, with the kernel part on the home node
and the application part elsewhere. What this
means to process ids is that home nodes gener-
ate ids which are not clusterwide unique. Mi-
grated processes retain their home node pid in
a private data structure but are assigned a lo-
cal pid by the current host node (to avoid pid
conflicts). The BProc model is similar except
there is a single home node (master node) that
all processes are created on. These ids are thus
clusterwide unique and a local id is not needed
on the host node.

The model in OpenSSI, Kerrighed and Cassat is
different. Processes can be created on any node
and are given a single clusterwide pid when
they are created. They retain that pid no matter
where they execute. Also, the node the process
was created on does not retain part of the pro-
cess. What this means to the CPM implementa-
tion is that actions to be done against processes
are done where the process is currently execut-
ing and not on the creation or home node.

There are many other differences among the
CPM implementations. For example, OpenSSI
has a single, highly available init process while
most/all other implementations do not. Addi-
tionally, BProc does not retain a controlling ter-
minal (or any other open files) when processes
move, while other implementations do. Some
implementations, like OpenSSI, support clus-
terwide ptrace, while others do not.

With some of these differences in mind, we
next look at the goals for a set of CPM hooks
that would satisfy most of the CPM implemen-
tations.

2 Goals and Requirements for the
Clusterproc Hooks

The general goals for the hooks are to enable
a variety of CPM implementations while being
non-invasive enough to be accepted in the base
kernel. First we look at the base kernel require-
ments and then some of the functional require-
ments.

Changes to the base kernel should retain the ar-
chitectural cleanliness and not affect the per-
formance. Base locking should be used and
copies of base routines should be avoided. The
clusterproc implementations should be instal-
lable modules. It should be possible to build
the kernel with the hooks disabled and that ver-
sion should have no impact on performance. If
the hooks are enabled, the module should be
optional. Without the module loaded, perfor-
mance impact should be negligible. With the
module loaded, one would have a one node
cluster and performance will depend on the
CPM implementation.

The hooks should enable at least the following
functionality:

• optionally have a per process data struc-
ture maintained by the CPM module;

• allowing for the CPM module to allocate
clusterwide process ids;

• support for distributed process rela-
tionships including parent/child, process
group and session; optional support for
distributed thread groups and ptrace par-
ent;

• optional ability to move running pro-
cesses from one node to another either at
exec/fork time or at somewhat arbitrary
points in their execution;



2005 Linux Symposium • 253

• optional ability to transparently check-
point/restart processes, process groups and
thread groups;

• optional ability to have process continue to
execute even if the node they were created
on leaves the cluster;

• optional ability to retain relationships of
remaining processes, no matter which
nodes may have crashed;

• optional ability to have full controlling ter-
minal semantics for processes running re-
motely from their controlling terminal de-
vice;

• full, but optional/proc/<pid> capabil-
ity for all processes from all nodes;

• capability to support either an “init” pro-
cess per node or a single init for the entire
cluster;

• capability to function within a shared root
environment or in an environment with a
root filesystem per node;

• capability to be an installable module
that can be installed either from the
ramdisk/initramfs or shortly thereafter;

• support for clusters of up to 64000 nodes,
with optional code to support larger;

In the next section we detail a set of hooks de-
signed to meet the above set of goals and re-
quirements. Following that is the design of the
OpenSSI 3.0, as adapted to the proposed hooks.

3 Proposed Hook Architecture,
Hook Categories and Hooks

To enable the optional inclusion of clusterwide
process management (referred also as “clus-
terproc” or CPM) capability, very small data

structure additions and a set of entry points
are proposed. The data structure additions are
a pointer in the task structure (CPM imple-
mentations could then allocate a per process
structure that this pointer points to), and 2 flag
bits. The infrastructure for the hooks is pat-
terned after the security hooks, although not ex-
actly the same. IfCONFIG_CLUSTERPROCis
not set, the hooks are turned into inline func-
tions that are either empty or return the de-
fault value. WithCONFIG_CLUSTERPROCde-
fined, the hook functions call clusterproc ops if
they are defined, otherwise returning the default
value. The ops can be replaced, and the clus-
terproc install-able module will replace the ops
with routines to provide the particular CPM im-
plementation. The clusterproc module would
be loaded early in boot. All the code to sup-
port the clusterwide process model would be
under GPL. To enable the module some addi-
tional symbols will have to exported to GPL
modules.

The proposed hooks are grouped into cat-
egories below. Each CPM implementation
can provide op functions for all or some
of the hooks in each category. For each
category we list the relevant hook functions
in pseudo-C. The names would actually be
clusterproc_xxx but to fit here we leave
out the clustproc_ part. The parameters
are abreviated. For each category, we de-
scribe the general purpose of the hooks in
that category and how the hooks could be
used in different CPM implementations. The
categories are: Init and Reaper; Allocation/
Free; Update Parent; Process lock/unlock;
Exit/Wait/Reap; Signalling; Priority and Capa-
bility; Setpgid/Setsid; Ptrace; Controlling Ter-
minal; and Process movement;

3.1 Init and Reaper

void single_init();



254 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

void child_reaper(*pid);

One of the goals was to allow the cluster to
run with a single init process for the cluster.
The single_init hook in init/main.c ,
init() can be used in a couple of ways. First,
if there is to be a single init, this routine can
spawn a “reaper” process that will locally reap
the orphan processes that init normally reaps.
On the node that is going to have the init, the
routine returns to allow init to be exec’d. On
other nodes it can exit so there is no process
1 on those nodes. The other hook in this cat-
egory ischild_reaper , which is in timer.c,
sys_getppid() . It returns 1 if the process’s
parent was thechild_reaper process. Nei-
ther of these hooks would be used in those CPM
implementations that have an init process per
node.

3.2 Allocation/ Free

int fork_alloc(*tsk);
void exit_dealloc(*tsk);
int pid_alloc(pid);
int local_pid(pid);
void strip_pid(*pid);

There are 5 hooks functions in this category.
First isfork_alloc , which is called incopy_

process() in fork.c . This routine is called
to allow the CPM to allocate a private data
structure pointed to byclusterproc pointer
which is added to the task structure. Free-
ing that structure is done via the hookexit_

dealloc() which is called in release_

task() in exit.c and under error condi-
tions in copy_process() in fork.c The
exit_dealloc routine can also be used to do
remote notifications necessary for pgrp and ses-
sion management. All CPM implementations
will probably use these hooks. The other 3
hooks deal with pid allocation and freeing and

are only used in those implementations present-
ing a clusterwide single pid space. Thepid_

alloc hook is called inalloc_pidmap() in
pid.c . It takes a locally unique pid and re-
turns a clusterwide unique pid, possibly by en-
coding a node number in some of the high order
bits. Thelocal_pid andstrip_pid hooks
are in free_pidmap() , also in pid.c The
local_pid hook returns 1 if this pid was gen-
erated on this node and the process id is no
longer needed clusterwide. Otherwise return
0. Thestrip_pid hook is called to undo the
effects ofpid_alloc so the base routines on
each node can manage their part of the cluster-
wide pid space.

3.3 Update parent

int update_parent(*ptsk,*ctsk,
flag,sig,siginfo);

Update_parent is a very general hook called
in several places. It is used by a child pro-
cess to notify a parent process if the parent
process is executing remotely. Inptrace.
c , it is called in __ptrace_unlink() and
__ptrace_link() . In the arch version of
ptrace.c it is called insys_ptrace() . In
exit.c it is called inreparent_to_init()

and infork.c , copy_process() , it is called
in the CLONE_PARENTcase. Although not all
CPM implementations will support distributed
ptrace orCLONE_PARENT, support for some of
the instances of this hook will probably be in
each CPM implementation.

3.4 Process lock/unlock

void proc_lock(*tsk,base_lock);
void proc_unlock(*tsk,base_lock);



2005 Linux Symposium • 255

Theproc_lock andproc_unlock hooks al-
low the CPM implementation to either use the
basetsk->proc_lock (default) or to intro-
duce a sleep lock in their private process data
structure. In some implementations, a sleep
lock is needed because remote operations may
be executed while this lock is held. In addition,
calls to proc_lock and proc_unlock are
added inexit_notify() , in exit.c , be-
causeexit_notify() may not be atomic and
may need to be interlocked withsetpgid()

and with process movement (the locking calls
for setpgid and process movement would be in
the CPM implementation.

3.5 Exit/Wait/Reap

int rmt_reparent_children(*tsk);
int is_orphan_pgrp(pgrp);
void rmt_orphan_pgrp(newpgrp,*ret);
void detach_pid(*tsk,nr,type);
int rmt_thread_group_empty(*tsk,pid,opt);
int rmt_wait_task_zombie(*tsk,noreap,

*siginfo,*stat_addr, *rusage);
int rmt_wait_stopped(*tsk,int,noreap,

*siginfo,*stat_addr,*rusage);
int rmt_wait_continued(*tsk,noreap,

*siginfo,*stat_addr, *rusage);

There are several hooks proposed to accom-
plish all the actions around the exit of a process
and wait/reap of that process. One early action
in exit is to reparent any children to thechild_

reaper . This is done inforget_original_

parent() in exit.c . Thermt_reparent_

children hook provides an entry to repar-
ent those children not executing with the par-
ent. Accurate orphan process group process-
ing can be difficult with other pgrp members,
children and parents all potentially executing
on different nodes. The “home-node” model
implementations will have all the necessary in-
formation at the home node. For non–home-
node implementations like OpenSSI, two hooks
are proposed—is_orphan_pgrp and rmt_

orphan_pgrp . is_orphan_pgrp is called

in is_orphan_pgrp() , in exit.c . It re-
turns 1 if orphaned and 0 if non-orphaned. If
not provided, the existing base algorithm is
used. rmt_orphan_pgrp is called inwill_

become_orphaned_pgrp() in exit.c . It
is called if there are no local processes remain-
ing that make the process group non-orphan. In
that case it determines if the pgrp will become
orphan and if so it effects the standard action
on the pgrp members. Adetach_pid hook
in detach_pid() is proposed to allow CPM
implementations to update any data structures
maintained for process groups and sessions.

There are 4 proposed hooks in wait. The
first, in eligible_child() , exit.c , is
rmt_thread_group_empty . This is used
to determine if the thread group is empty,
for thread groups in which the thread group
leader is executing remotely. If it is
empty, the thread group leader can be
reaped; otherwise it cannot. The other 3
hooks arermt_wait_task_zombie , rmt_

wait_stopped and rmt_wait_continued

which are called inwait_task_zombie() ,
wait_task_stopped() and wait_task_

continued() respectively. These hooks al-
low the CPM implementation to move the re-
spective functions to the node where the pro-
cess is and then execute the base call there, re-
turning an indication if the child was reaped or
if there was an error.

3.6 Signalling

void rmt_sigproc(pid,sig,*siginfo,*error);
int pgrp_list_local(pgrp,*flag);
int rmt_sigpgrp(pgrp,sig,*signfo);
void sigpgrp_rmt_members(pgrp,sig,*siginfo,

*reg,flag);
int kill_all(sig,*siginfo,*count,*ret,tgid);
void rmt_sig_tgkill(tgid,*siginfo,pid,flag,

*tsk*,*error);
void rmt_send_sigio(*tsk,*fown,fd,band);
int rmt_pgrp_send_sigio(pgid,*fown,fd,band);
void rmt_send_sigurg(*tsk,*fown);
int rmt_pgrp_send_sigurg(pgid,*fown);
void timedwait(timeout,*timespec,*ret);



256 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

There are many places in the kernel that may
signal a process, for a variety of of reasons.
Hooks inkill_proc_info() andkill_pg_

info() handle many cases. One could define a
general hook function that handles many of the
cases (process, pgrp, killall, sigio, sigurg, etc.).
Doing so would reduce the number of different
hook functions but would require a superset of
parameters and the op would have to relearn the
reason it was called. For now we have proposed
them as separate hooks.rmt_sigproc is the
hook in kill_proc_info() , called only if
the process is not found locally. It tries to find
the process on another node and deliver the sig-
nal. For the process group case we currently
have 3 hooks inkill_pg_info() . Based on
the assumption that some node knows the list
of pgrp members (or at least the nodes they
are on), the first hook (pgrp_list_local )
determines if such a list is local. If not, it
calls rmt_sigpgrp which will transfer con-
trol to such a node, so the basekill_pg_

info() can be called. Given we are now
executing on the node where the list is, the
pgrp_list_local hook can lock the list so
that no members will be missed during the sig-
nal operation. After that, the base code to signal
locally executing pgrp members is executed,
followed by the code to signal remote mem-
bers (sigpgrp_rmt_members ). That hook
also does the list unlock. Support for cluster-
wide kill –1 is provided by a hook inkill_

something_info() . A CPM implementation
could loop thru all the nodes in the cluster, call-
ing kill_something_info() on each one.
Linux has 2 system calls for thread signalling—
sys_tkill() andsys_tgkill() . The pro-
posed hookrmt_sig_tgkill is inserted in
each of these system calls to find the thread(s)
and deliver the signal, if the threads were not al-
ready found locally. Thesend_sigio() func-
tion in fcntl.c can send process or pgrp sig-
nals. Thermt_send_sigio or rmt_pgrp_

send_sigio hook is called if the process or
process group is remote. Similar hooks are

needed insend_sigurg() in fcntl.c (with
different parameters). The final signal related
hook istimedwait , which is called fromsys_

rt_sigtimedwait() , in signal.c . It is
called only if a process was in a scheduled
timeout and was woken up to do a migrate.
It restarts thesys_rt_sigtimedwait() af-
ter the migrate.

3.7 Priority and Capability

void priority(cmd,who,niceval,*tsk,*err);
int pgrp_priority(cmd,who,niceval,*ret);
int prio_user(cmd,who,niceval,*err);
int capability(cmd,pid,header,data,*reg);
int pgrp_capset(pgrp,*effective,*inherit,

*permitted,*ret);
int capset_all(*effective,*inherit,

*permitted,*ret);

In sys_setpriority() (sys.c ), schedul-
ing priority can be set on processes, pro-
cess groups or “all processes owned by
a given user.” A get-priority can be
done for a process or a pgrp. The
priority , pgrp_priority andprio_user

hooks are proposed to deal with distribu-
tions issues for these functions. Capabil-
ity setting/getting (sys_capset() and sys_

capget() in capability.c ) are quite sim-
ilar and capability , pgrp_capset and
capset_all hooks are proposed for those
functions.

3.8 Setpgid/Setsid

int is_process_local(pid,pgid);
int rmt_setpgid(pid,pgid,caller,sid);
int verify_pgid_session(pgid,sid);
void pgrp_update(*tsk);
void setpgid_done(*tsk,pid);
void rmt_proc_getattr(pid,*pgid,*siod);
void setsid(void);

Setpgid (sys.c ) may be quite straightforward
to handle in the home/master node implementa-
tions because all the process, process group and



2005 Linux Symposium • 257

session information will be at the home/master
node. For the more peer-oriented implementa-
tions, in the most general case there could be
several nodes involved. First, while the setpgid
operation is most often done against oneself, it
doesn’t have to be, so there is a hook set early
in sys_setpgid to move execution to the
node on which the setpgid is to be done (is_

process_local and rmt_setpgid ). is_

process_local can also acquire a sleep lock
on the process since setpgid may not be atomic
to the tasklist_lock . One of the tests in
setpgid is to make sure there is someone in the
proposed process group in the same session as
the caller. If that check isn’t satisfied locally,
verify_pgid_session is called to check the
rest of the process group. Given the operation
is approved, thepgrp_update hook is called
to allow the CPM implementation to adjust or-
phan pgrp information, to create or update any
central pgrp member list and to update any
cached information that might be at the pro-
cess’s parent’s execution site (to allow him to
easily do waits). A final hook insys_setpgid

(setpgid_done ) is called to allow the CPM
implementation to release the process lock ac-
quired inis_process_local .

The rmt_proc_getattr hook in sys_
getpgid() and sys_getsid() supplies
the pgid and/or sid for processes not executing
locally.

The setsid hook in sys_setsid() can be
used by the CPM implementation to update
cached information at the parent’s execution
node, at children execution nodes and at any
session or pgrp list management nodes.

3.9 Ptrace

void rmt_ptrace(request,pid,addr,data,*ret);
*tsk rmt_find_pid(pid);
int ptrace_lock(*tsk,*tsk)
void ptrace_unlock(*tsk,*tsk);

Clusterwide ptrace support is not provided in
all CPM implementations (eg. BProc) but
can be supported with the help of a few
hooks. Unfortunatelysys_ptrace() is in
the arch tree, inptrace.c . The rmt_

ptrace hook is needed if the process to be
ptraced is not local. It reissues the call on
the node where the process is running. In
ptrace_attach() , in the non-arch version
of ptrace.c , the rmt_find_pid hook is
used in the scenario that the request was gen-
erated remotely. This hook helps ensure that
the the process being traced is attached to the
process debugging and not to a server daemon
acting on behalf of that process. Theptrace_

lock and ptrace_unlock hooks are used
in do_ptrace_unlink() (ptrace.c ) and
de_thread() (exec.c ). They can be used
to provide atomicity across operations that re-
quire remote messages.

3.10 Controlling Terminal

void clear_my_tty(*tsk);
void update_ctty_pgrp(pgrp,npgrp);
void rmt_vhangup(*tsk);
void get_tty(*tsk,*tty_nr,*tty_pgrp);
void clear_tty(sid,*tty,flag);
void release_rmt_tty(*tsk,flag);
int has_rmt_ctty();
int rmt_tty_open(*inode,*file);
void rmt_tty_write_message(*msg,*tty);
int rmt_is_ignored(pid,sig);

Some CPM implementation do not support
controlling terminal for processes after they
move (eg. BProc). In the home-node style
CPM, the task structure on the home node will
havetty pointer. On the node where the pro-
cess migrated, the task structure has notty
pointer. As long as any interrogation or up-
dating using that pointer is done on the home
node, this strategy works. For CPM imple-
mentations where system calls are done locally,
some hooks are needed to deal with a poten-
tially remote controlling terminal. The pro-
posed strategy is that if the controlling terminal



258 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

is remote, thetty pointer would be null but
there would be information in the CPM private
data structure.

Daemonize(), inexit.c , normally clears
the tty pointer in the task structure. Ad-
ditionally it calls the hookclear_my_tty

to do any other bookkeeping in the case
where the controlling terminal is remote.
In drivers/char/tty_io.c , the routines
do_tty_hangup() , disassociate_dev() ,
release_dev() andtiosctty() all call the
hook clear_tty , which clears the tty in-
formation for all members of the session on
all nodes. release_rmt_tty is called by
disassociate_ctty() if the tty is not local;
the hook callsdisassociate_ctty() on the
node where the tty is.get_tty is called in
proc_pid_stat() in fs/proc/array.c to
gather the foreground pgrp and device id for the
task’s controlling terminal. The hookupdate_

ctty_pgrp is called by tiocspgrp() , in
drivers/char/tty_io.c and can be used
by the CPM to inform all members of the old
pgrp that they are no longer in the control-
ling terminal foreground pgrp and to inform the
new pgrp members as well. Distributed knowl-
edge of which pgrp is the foreground pgrp is
important for correct behavior in the situation
when the controlling terminal node crashes.
Sys_vhangup() , in fs/open.c , has a call to
rmt_vhangup() if tty is not set (if there is a
remote tty, the CPM can callsys_vhangup()

on that node). Indrivers/char/tty_io.c ,
tiosctty() and tty_open() call the hook
has_rmt_ctty to determine if the process
already has a controlling terminal that is re-
mote. Also indrivers/char/tty_io.c , the
tty_open() function calls rmt_tty_open

for opens of/dev/tty if the controlling ter-
minal is remote. Theis_ignored() function
in drivers/char/n_tty.c calls rmt_is_

ignored if it is called by an agent for a process
that is actually running remotely. Finally,rmt_

tty_write_message is called in kernel/

printk.c , tty_write_message() if the tty
it wants to write to is remote.

3.11 Process movement

int do_rexec(*char,*argv,*envp,
*regs,*reg);

void rexec_done();
int do_rfork(flags,stk,*regs,size,

*ptid,*ctid,pid,*ret);
int do_migrate(*regs,signal,flags);

As mentioned in the goals, the hooks should
allow for process movement at exec() time, at
fork() time and during execution. Earlier ver-
sions of OpenSSI accomplished this via new
system calls. The proposal here does not re-
quire any system calls although that is an op-
tion. For fork() and exec(), a hook is put indo_

fork() anddo_execve() respectively. Ops
behind the hooks can determine if the operation
should be done on another node. A load balanc-
ing algorithm can be consulted or the process
could have been marked (eg. via a procfs file
like /proc/<pid>/goto ) for remote move-
ment. An additional hook,rexec_done is pro-
vided so the CPM implementation can get con-
trol after the exec on the new node has com-
pleted but before returning to user mode, so that
process setup can be completed and the original
node can be informed that the remote execve()
was successful.

A single hook is needed for process migration.
The proposed mechanism is that via/proc/
<pid>/goto or a load balancing subsystem,
processes haveTIF_MIGPENDING flag (added
flag in flags field ofthread_info structure)
set if they should move. That flag is checked
just before going back to user space, indo_

notify_resume() , in arch/xxx/kernel/

signal.c and calls thedo_migrate hook.
Checkpoint and restart can be invoked via the
same hook (migrate to/from disk).



2005 Linux Symposium • 259

Determining if these hooks are sufficient to al-
low an implementation that satisfies the goals
and requirements outlined earlier is best done
by implementing a CPM using the hooks. The
OpenSSI 3.0 CPM, which provides almost all
the requirements, including optional ones, has
been adapted to work via the hooks described
above. Work to ensure that other CPM im-
plementations can also be adapted needs to be
done. The OpenSSI 3.0 CPM design is de-
scribed in the next section.

4 Clusterproc Design for OpenSSI

In this section we describe a Cluster Process
Management (CPM) implementation adapted
from OpenSSI 2.0. It is part of a functional
cluster which is a subset of OpenSSI. The sub-
set does not have a cluster filesystem, a single
root or single init. It does not have clusterwide
device naming, a clusterwide IPC space or a
cluster virtual ip. It does not have connection
or process load balancing. All those capabil-
ities will be subsequently added to this CPM
implementation to produce OpenSSI 3.0.

To allow the CPM implementation to be part of
a functional cluster, several other cluster com-
ponents are needed. A loadable membership
service is needed, together with an intra-node
communication service layered on tcp sockets.
To enable the full ptrace and remote control-
ling terminal support, a remote copy–to/from–
user capability is needed. Also, a set of re-
mote file ops is needed to allow access to re-
mote controlling terminals. Finally, a couple of
files are added to/proc/<pid> to provide
and get information for CPM. Implementations
of all needed capability are available and none
require significant hooks. Like the clusterproc
hooks, however, these hooks must be studied
and included if they are general and allow for
different implementations.

In this section we describe the process id and
process tracking design, the module initializa-
tion, and per process private data. Then we
describe how all the process relationships are
managed clusterwide, followed by sections on
/proc and process movement.

4.1 Process Ids and Process Tracking

As in OpenSSI, process ids are created by first
having the local base kernel generate a locally
unique id and then, using the hooks, adding the
local node number in the higher order bits of
the pid. This is the only pid the process will
have and when the pid is no longer in use, the
locally unique part is returned to the pool on the
node it was generated on. The node who gener-
ated the process id (creation or origin node) is
responsible for tracking if the process still ex-
ists and where it is currently running so opera-
tions on the process can be routed to the correct
node and so ultimately the pid can be reused.
If the origin node leaves the cluster, tracking is
taken over by a designated node in the cluster
(surrogate origin node) so processes are always
findable without polling.

4.2 Clusterproc Module Initialization and
Per Process Clusterproc Data Struc-
ture

The clusterproc module is loaded during the
ramdisk processing although it could be done
later. It assumes the membership, intra-node
communication remote copy-in/copy-out and
remote file ops modules are already loaded and
registers with them. It sets up its data structures
and installs the function pointers in the cluster-
proc op table. It also allocates and initializes
clusterproc data structures for all existing pro-
cesses, linking the structures into the task struc-
ture. After this initialization, each new process
created will get a private clusterproc data struc-
ture via thefork_alloc hook.



260 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

XYZ

Child B

Figure 2: xyz children’s execution node

Local
Child CLocal

Child A

Remote
Child B

XYZ
siblingchildren sibling

parent

parent

parent

pid_chain

pid_chain

Figure 1: Parent xyz’s execution node

parent

Child D

Remote
Child D

children parent

sibling

sibling

parentsurrogate_hash

pid_hash
[PIDTYPE_PID]

pid_hash
[PIDTYPE_PID]

surrogate_hash

pids[0].pid_chain

pids[0].pid_chainpid_chain

pid_chain

pid_chain

4.3 Parent/Child/Ptrace Relationships

To minimize hooks and changes to the base
Linux, the complete parent/child/sibling rela-
tionship is maintained at the current execution
node of the parent, using surrogate task struc-
tures for any children that are not currently ex-
ecuting on that node. Surrogate task structures
are just structtask_struct but are not hashed
into the any of the base pid hashes and thus
only visible to the base in the context of the
parent/child relationship. Surrogate task struc-
tures have cached copies of the fields the parent
will need to executesys_wait() without hav-
ing to poll remote children. The reap operation
does involve an operation to the child execu-
tion node. Theupdate_parent hook is used
to maintain the caches of child information. For

each node that has children but no parent, there
is a surrogate task structure for the parent and a
partial parent/child/sibling list. Surrogate task
structures are hashed off a hash header private
to the CPM module. Figure 1 shows how parent
process XYZ is linked to his children on his ex-
ecution node and Figure 2 shows the structures
on a child node where XYZ is not executing.

Ptrace parent adds some complexity because a
process’s parent changes over time andreal_

parent can be different fromparent . The
update_parent hook is used to maintain all
the proper links on all the nodes.



2005 Linux Symposium • 261

Figure 3: Pgrp Leader XYZ Origin Node (leader executing locally)

Local 
member C

Local
member A

XYZ
pids[2].pid_list

pids[2].pid_list

For clusterprocs, a supplemental structure with
a nodelist where other pgrp members are executing 
and the pgrp_list_sleep_lock

pids[0]pid_chain

Figure 4: Pgrp Leader XYZ Origin Node (leader not executing locally)

Local 
member C

Local
member A pids[2].pid_list

b

pid_hash
[PIDTYPE_PID]

pid_hash
[PIDTYPE_PID]

pid_hash
[PIDTYPE_PGID]

pid_hash
[PIDTYPE_PGID]

pid_chain

For clusterprocs, a supplemental structure with
a nodelist where other pgrp members are executing 
and the pgrp_list_sleep_lock

pids[0]pid_chain

pid_chain

pid_chain

pid_chain

pid_chain

pid_chain

pid_chain

4.4 Process Group and Session Relation-
ships

With the process tracking described above, ac-
tions on an individual process is pretty straight-
forward. Actions on process groups and ses-
sions are more complicated because the mem-
bers may be scattered. For this CPM imple-
mentation, we keep a list of nodes where mem-
bers are executing on the origin/surrogate ori-
gin node for the pid that is the name of the pgrp
or session. On that origin node any local mem-
bers are linked together as in the base but an ad-
ditional structure is maintained that records the
other nodes where members are on. This struc-
ture also has a sleep lock in it to make certain
pgrp or session operations are atomic. Figures
3 and 4 shows the data structure layout on the

origin node with and without the pgrp leader
executing on that node. As with process track-
ing, this origin node role is assumed by the sur-
rogate origin if the origin node fails and is thus
not a single point of failure.

Operations on process groups are directed to
the origin node (aka the list node). On that node
the operation first gets the sleep lock. Then
the operation can be done on any locally exe-
cuting members by invoking the standard base
code. Then the operation is sent to each node
in the node list and the standard base operation
is done for any members on that node.

A process group is orphan if no member has
a parent in a different pgrp but with the same
session id (sid). Linux needs to know if a pro-
cess group is orphan to determine if processes



262 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

can stop (SIGTSTP, SIGTTIN, SIGTTOU). If
a process group is orphan, they cannot. Linux
also needs to know when a process group be-
comes orphan, because at that point any mem-
bers that are stopped get SIGHUP and SIG-
CONT signals. A process exit might effect
its own pgrp and the pgrp on all its children,
which could involve looking at all the pgrp
members (and their parents) of all the pgrps of
all the exiting process’s children. When all the
pgrps and processes are distributed, this could
be very expensive. The OpenSSI CPM, through
the described hooks, has each pgrp list cache
whether it is orphan or not, and if not, which
nodes have processes contributing to its non-
orphaness. Process exit can locally determine
if it necessary to update the current process’s
pgrp list. Each child must be informed of the
parents exit, but they can locally determine if
they have to update the pgrp list orphan infor-
mation. With a little additional information this
mechanism can survive arbitrary node failures.

4.5 Controlling Terminal Management

In the OpenSSI cluster, the controlling terminal
may be managed on a node other than that of
the session leader or any of the processes using
it. There is a relationship in that processes need
to know who their controlling terminal is (and
where it is) and the controlling terminal needs
to know which session it is associated with and
which process group is the foreground process
group.

In the base linux, processes have atty pointer
to their controlling terminal. Thetty_struct

has apgrp and asession field. In cluster-
proc, the base structures are maintained as is,
with the pgrp and session fields in the tty struc-
ture and the tty pointer in the task’s signal struc-
ture. The tty pointer will be maintained if the
tty is local to the process. If the tty is not lo-
cal, the clusterproc structure will have cttynode

and cttydev fields to allow CPM code to deter-
mine if and where the controlling terminal is.
To avoid hooks in some of the routines being
executed at the controlling terminal node, svr-
procs (agent kernel threads akin to nfsd’s) do-
ing opens, ioctls, reads and writes of devices
at the controlling node will masquerade as the
process doing the request (pid, pgrp, session,
and tty). To avoid possible problems their mas-
querading might cause, svrprocs will not be
hashed on thepid_hash[PIDTYPE_PID] .

4.6 Clusterwide/proc

Clusterwide/proc is accomplished by stack-
ing a new pseudo filesystem (cprocfs ) over
an unmodified/proc . Hooks may be needed
to do the stacking but will be modest. In
addition, a couple of new files are added to
/proc/<pid> —agoto file to facilitate pro-
cess movement and awhere file to display
where the process is currently executing. The
proposed semantics forcprocfs would be
that:

• readdir presents all processes from all
nodes and other proc files would either be
an aggregation (sysvipc, uptime, net/unix,
etc.) or would pass thru to the local
/proc

• cprocfs function ships all ops on pro-
cesses to the nodes where they are execut-
ing and then calls theprocfs on those
nodes;

• cprocfs inodes don’t point at task struc-
tures but at small structures which have
hints as to where the process is executing.

• /proc/node/# directories are redi-
rected to the/proc on that node so one
can access all the hardware information
for any node.



2005 Linux Symposium • 263

• readdir of /proc/node/# only shows
the processes executing on that node.

4.7 Process Movement

Via the hooks described earlier, the OpenSSI
CPM system provides several forms of process
movement, including a couple of forms of re-
mote exec, an rfork and somewhat arbitrary
process migration. In addition, these interfaces
allow for transparent and programmatic check-
point/restart.

The external interfaces to invoke process move-
ment are library routines which in turn use the
/proc/<pid>/goto interface to affect how
standard system calls function. Writes to this
file would take a buffer and length. To allow
considerable flexibility in specifying the form
of the movement and characteristics/functions
to be performed as part of the movement, the
buffer consists of a set of stanzas, each made
up of a command and arguments. The ini-
tial set of commands is: rexec, rfork, migrate,
checkpoint, restart, and context, but additional
commands can be added. The arguments to
rexec, rfork and migrate() are a node number.
The argument to checkpoint and restart are a
pathname for the checkpoint file. The context
command indicates whether the process is to
have the context of the node it is moving to
or remain the way it was.Do_execve() and
do_fork() have hooks which, if clusterproc
is configured, will check thegoto informa-
tion that was stored off the clusterproc struc-
ture, and if appropriate, turn an exec into an
rexec or a fork into an rfork.

The goto is also used to enable migrations.
Besides saving thegoto value, the write to
the goto sets a new bit in thethread_info

structure (TIF_MIGPENDING). Each time the
process leaves the kernel to return to user space
(did a system call or serviced an interrupt),

the do_notify_resume() function is called
if any of the flags inthread_info.flags are
set (normally there are none set). The function
do_notify_resume() now has a hook which
will check for theTIF_MIGPENDING flag and
if it is set, the process migrates itself. This
hook only adds pathlength when any of the
flags are set (TIF_SIGPENDING, etc.), which
is very rarely.

OpenSSI currently has checkpoint/restart ca-
pability and this can be adapted to use the
goto file and migration hook. Two forms
of kernel-based checkpoint/restart have been
done in OpenSSI. The first is transparent to
the process, where the action is initiated by
another process. The other is when the pro-
cess is checkpoint/restart aware and is doing the
checkpoint on itself. In that case, the process
may wish to “know” when it is being restarted.
To do that, we propose that the process open
the /proc/self/goto file and attach a sig-
nal and signal handler to it. Then, when the
process is restarted, the signal handler will be
called. Checkpoint/restart are variants of mi-
grate. The argument field to thegoto file is
a pathname. In the case of checkpoint, the
TIF_MIGPENDING will be set and at the end
of the next system call, the process will save
its state in the filename specified. Another ar-
gument can determine whether the process is
to continue or destroy at that point. Restart is
done by first creating a new process and then
doing the “restart”goto command to populate
the new process with the saved image in the file
which is specified as an argument.

A more extensive design document is available
on the OpenSSI web site[9].

5 Summary

Process management in Linux is a compli-
cated subsystem. There are several differ-



264 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

ent relationships—parent/child, process group,
session, thread group, ptrace parent and con-
trolling terminal (session and foreground pgrp).
There are some intricate rules, like orphan pro-
cess groups andde_thread with ptrace on the
thread group leader. Making all this function in
a completely single system way requires quite a
few different hook functions, as defined above
(some could be combined to reduce this num-
ber), but there is no performance impact and
the footprint impact on the base kernel is very
small (patch file touches 23 files with less than
500 lines of total changes, excluding the new
clusterproc.h file).

References

[1] Popek, G., Walker, B.The LOCUS
Distributed System Architecture, MIT
Press, 1985.

[2] Barak, A., Guday, S., Wheeler, R.The
MOSIX Distributed Operating System,
Load Balancing for UNIXvolume 672 of
Lecture Notes in Computer Science,
Spinger-Verlag, 1993

[3] http://www.openssi.org

[4] http://www.openmosix.org

[5] http:
//bproc.sourceforge.net

[6] Valle’e, G., Morin, C., et.al.,Process
migration based on gobelins distributed
shared memory, in proceedings of the
workshop on Distributed Shared Memory
(DSM’02) in CCGRID 2002, pg.
325–330, IEEE Computer Society, May
2002.

[7] Private communication

[8] http://www.cassatt.com

[9] http://openssi.org/
proc-hooks/proc-hooks.pdf

[10] http:
//openssi.org/ssi-intro.pdf



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


