Clusterproc: Linux Kernel Support for Clusterwide
Process Management

Bruce J. Walker Laura Ramirez John L. Byrne
Hewlett-Packard Hewlett-Packard Hewlett-Packard
bruce.walker@hp.com laura.ramirez@hp.com john.l.byrne@hp.com
Abstract single root filesystem and a single namespace

for processes, files, networking and interpro-
cess communication objects. It provided high

There are several kernel-based clusterwide pro=

: : . .availability as well as a simple management
cess management implementations available

today, providing different semantics and ca-f\)ﬂa;;i'?guzgg Jsa(:o(?:;ir}ggg b(;flaggi)r?es'sriz
pabilities (OpenSSlI, openMosix, bproc, Ker- P 9.

righed, etc.). We present a set of hooks to auov\;:oncepts of Locus have moved to Linux via the

. . . OpenSSI[3] open source project. Mosix has
various installable kernel module mplementa—moveoI to Linux via the openmosix[4] project
tions, with a high degree of flexibility and vir- P project.

tually no performance impact. Optional capa-gpensS| and Mosix were not initially tar-
bilities that can be implemented via the hooksyeted at large scale parallel programming clus-
include: clusterwide unique pids, single init, tgrg (eg. those using MPI). The BProc[5]
heterogeneity, transparent visibility and accesgpm project has targeted that environment to
to any process from any node, ability to dis-speed up job launch and simplify process man-
tribute processes at exec or fork or thru mi-ggement and cluster management. More re-
gration, file inheritance and full controlling ter- cent efforts by Kerrighed[6] and USI[7] (now
minal semantics, node failure cleanup, clustercassat[8]) were also targeted at HPC environ-

wide /proc/<pid> , checkpoint/restart and ments, although Cassat is now interested in

describe an OpenSSl-inspired implementation

using the hooks and providing all the featuresThese 5 CPM implementations have somewhat
described above. different cluster models (different forms of SSI)
and thus fairly different implementations, in
part driven by the environment they were orig-
inally developed for. The “Introduction to SSI”
paper[10] details some of the differences. Here
we outline some of the characteristics relevant
Kernel based cluster process managemerib CPM. Mosix started as a workstation tech-
(CPM) has been around for more than 20nology that allowed a user on one workstation
years, with versions on Unix by Locus[1] and to utilize cpu and memory from another work-
Mosix[2]. The Locus system was a general purstation by moving running processes (process
pose Single System Image (SSI) cluster, with amigration) to the other workstation. The mi-

1 Background

o 251 o

252 e Clusterproc: Linux Kernel Support for Clusterwide Process Management

grated processes had to see the OS view of th2 Goals and Requirements for the

original workstation (home node) since there Clusterproc Hooks

was no enforced common view of resources

such as processes, filesystem, ipc objects, bina-

ries, etc. To accomplish the home-node view;The general goals for the hooks are to enable

most system calls had to be executed back oa variety of CPM implementations while being

the home node—the process was effectivelynon-invasive enough to be accepted in the base

split, with the kernel part on the home nodekernel. First we look at the base kernel require-

and the application part elsewhere. What thisnents and then some of the functional require-

means to process ids is that home nodes geneaments.

ate ids which are not clusterwide unique. Mi-

grated processes retain their home node pid i€hanges to the base kernel should retain the ar-

a private data structure but are assigned a loshitectural cleanliness and not affect the per-

cal pid by the current host node (to avoid pidformance. Base locking should be used and

conflicts). The BProc model is similar exceptcopies of base routines should be avoided. The

there is a single home node (master node) thatlusterproc implementations should be instal-

all processes are created on. These ids are thigble modules. It should be possible to build

clusterwide unigue and a local id is not neededhe kernel with the hooks disabled and that ver-

on the host node. sion should have no impact on performance. If
the hooks are enabled, the module should be

The model in OpenSSI, Kerrighed and Cassat isptional. Without the module loaded, perfor-

different. Processes can be created on any nodeance impact should be negligible. With the

and are given a single clusterwide pid whenmodule loaded, one would have a one node

they are created. They retain that pid no mattecluster and performance will depend on the

where they execute. Also, the node the proces€PM implementation.

was created on does not retain part of the pro-

cess. What this means to the CPM implemental he hooks should enable at least the following

tion is that actions to be done against processdynctionality:

are done where the process is currently execut-

ing and not on the creation or home node. :
e optionally have a per process data struc-

There are many other differences among the ture maintained by the CPM module;

CPM implementations. For example, OpenSSiI
has a single, highly available init process while
most/all other implementations do not. Addi-
tionally, BProc does not retain a controlling ter- ¢ support for distributed process rela-

minal (or any other open files) when processes tjonships including parent/child, process
move, while other implementations do. Some group and Session; optiona| Support for

implementations, like OpenSSI, support clus- distributed thread groups and ptrace par-
terwide ptrace, while others do not. ent;

¢ allowing for the CPM module to allocate
clusterwide process ids;

With some of these differences in mind, we e optional ability to move running pro-
next look at the goals for a set of CPM hooks cesses from one node to another either at
that would satisfy most of the CPM implemen- exec/fork time or at somewhat arbitrary
tations. points in their execution;

2005 Linux Symposium e 253

optional ability to transparently check- structure additions and a set of entry points
point/restart processes, process groups arare proposed. The data structure additions are
thread groups; a pointer in the task structure (CPM imple-

: - _ mentations could then allocate a per process
optional ability to have process continue to

if the node th %tructure that this pointer points to), and 2 flag
execute even i the node they were createqyis The infrastructure for the hooks is pat-
on leaves the cluster;

terned after the security hooks, although not ex-
optional ability to retain relationships of actly the same. ICONFIG_CLUSTERPROG
remaining processes, no matter Whichnot set, the hooks are turned into inline func-
nodes may have crashed; tions that are either empty or return the de-
fault value. WithCONFIG_CLUSTERPROdE-
optional ability to have full controlling ter- fined, the hook functions call clusterproc ops if
minal semantics for processes running rethey are defined, otherwise returning the default
motely from their controlling terminal de- value. The ops can be replaced, and the clus-
vice; terproc install-able module will replace the ops
with routines to provide the particular CPM im-
plementation. The clusterproc module would
be loaded early in boot. All the code to sup-
capability to support either an “init” pro- port the clusterwide process model would be
cess per node or a single init for the entireunder GPL. To enable the module some addi-
cluster; tional symbols will have to exported to GPL

- . - modules.
capability to function within a shared root

environment or in an environment with a The proposed hooks are grouped into cat-
root filesystem per node; egories below. Each CPM implementation
can provide op functions for all or some
of the hooks in each category. For each
category we list the relevant hook functions
in pseudo-C. The names would actually be
support for clusters of up to 64000 nodes clusterproc_xxx but to fit here we leave
with optional code to support larger; out the clustproc_ part. The parameters
are abreviated. For each category, we de-

full, but optional/proc/<pid> capabil-
ity for all processes from all nodes;

capability to be an installable module
that can be installed either from the
ramdisk/initramfs or shortly thereafter;

In the next section we detail a set of hooks describe the general purpose of the hooks in
signed to meet the above set of goals and rethat category and how the hooks could be
quirements. Following that is the design of theused in different CPM implementations. The
OpenSSI 3.0, as adapted to the proposed hookgategories are: Init and Reaper; Allocation/

3 Proposed Hook Architecture,

To enable the optional inclusion of clusterwide

Free; Update Parent; Process lock/unlock;
Exit/Wait/Reap; Signalling; Priority and Capa-
bility; Setpgid/Setsid; Ptrace; Controlling Ter-

) minal; and Process movement;
Hook Categories and Hooks

3.1 Initand Reaper

process management (referred also as “clus-
terproc” or CPM) capability, very small data void single_init();

254 e Clusterproc: Linux Kernel Support for Clusterwide Process Management

void child_reaper(*pid); are only used in those implementations present-
ing a clusterwide single pid space. Thie_

alloc hook is called inalloc_pidmap() in
pid.c . It takes a locally unique pid and re-
turns a clusterwide unique pid, possibly by en-

- . . coding a node number in some of the high order
init() can be used in a couple of ways. F'rSt'bits. Thelocal pid andstrip_pid hooks

if there is to be a single init, this routine can are infree_pidmap() , also inpid.c The

spawn a “reaper” process that will locally reap, . pid _ hook returns 1 if this pid was gen-

the orphan processes that init normally reaps, iad on this node and the process id is no

On:he notde th?t ls"gom.g.tt(i hzve the ,'g't’ct)helonger needed clusterwide. Otherwise return
routine returns to aflow init 1o be execd. ©n q Thestrip_pid hook is called to undo the

other nodes it can exit so there is no Procesgsracts ofpid_alloc so the base routines on
1 on those nodes. The other hook in this cat- -

o o each node can manage their part of the cluster-
egory ischild_reaper , which is in timer.c, wide pid space.
sys_getppid() . It returns 1 if the process’s
parent was thehild_reaper process. Nei-
ther of these hooks would be used in those CPI\@ 3
implementations that have an init process per’
node.

One of the goals was to allow the cluster to
run with a single init process for the cluster.
The single_init hook in init/main.c :

Update parent

int update_parent(*ptsk,*ctsk,
3.2 Allocation/ Free flag,sig,siginfo);

int fork_alloc(*tsk);
void exit_dealloc(*tsk);
int pid_alloc(pid);
int local_pid(pid);

Update_parent is a very general hook called
in several places. It is used by a child pro-
cess to notify a parent process if the parent

void strip_pid(*pid): process is exeputing remote!y. ptrace.
c, it is called in__ ptrace_unlink() and
__ptrace_link() . In the arch version of
There are 5 hooks functions in this categoryptrace.c it is called insys_ptrace() . In
Firstisfork_alloc , whichis called ircopy_ exit.c itis called inreparent_to_init()

process() infork.c . Thisroutineis called andinfork.c ,copy process() ,itiscalled
to allow the CPM to allocate a private datain the CLONE_PARENTase. Although not all
structure pointed to bylusterproc pointer CPM implementations will support distributed
which is added to the task structure. Freeptrace orCLONE_PARENTsupport for some of
ing that structure is done via the hoekit_ the instances of this hook will probably be in

dealloc() which is called inrelease_ each CPM implementation.
task() in exit.c and under error condi-

tions in copy_process() in fork.c The

exit_dealloc routine can also be used to do3.4 Process lock/unlock
remote notifications necessary for pgrp and ses-

sion management. All CPM implementations

will probably use these hooks. The other 3 void proc_lock(*tsk,base_lock);
hooks deal with pid allocation and freeing and void proc_unlock(*tsk,base_lock);

2005 Linux Symposium e 255

Theproc_lock andproc_unlock hooks al- in is_orphan_pgrp() , In exitc . It re-
low the CPM implementation to either use theturns 1 if orphaned and O if non-orphaned. If
basetsk->proc_lock (default) or to intro- not provided, the existing base algorithm is
duce a sleep lock in their private process dataised. rmt_orphan_pgrp is called inwill_
structure. In some implementations, a sleefpecome_orphaned_pgrp() in exitc . It
lock is needed because remote operations may called if there are no local processes remain-
be executed while this lock is held. In addition, ing that make the process group non-orphan. In
calls to proc_lock and proc_unlock are that case it determines if the pgrp will become

added inexit_notify() , In exit.c , be- orphan and if so it effects the standard action
causeexit_notify() may not be atomic and on the pgrp members. Metach_pid hook
may need to be interlocked witketpgid() in detach_pid() is proposed to allow CPM

and with process movement (the locking callsmplementations to update any data structures
for setpgid and process movement would be irmaintained for process groups and sessions.

the CPM implementation.
There are 4 proposed hooks in wait. The

first, in eligible_child() , exit.c , is
3.5 Exit/Wait/Reap rmt_thread_group_empty . This is used
to determine if the thread group is empty,

_ _ for thread groups in which the thread group
int rmt_reparent_children(*tsk);

int is_orphan_pgrp(pgrp): leader is executing remotely. If it is

void rmt_orphan_pgrp(newpgrp,*ret); empty, the thread group leader can be

void detach_pid(*tsk,nr,type); . . .

int rmt_thread_group_empty(*tsk,pid,opt); reaped; otherwise it cannot. The other 3

it rmt_wait_task_zombie(*tsk,noreap, hooks arermt_wait_task_zombie , rmt
*siginfo,*stat_addr, *rusage);) — - - . -

int rmt_wait_stopped(*tsk,int,noreap, wait_stopped and rmt_wait_continued

. "siginfo,"stat_addr,"rusage); which are called inwait_task_zombie() :

int rmt_wait_continued(*tsk,noreap, . — — .
*siginfo,*stat_addr, *rusage); wait_task_stopped() and wait_task_

continued() respectively. These hooks al-
low the CPM implementation to move the re-

There are several hooks proposed to acconspective functions to the node where the pro-
plish all the actions around the exit of a processess is and then execute the base call there, re-
and wait/reap of that process. One early actiofturning an indication if the child was reaped or
in exit is to reparent any children to takild_ if there was an error.
reaper . This is done irforget_original _
parent() inexit.c . Thermt_reparent_))
children hook provides an entry to repar- 36 Signalling
ent those children not executing with the par-
ent. Accurate orphan process group pProCesSaid mt_sigproc(pidsig,*siginfo, *error);
ing can be difficult with other pgrp members, int Pgfp_,"st_'oca'(ngPv*ﬂég)?f .
children and parents all potentially exeCUtingi?otidrQzazlgrr:)gq_rfrg??rrﬁéigt;e?sg(;gor)ﬁ,sig,*siginfo,
on different nodes. The “home-node” model . "reg.flag);
. . . . int Kill_all(sig,*siginfo,*count,*ret,tgid);
implementations will have all the necessary iN-void mt_sig_tgkill(tgid, *siginfo,pid, flag,
formation at the home node. For non-home- . . "tske,*error);

. i i void rmt_send_sigio(*tsk,*fown,fd,band);
node implementations like OpenSSl, two hooKSnt mt_pgrp_send_sigio(pgid, *fown,fd,band);
are proposed—is_orphan_pgrp and rmt_ void rmt_send_sigurg(*tsk,*fown);

- . int rmt_pgrp_send_sigurg(pgid,*fown);
orphan_pgrp . is_orphan_pgrp is called void timedwait(timeout,*timespec,*ret);

256 e Clusterproc: Linux Kernel Support for Clusterwide Process Management

There are many places in the kernel that mayeeded irsend_sigurg() in fcntl.c (with
signal a process, for a variety of of reasonsdifferent parameters). The final signal related
Hooks inkill_proc_info() andkill_pg_ hook istimedwait , which s called fronsys_
inffo() handle many cases. One could define at_sigtimedwait() , in signal.c . Itis
general hook function that handles many of thecalled only if a process was in a scheduled
cases (process, pgrp, killall, sigio, sigurg, etc.)timeout and was woken up to do a migrate.
Doing so would reduce the number of differentlt restarts thesys rt_sigtimedwait() af-
hook functions but would require a superset otter the migrate.
parameters and the op would have to relearn the
reason it was called. For now we have propose
them as separate hooksnt_sigproc is the
hook in kill_proc_info() , called only if
the process is not found locally. It tries to find veid priority(cmd,who,niceval *tsk err);

R . int pgrp_priority(cmd,who,niceval,*ret);
the process on another node and deliver the Sigt prio_user(cmd,who,niceval,*err);
nal. For the process group case we currently" ;Z,r);b::“atgg:enggﬁﬁZifz?;:/gaﬁh;?g)
have 3 hooks irkill_pg_info() . Based on - ' “spermitted *ret);
the assumption that some node knows the lisft capset allCeffective*inheri,

of pgrp members (or at least the nodes they

g.? Priority and Capability

*permitted,*ret);

are on), the first hookpgrp_list_local)

determines if such a list is local. If not, it In sys_setpriority() (sys.c), schedul-
calls rmt_sigpgrp ~ which will transfer con- ing priority can be set on processes, pro-
trol to such a node, so the bag#_pg_ cess groups or “all processes owned by
info) can be called. Given we are now@ given user” A get-priority can be
executing on the node where the list is, thedone for a process or a pgrp. The
pgrp_list_local hook can lock the list so priority , pgrp_priority andprio_user

that no members will be missed during the sighooks are proposed to deal with distribu-
nal operation. After that, the base code to signalions issues for these functions. Capabil-
locally executing pgrp members is executedity setting/getting ¢ys_capset() ~ andsys_
followed by the code to signal remote mem-capget() incapability.c) are quite sim-

bers 6igpgrp_rmt_members). That hook ilar and capabilty —, pgrp_capset and
also does the list unlock. Support for cluster-capset all hooks are proposed for those
wide kill =1 is provided by a hook irkill_ functions.
something_info() . A CPM implementation
poulq loop thru_ all Fhe nodes in the cluster, call-3 g Setpgid/Setsid
ing kill_something_info() on each one.
Linux has 2 system calls for thread signalling— ocalloidoaid
. . t f)
sys_tkil) andsys_tgkil) . The pro- o oo belon i)

posed hookrmt_sig_tgkill is inserted in int_dveriw_pgicé_seisiingpgid,sid):

each of these system calls to find the thread(sfiy borat doneier pic)

and deliver the signal, if the threads were not aIMO?g rmtt__zrocﬁgétattr(pidv*pgidv*siod):

ready found locally. Theend_sigio() func- YO sertend)

tioninfcntl.c ~ can send process or pgrp sig-

nals. Thermt_send_sigio or rmt_pgrp_ Setpgid §ys.c) may be quite straightforward
send_sigio hook is called if the process or to handle in the home/master node implementa-

process group is remote. Similar hooks ardions because all the process, process group and

2005 Linux Symposium e 257

session information will be at the home/masterClusterwide ptrace support is not provided in
node. For the more peer-oriented implementaall CPM implementations (eg. BProc) but
tions, in the most general case there could bean be supported with the help of a few
several nodes involved. First, while the setpgichooks. Unfortunatelysys_ptrace() is in
operation is most often done against oneself, ithe arch tree, inptrace.c . The rmt_
doesn’t have to be, so there is a hook set earlgtrace hook is needed if the process to be
in sys_setpgid to move execution to the ptraced is not local. It reissues the call on
node on which the setpgid is to be dor® (the node where the process is running. In
process_local and rmt_setpgid). is_ ptrace_attach() , in the non-arch version
process_local can also acquire a sleep lock of ptrace.c , the rmt_find_pid hook is

on the process since setpgid may not be atomiagsed in the scenario that the request was gen-
to the tasklist_lock . One of the tests in erated remotely. This hook helps ensure that
setpgid is to make sure there is someone in ththe the process being traced is attached to the
proposed process group in the same session asocess debugging and not to a server daemon
the caller. If that check isn’t satisfied locally, acting on behalf of that process. Tpieace

verify _pgid_session is called to check the lock and ptrace_unlock hooks are used
rest of the process group. Given the operatiomn do_ptrace_unlink() (ptrace.c) and

is approved, thegrp_update hook is called de_thread() (exec.c). They can be used

to allow the CPM implementation to adjust or- to provide atomicity across operations that re-
phan pgrp information, to create or update anyjuire remote messages.

central pgrp member list and to update any

cached information that might be at the pro-
cess’s parent’s execution site (to allow him to
easily do waits). A final hook inys_setpgid
(setpgid_done) is called to allow the CPM vl Efggt—gt—tgig;g)égrpangrp);
implementation to release the process lock acsoid mt_vhangup(*tsk);

quired inis_process_local void get_tty("tsk,"ty_nr,"ty_pgrp);

void clear_tty(sid,*tty,flag);
void release_rmt_tty(*tsk,flag);

3.10 Controlling Terminal

The rmt_proc_getattr hook in sys inthas_rmt_ctty(); .

L= — . — int rmt_tty _open(*inode,*file);
getpgid() and sys_getsid() supplies void rmt_tty_write_message(*msg,*tty);
the pgid and/or sid for processes not executing® "™M:-is-ignored(pid.sig);
locally.

Some CPM implementation do not support
The setsid hook in sys_setsid() can be controlling terminal for processes after they
used by the CPM implementation to updatemove (eg. BProc). In the home-node style
cached information at the parent's executioncppm, the task structure on the home node will
node, at children execution nodes and at anyavetty pointer. On the node where the pro-
session or pgrp list management nodes. cess migrated, the task structure hasttyo
pointer. As long as any interrogation or up-
dating using that pointer is done on the home

3.9 Ptrace node, this strategy works. For CPM imple-
mentations where system calls are done locally,

void rmt_ptrace(request,pid,addr,data, *ret); some hooks are needed to deal with a poten-

rtsk rmt_find_pid(pid); tially remote controlling terminal. The pro-

int ptrace_lock(*tsk,*tsk) . . . i
void ptrace_unlock(*tsk,*tsk); posed strategy is that if the controlling terminal

258 e Clusterproc: Linux Kernel Support for Clusterwide Process Management

is remote, thety pointer would be null but printk.c ,tty write_message() if the tty
there would be information in the CPM private it wants to write to is remote.
data structure.

3.11 Process movement

Daemonize(), inexit.c , normally clears
the tty pointer in the task structure. Ad-
ditionally it calls the hookclear_my_tty int do_rexec(*char,*argv,*envp,
to do any other bookkeeping in the case *regs,*reg);
where the controlling terminal is remote. void rexec_done();
In drivers/char/tty_io.c , the routines it do_rfork(flags stk *regs,size,

. . *ptid,*ctid, pid, *ret);
do_tty_hangup() , disassociate_dev() ! int do_migrate(*regs,signal,flags);
release_dev() andtiosctty() all call the -
hook clear_tty , which clears the tty in-
formation for all members of the session onAs mentioned in the goals, the hooks should
all nodes. release_rmt_tty is called by allow for process movement at exec() time, at
disassociate_ctty() if the tty is not local; fork() time and during execution. Earlier ver-
the hook callglisassociate_ctty() onthe sjons of OpenSSI accomplished this via new
node where the tty is.get_tty is called in system calls. The proposal here does not re-
proc_pid_stat() in fs/proc/array.c t0 quire any system calls although that is an op-
gather the foreground pgrp and device id for thejon. For fork() and exec(), a hook is putdio_
task’s controlling terminal. The hoalpdate fork() anddo_execve() respectively. Ops
ctty pgrp is called bytiocspgrp() , in behind the hooks can determine if the operation
drivers/char/tty_io.c and can be used should be done on another node. A load balanc-

by the CPM to inform all members of the old ing algorithm can be consulted or the process
pgrp that they are no longer in the control-could have been marked (eg. via a procfs file
ling terminal foreground pgrp and to inform the |ike /proc/<pid>/goto) for remote move-
new pgrp members as well. Distributed knowl-ment. An additional hookexec_done is pro-
edge of which pgrp is the foreground pgrp isvided so the CPM implementation can get con-
important for correct behavior in the situationtro| after the exec on the new node has com-
when the controlling terminal node crashespleted but before returning to user mode, so that
Sys_vhangup() ,infs/open.c ,hasacallto process setup canbe completed and the original
rmt_vhangup() if tty is notset (ifthereisa node can be informed that the remote execve()

remote tty, the CPM can calls_vhangup() was successful.
on that node). Indrivers/char/tty_io.c :
tiosctty() andtty open() call the hook A single hook is needed for process migration.

has_rmt_ctty to determine if the process The proposed mechanism is that yjaoc/
already has a controlling terminal that is re-<pid>/goto or a load balancing subsystem,
mote. Also indrivers/char/tty io.c ,the processes havelF_MIGPENDING flag (added
tty_open() function calls rmt_tty open flag in flags field ofthread_info structure)
for opens of/dev/tty if the controlling ter- set if they should move. That flag is checked
minal is remote. Thés_ignored() function just before going back to user space,din_

in drivers/char/n_tty.c calls rmt_is_ notify_resume() , In arch/xxx/kernel/
ignored ifitis called by an agent for a process signal.c and calls thedo_migrate hook.
that is actually running remotely. Finaliynt_ Checkpoint and restart can be invoked via the

tty_write_message is called inkernel/ same hook (migrate to/from disk).

2005 Linux Symposium e 259

Determining if these hooks are sufficient to al-In this section we describe the process id and
low an implementation that satisfies the goalgprocess tracking design, the module initializa-
and requirements outlined earlier is best dongion, and per process private data. Then we
by implementing a CPM using the hooks. Thedescribe how all the process relationships are
OpenSSl 3.0 CPM, which provides almost allmanaged clusterwide, followed by sections on
the requirements, including optional ones, hagproc and process movement.

been adapted to work via the hooks described

above. Work to ensure that other CPM im-4 1 process Ids and Process Tracking
plementations can also be adapted needs to be

dor_le. '_I'he OpenssSl .3'0 CPM design is deAs in OpenSSil, process ids are created by first
scribed in the next section.

having the local base kernel generate a locally
unique id and then, using the hooks, adding the
local node number in the higher order bits of
4 Clusterproc Design for OpenSSl the pid. This is the only pid the process will
have and when the pid is no longer in use, the
) _ _ locally unique partis returned to the pool on the
In this section we describe a Cluster Processge it was generated on. The node who gener-
Management (CPM) implementation adaptedyieq the process id (creation or origin node) is
from OpenSSI 2.0. It is part of a functional (egponsible for tracking if the process still ex-
cluster which is a subset of OpenSSI. The Subjsig and where it is currently running so opera-
set does not have a cluster filesystem, a singlgyng on the process can be routed to the correct
root or single init. It does not have clusterwide hode and so ultimately the pid can be reused.
device naming, a clusterwide IPC space or g the origin node leaves the cluster, tracking is
cluster virtual ip. It does not have connectionisken over by a designated node in the cluster

or process load balancing. All those capabilygyrogate origin node) so processes are always
ities will be subsequently added to this CPM¢indable without polling.

implementation to produce OpenSSlI 3.0.

To allow the CPM implementation to be part of 4.2 Clusterproc Module Initialization and

a functional cluster, several other cluster com- Per Process Clusterproc Data Struc-
ponents are needed. A loadable membership ture

service is needed, together with an intra-node

communication service layered on tcp socketsThe clusterproc module is loaded during the
To enable the full ptrace and remote control-ramdisk processing although it could be done
ling terminal support, a remote copy—to/from—later. It assumes the membership, intra-node
user capability is needed. Also, a set of reccommunication remote copy-in/copy-out and
mote file ops is needed to allow access to reremote file ops modules are already loaded and
mote controlling terminals. Finally, a couple of registers with them. It sets up its data structures
files are added tdproc/<pid> to provide and installs the function pointers in the cluster-
and get information for CPM. Implementations proc op table. It also allocates and initializes
of all needed capability are available and noneclusterproc data structures for all existing pro-
require significant hooks. Like the clusterproccesses, linking the structures into the task struc-
hooks, however, these hooks must be studietlire. After this initialization, each new process
and included if they are general and allow forcreated will get a private clusterproc data struc-
different implementations. ture via thefork_alloc hook.

260 e Clusterproc: Linux Kernel Support for Clusterwide Process Management

pid_chain pidsloLpid_chain o Local
pid_hash Local / Child C
[PIDTYPE_PID] pid_chain paren Child A sibling
children Sibling siblin
XYZ 9
parent -
surrogate_hash _ _ ' Remote arent Remote
pid_chain Child B PAEN | child D

Figure 1: Parent xyz's execution node

pids[0].pid_chain

pid_hash

[PIDTYPE_PID] pid_chain Child B) Child D

sibling

pare children
surrogate_hash

pid_chain XYZ Figure 2: xyz children’s execution node

4.3 Parent/Child/Ptrace Relationships each node that has children but no parent, there
is a surrogate task structure for the parent and a
partial parent/child/sibling list. Surrogate task

To minimize hooks and changes to the basétructures are hashed off a hash header private
Linux, the complete parent/child/sibling rela- to the CPM module. Figure 1 shows how parent
tionship is maintained at the current executiorProcess XYZ is linked to his children on his ex-
node of the parent, using surrogate task strucecution node and Figure 2 shows the structures
tures for any children that are not currently ex-0n a child node where XYZ is not executing.
ecuting on that node. Surrogate task structures

are just structask_struct ~ but are not hashed

into the any of the base pid hashes and thus

only visible to the base in the context of the

parent/child relationship. Surrogate task struc-

tures have cached copies of the fields the parent

will need to executeys_wait() without hav- Ptrace parent adds some complexity because a
ing to poll remote children. The reap operationprocess’s parent changes over time esal

does involve an operation to the child execuparent can be different fronparent . The

tion node. Thaupdate_parent hook is used update_parent hook is used to maintain all

to maintain the caches of child information. Forthe proper links on all the nodes.

2005 Linux Symposium e 261

pid_chain
pid_hash . . local
[PIDTYPE_PID] pid_chain ' o
IS pids[2].pid_list
. S pids[Q]pid
pid_hash pid_chain XYZ pids(2].pid_list Local
[PIDTYPE_PGID] member C

pid_chain

For clusterprocs, a supplemental structure with
a nodelist where other pgrp members are executing
and the pgrp_list_sleep_lock

Figure 3: Pgrp Leader XYZ Origin Node (leader executing locally)

pid_chain
pid_hash)) Local
[PIDTYPE_PID pid_chain member A pids[2].pid_list pids[0]pid._chain
—
pid_hash pid_chain m:r%ct;a:elr C

[PIDTYPE_PGID])
For clusterprocs, a supplemental structure with

a nodelist where other pgrp members are executing
and the pgrp_list_sleep_lock

Figure 4: Pgrp Leader XYZ Origin Node (leader not executing locally)

4.4 Process Group and Session Relation- origin node with and without the pgrp leader
ships executing on that node. As with process track-

ing, this origin node role is assumed by the sur-
rogate origin if the origin node fails and is thus

With the process tracking described above, achot a single point of failure.

tions on an individual process is pretty straight-

forward. Actions on process groups and sesOperations on process groups are directed to

sions are more complicated because the menthe origin node (aka the list node). On that node

bers may be scattered. For this CPM implethe operation first gets the sleep lock. Then

mentation, we keep a list of nodes where memthe operation can be done on any locally exe-

bers are executing on the origin/surrogate oricuting members by invoking the standard base

gin node for the pid that is the name of the pgrpcode. Then the operation is sent to each node

or session. On that origin node any local memin the node list and the standard base operation

bers are linked together as in the base but an ads done for any members on that node.

ditional structure is maintained that records the

other nodes where members are on. This strucA process group is orphan if no member has

ture also has a sleep lock in it to make certaira parent in a different pgrp but with the same

pgrp or session operations are atomic. Figuresession id (sid). Linux needs to know if a pro-

3 and 4 shows the data structure layout on theess group is orphan to determine if processes

262 e Clusterproc: Linux Kernel Support for Clusterwide Process Management

can stop (SIGTSTP, SIGTTIN, SIGTTOU). If and cttydev fields to allow CPM code to deter-
a process group is orphan, they cannot. Linuwxmine if and where the controlling terminal is.
also needs to know when a process group beFo avoid hooks in some of the routines being
comes orphan, because at that point any menexecuted at the controlling terminal node, svr-
bers that are stopped get SIGHUP and SIGprocs (agent kernel threads akin to nfsd’s) do-
CONT signals. A process exit might effect ing opens, ioctls, reads and writes of devices
its own pgrp and the pgrp on all its children, at the controlling node will masquerade as the
which could involve looking at all the pgrp process doing the request (pid, pgrp, session,
members (and their parents) of all the pgrps ofind tty). To avoid possible problems their mas-
all the exiting process’s children. When all thequerading might cause, svrprocs will not be
pgrps and processes are distributed, this couldashed on theid_hash[PIDTYPE_PID]

be very expensive. The OpenSSI CPM, through

the described hooks, has each pgrp list cache ,

whether it is orphan or not, and if not, which 4-6 Clusterwide/proc

nodes have processes contributing to its non-

pr_phaness. Process exit can locally dewrmin%lusterwide/proc
if it necessary to update the current process'’s,

pgrp list. Each child must be informed of the unmodifiedproc . Hooks may be needed
parents exit, but they can locally determine if;; 44 the stacking but will be modest. In

they have to update the pgrp list orphan infor-,qgition, a couple of new files are added to
mation. With a little additional information this Iproc/<pid> —agoto file to facilitate pro-

mechanism can survive arbitrary node failures..ocs movement and where file to display

where the process is currently executing. The

4.5 Controlling Terminal Management proposed semantics farprocfs ~ would be
that:

is accomplished by stack-
g a new pseudo filesysterapgrocfs) over

In the OpenSSiI cluster, the controlling terminal _
may be managed on a node other than that of ® readdir presents all processes f_rom all
the session leader or any of the processes using N0des and other proc files would either be
it. There is a relationship in that processes need " @ggregation (sysvipc, uptime, net/unix,
to know who their controlling terminal is (and etc.) or would pass thru to the local

where it is) and the controlling terminal needs ~ /Proc

to know which session it is associated with and

cprocfs function ships all ops on pro-
which process group is the foreground process * P D P b

cesses to the nodes where they are execut-
group. ing and then calls therocfs on those

In the base linux, processes havitya pointer nodes;

to their controlling terminal. Thay_struct

has apgrp and asession field. In cluster-
proc, the base structures are maintained as is,
with the pgrp and session fields in the tty struc-

e cprocfs inodes don'’t point at task struc-
tures but at small structures which have
hints as to where the process is executing.

ture and the tty pointer in the task’s signal struc- e /proc/node/# directories are redi-
ture. The tty pointer will be maintained if the rected to thdproc on that node so one
tty is local to the process. If the tty is not lo- can access all the hardware information

cal, the clusterproc structure will have cttynode for any node.

2005 Linux Symposium e 263

e readdir of/proc/node/# only shows thedo_notify_resume() function is called
the processes executing on that node. if any of the flags inthread_info.flags are
set (normally there are none set). The function
do_notify_resume() now has a hook which
4.7 Process Movement will check for theTIF_MIGPENDING flag and

if it is set, the process migrates itself. This

Via the hooks described earlier, the Openss'o0k only adds pathlength when any of the
CPM system provides several forms of procesf29s are setTlF_SIGPENDING, etc.), which
movement, including a couple of forms of re- IS Very rarely.

mote exec, an rfork and somewnhat arbitrarygenss) currently has checkpoint/restart ca-

process migration. In addition, these interface?)ab”ity and this can be adapted to use the
allow for transparent and programmatic CheCk'goto file and migration hook. Two forms

point/restart. of kernel-based checkpoint/restart have been

The external interfaces to invoke process moveEione in OpenSSl. The first is transparent to

. . . the process, where the action is initiated by
ment are library routines which in turn use theanother rocess. The other is when the bro-
/proc/<pid>/goto interface to affect how P : P

standard system calls function. Writes to thiste>5 1S checkpointrestart aware and is doing the

file would take a buffer and length. To allow checkpoint on itself. In that case, the process

: S e may wish to “know” when it is being restarted.
considerable flexibility in specifying the form
- . _To do that, we propose that the process open
of the movement and characteristics/function

to be performed as part of the movement, chhe/proclself/goto flle_ and attach a sig-
) nal and signal handler to it. Then, when the
buffer consists of a set of stanzas, each made

. process is restarted, the signal handler will be
up of a command and arguments. The ini-) . :
. . . called. Checkpoint/restart are variants of mi-
tial set of commands is: rexec, rfork, migrate,

checkpoint, restart, and context, but additionaprate' The argument field to tigoto fllg 'S
commands can be added. The arguments a pathname. In the case of checkpoint, the
: ' IF_MIGPENDING will be set and at the end
rexec, rfork and migrate() are a node number., .
of the next system call, the process will save

The argument to checkpoint and restart are ?ts state in the filename specified. Another ar-

pathname for the checkpoint file. The context) .
- . ument can determine whether the process is

command indicates whether the process is t . , :
0 continue or destroy at that point. Restart is

have the context of the node it is moving to : .
) : done by first creating a new process and then
or remain the way it wasDo_execve() and .))
doing the “restartjoto command to populate

do_fork() have hooks which, if clusterproc . : : .
) . : : the new process with the saved image in the file
is configured, will check theyoto informa- o i

which is specified as an argument.

tion that was stored off the clusterproc struc-
ture, and if appropriate, turn an exec into ana more extensive design document is available
rexec or a fork into an rfork. on the OpenSSI web site[9].

The goto is also used to enable migrations.
Besides saving thgoto value, the write to
thegoto sets a new bit in théhread_info
structure TIF_MIGPENDING). Each time the
process leaves the kernel to return to user spad&rocess management in Linux is a compli-
(did a system call or serviced an interrupt),cated subsystem. There are several differ-

5 Summary

264 e Clusterproc: Linux Kernel Support for Clusterwide Process Management

ent relationships—parent/child, process group|9] http://openssi.org/
session, thread group, ptrace parent and con- proc-hooks/proc-hooks.pdf
trolling terminal (session and foreground pgrp).

There are some intricate rules, like orphan prol10] http: N

cess groups ande_thread with ptrace on the /lopenssi.org/ssi-intro.pdf
thread group leader. Making all this function in

a completely single system way requires quite a

few different hook functions, as defined above

(some could be combined to reduce this num-

ber), but there is no performance impact and

the footprint impact on the base kernel is very

small (patch file touches 23 files with less than

500 lines of total changes, excluding the new

clusterproc.h file).

References

[1] Popek, G., Walker, BThe LOCUS
Distributed System Architectyr®IT
Press, 1985.

[2] Barak, A., Guday, S., Wheeler, Rhe
MOSIX Distributed Operating System,
Load Balancing for UNIXolume 672 of
Lecture Notes in Computer Science,
Spinger-Verlag, 1993

[3] http://www.openssi.org
[4] http://www.openmosix.org

[5] http:
//lbproc.sourceforge.net

[6] Valle'e, G., Morin, C., et.al.Process
migration based on gobelins distributed
shared memoryin proceedings of the
workshop on Distributed Shared Memory
(DSM’'02) in CCGRID 2002, pg.
325-330, IEEE Computer Society, May
2002.

[7] Private communication

[8] http://www.cassatt.com

Proceedings of the
Linux Symposium

Volume Two

July 20nd-23th, 2005
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.

C. Craig Rossl.inux Symposium
Stephanie Donovaiinux Symposium

Review Committee

Gerrit HuizengalBM

Matthew Wilcox,HP

Dirk Hohndel,Intel

Val Henson Sun Microsystems
Jamal Hadi SalimiZnyx

Matt Domsch Dell
Andrew Hutton Steamballoon, Inc.

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

