
LINUX R© Virtualization on Virtual IronTM VFe

Alex Vasilevsky, David Lively, Steve Ofsthun
Virtual Iron Software, Inc.

{alex,dflively,sofsthun}@virtualiron.com

Abstract

After years of research, the goal of seamlessly
migrating applications from shared memory
multi-processors to a cluster-based computing
environment continues to be a challenge. The
main barrier to adoption of cluster-based com-
puting has been the need to make applications
cluster-aware. In trying to solve this problem
two approaches have emerged. One consists
of the use of middleware tools such as MPI,
Globus and others. These are used to rework
applications to run on a cluster. Another ap-
proach is to form a pseudo single system image
environment by clustering multiple operating
system kernels[Pfister-98]. Examples of these
are Locus, Tandem NonStop Kernel, OpenSSI,
and openMosix.

However, both approaches fall far short of their
mark. Middleware level clustering tools re-
quire applications to be reworked to run a clus-
ter. Due to this, only a handful of highly spe-
cialized applications sometimes referred to as
embarrassingly parallel —have been
made cluster-aware. Of the very few commer-
cial cluster-aware applications, the best known
is OracleR©Database Real Application Cluster-
ing. OS kernel clustering approaches present
other difficulties. These arise from the sheer
complexity of supporting a consistent, single
system image to be seen on every system call
made by every program running on the sys-
tem: applications, tools, etc; to making ex-

isting applications that use SystemV shared-
memory constructs to run transparently, with-
out any modifications, on this pseudo single
system.

In 2003, Virtual Iron Software began to investi-
gate the potential of applying virtual machine
monitors (VMM) to overcome difficulties in
programming and using tightly-coupled clus-
ters of servers. The VMM, pioneered by IBM
in the 1960s, is a software-abstraction layer that
partitions hardware into one or more virtual
machines[Goldberg-74], and shares the under-
lying physical resource among multiple appli-
cations and operating systems.

The result of our efforts is Virtual Iron VFe,
a purpose-built clustered virtual machine mon-
itor technology, which makes it possible to
transparently run any application, without mod-
ification, on a tightly-coupled cluster of com-
puters. The Virtual Iron VFe software elegantly
abstracts the underlying cluster of computers
with a set of Clustered Virtual Machine Moni-
tors (CVMM). Like other virtual machine mon-
itors, the CVMM layer takes complete con-
trol of the underlying hardware and creates vir-
tual machines, which behave like independent
physical machines running their own operating
systems in isolation. In contrast to other virtual
machine monitors, the VFe software transpar-
ently creates a shared memory multi-processor
out of a collection of tightly-coupled servers.

Within this system, each operating system has

• 235 •



236 • LINUX R© Virtualization on Virtual IronTM VFe

the illusion of running on a single multi-
processor machine withN CPUs on top of
M physical servers interconnected by high
throughput, low latency networks.

Using a cluster of VMMs as the abstraction
layer greatly simplifies the utilization and pro-
grammability of distributed resources. We
found that the VFe software can run any ap-
plication without modification. Moreover, the
software supports demanding workloads that
require dynamic scaling, accomplishing this in
a manner that is completely transparent to OSs
and their applications.

In this paper we’ll describe Linux virtualiza-
tion on Virtual Iron VFe, the virtualization ca-
pabilities of the Virtual Iron Clustered VMM
technology, as well as the changes made to the
LINUX kernel to take advantage of this new
virtualization technology.

1 Introduction

The CVMM creates virtual shared memory
multi-processor servers (Virtual Servers) from
networks of tightly-coupled independent phys-
ical servers (Nodes). Each of these virtual
servers presents an architecture (the Virtual
Iron Machine Architecture, or ViMA) that
shares the user mode instruction set with the
underlying hardware architecture, but replaces
various kernel mode mechanisms with calls to
the CVMM, necessitating a port of the guest
operating system (aka guest OS) kernel in-
tended to run on the virtual multi-processor.

The Virtual Iron Machine Architecture ex-
tends existing hardware architectures, virtualiz-
ing access to various low-level processor, mem-
ory and I/O resources. The software incorpo-
rates a type of Hybrid Virtual Machine Mon-
itor [Robin-00], executing non-privileged in-
structions (a subset of the hardware platform’s

Instruction Set Architecture) natively in hard-
ware, but replacing the ISA’s privileged instruc-
tions with a set of (sys)calls that provide the
missing functionality on the virtual server. Be-
cause the virtual server does not support the full
hardware ISA, it’s not a virtual instance of the
underlying hardware architecture, but rather a
virtual instance of the Virtual Iron Machine Ar-
chitecture (aka Virtual Hardware), having the
following crucial properties:

• The virtual hardware acts like a multi-
processor with shared memory.

• Applications can run natively “as is,”
transparently using resources (memory,
CPU and I/O) from all physical servers
comprising the virtual multi-processor as
needed.

• Virtual servers are isolated from one an-
other, even when sharing underlying hard-
ware. At a minimum, this means a soft-
ware failure in one virtual server does
not affect1 the operation of other virtual
servers. We also prevent one virtual server
from seeing the internal state (including
deallocated memory contents) of another.
This property is preserved even in the
presence of a maliciously exploitive (or
randomly corrupted) OS kernel.

Guaranteeing the last two properties si-
multaneously requires a hardware plat-
form with the following key architectural
features[Goldberg-72]:

• At least two modes of operation (aka privi-
lege levels, or rings) (but three is better for
performance reasons)

1Unreasonably, that is. Some performance degrada-
tion can be expected for virtual servers sharing a CPU,
for example. But there should be no way for a misbe-
having virtual server to starve other virtual servers of a
shared resource.



2005 Linux Symposium • 237

• A method for non-privileged programs to
call privileged system routines

• A memory relocation or protection mech-
anism

• Asynchronous interrupts to allow the I/O
system to communicate with the CPU

Like most modern processor architectures, the
Intel IA-32 architecture has all of these fea-
tures. Only the Virtual Iron CVMM is allowed
to run in kernel mode (privilege level 0) on
the real hardware. Virtual server isolation im-
plies the guest OS cannot have uncontrolled ac-
cess to any hardware features (such as the CPU
control registers) nor to certain low-level data
structures (such as the paging directories/tables
and interrupt vectors).

Since the IA-32 has four privilege levels, the
guest OS kernel can run at a level more highly
privileged than user mode (privilege level 3),
though it may not run in kernel mode (privi-
lege level 0, reserved for the CVMM). So the
LINUX kernel runs in supervisor mode (privi-
lege level 1) in order to take advantage of the
IA-32’s memory protection hardware to keep
applications from accessing pages meant only
for the kernel.

2 System Design

In the next few sections we describe the basic
design of our system. First, we mention the
features of the virtualization that our CVMM
provides. Next, we introduce the architecture
of our system and how virtual resources are
mapped to physical resources. And lastly we
describe the LINUX port to this new virtual
machine architecture.

2.1 Virtual Machine Features

The CVMM creates an illusion of a shared
memory virtual multi-processor. Key features
of our virtualization are summarized below:

• The CVMM supports an IntelR© ISA
architecture of modern Intel processors
(such as Intel XEONTM).

• Individual VMMs within the CVMM are
not implemented as a traditional virtual
machine monitor, where a complete pro-
cessor ISA is exposed to the guest op-
erating system; instead a set of data
structures and APIs abstract the underly-
ing physical resources and expose a “vir-
tual processor” architecture with a con-
ceptual ISA to the guest operating sys-
tem. The instruction set used by a guest
OS is similar, but not identical to that
of the underlying hardware. This results
in a greatly improved performance, how-
ever it does require modifications to the
guest operating system. This approach
to processor virtualization is known in
the industry as hybrid virtualization or as
paravirtualization[Whitaker-00].

• The CVMM supports multiple virtual ma-
chines running concurrently in complete
isolation. In the Virtual Iron architecture,
the CVMM provides a distributed hard-
ware sharing layer via the virtual multi-
processor machine. This virtual multi-
processor machine provides access to the
basic I/O, memory and processor abstrac-
tions. A request to access or manipulate
these items is handled via the ViMA APIs
presented by the CVMM.

• Being a clustered system Virtual Iron VFe
providesdynamic resource management,
such as node eviction or addition visible



238 • LINUX R© Virtualization on Virtual IronTM VFe

Figure 1: A Cluster of VMMs supporting a four
processor VM.

to the Virtual Machine as hot-plug proces-
sor(s), memory and device removal or ad-
dition respectively.

We currently support LINUX as the guest OS;
however the underlying architecture of the Vir-
tual Iron VFe is applicable to other operating
systems.

2.2 Architecture

This section outlines the architecture of Vir-
tual Iron VFe systems. We start with differing
views of the system to introduce and reinforce
the basic concepts and building blocks. The
Virtual Iron VFe system is an aggregation of
component systems that provide scalable capa-
bilities as well as unified system management
and reconfiguration. Virtual Iron VFe software
creates a shared memory multi-processor sys-
tem out of component systems which then runs
a single OS image.

2.2.1 Building Blocks

Each system is comprised of elementary build-
ing blocks: processors, memory, intercon-

nect, high-speed I/O and software. The ba-
sic hardware components providing processors
and memory are called nodes. Nodes are likely
to be packages of several components such as
processors, memory, and I/O controllers. All
I/O in the system is performed over intercon-
nect fabric, fibre channel, or networking con-
trollers. All elements of the system present a
shared memory multiprocessor to the end appli-
cations. This means a unified view of memory,
processors and I/O. This level of abstraction is
provided by the CVMM managing the proces-
sors, memory and the interconnect fabric.

2.2.2 Server View

Starting from the top, there is a virtual server
running guest operating system, such as RHAS,
SUSE, etc. The guest operating system
presents the expected multi-threaded, POSIX
server instance running multiple processes and
threads. Each of these threads utilizes resources
such as processor time, memory and I/O. The
virtual server is configured as a shared mem-
ory multi-processor. This results in a number
of processors on which the guest operating sys-
tem may schedule processes and threads. There
is a unified view of devices, memory, file sys-
tems, buffer caches and other operating system
items and abstractions.

2.2.3 System View

The Building Blocks View differs from the pre-
viously discussed Server View in significant
ways. One is a collection of unshared com-
ponents. The other is a more typical, unified,
shared memory multi-processor system. This
needs to be reconciled. The approach that we
use is to have the CVMM that presents Virtual
Processors (VPs) with unified logical memory
to the guest OS, and maps these VPs onto the



2005 Linux Symposium • 239

physical processors and logical memory onto
distributed physical memory. A large portion
of the instruction set is executed by the ma-
chine’s physical processor without CVMM in-
tervention, the resource control and manage-
ment is done via ViMA API calls into the
CVMM. This is sufficient to create a new ma-
chine model/architecture upon which we run
the virtual server. A virtual server is a collec-
tion of virtual processors, memory and virtual
I/O devices. The guest OS runs on the virtual
server and the CVMM manages the mapping of
VPs onto the physical processor set, which can
change as the CVMM modifies the available re-
sources.

Nodes are bound into sets known as Virtual
Computers (VC). Each virtual computer must
contain at least one node. The virtual com-
puters are dynamic in that resources may join
and leave a virtual computer without any sys-
tem interruption. Over a longer time frame,
virtual computers may be created, destroyed
and reconfigured as needed. Each virtual com-
puter may support multiple virtual servers, each
running a single instance of an operating sys-
tem. There are several restrictions on virtual
servers, virtual computers, and nodes. Each vir-
tual server runs on a single virtual computer,
and may not cross virtual computers. An indi-
vidual node is mapped into only a single virtual
computer.

The virtual server guest operating system,
LINUX for instance, is ported to run on a
new virtual hardware architecture (more details
on this further in the document). This new
virtual hardware architecture is presented by
the CVMM. From the operating system point
of view, it is running on a shared memory
multi-processor system. The virtual hardware
still performs the computational jobs that it al-
ways has, including context switching between
threads.

In summary, the guest operating system runs

on a shared memory multi-processor system of
new design. The hardware is managed by the
CVMM that maps physical resources to virtual
resources.

3 Implementation of the CVMM

In this section we describe how the CVMM vir-
tualizes processors, memory and I/O devices.

3.1 Cluster of VMMs (CVMM)

The CVMM is the software that handles all of
the mapping of resources from the physical to
virtual. Each node within a CVMM cluster
runs an instance of the VMM, and these in-
stances form a shared-resource cluster that pro-
vides the services and architecture to support
the virtual computers and appear as a single
shared memory multi-processor system. The
resources managed by the CVMM include:

• Nodes

• Processors

• Memory, local and remote

• I/O (devices, buses, interconnects, etc)

• Interrupts, Exceptions and Traps

• Inter-node communication

Each collection of communicating and co-
operating VMMs forms a virtual computer.
There is a one-to-one mapping of virtual com-
puter to the cluster of VMMs. The CVMM
is re-entrant and responsible for the scheduling
and management of all physical resources. It is
as thin a layer as possible, with a small budget
for the overhead as compared to a bare LINUX
system.



240 • LINUX R© Virtualization on Virtual IronTM VFe

Figure 2: Virtual Iron paravirtualization (Intel
IA-32).

3.2 Virtualizing Processors

Each of the physical processors is directly man-
aged by the CVMM and only by the CVMM.
A physical processor is assigned to a single vir-
tual computer, and may be used for any of the
virtual servers that run on that virtual computer.
As we stated before, the method of virtualizing
the processors that is used in the Virtual Iron
VFe isparavirtualization. The diagram inFig-
ure 2 illustrates our implementation of the par-
avirtualization concept on the IA-32 platform:

In this scheme, the vast majority of the vir-
tual processor’s instructions are executed by the
real processor without any intervention from
the CVMM, and certain privileged instructions
used by the guest OS are rewritten to use the
ViMA APIs. As with other VMMs, we take
advantage of underlying memory protection in
the Intel architecture. The CVMM runs in the
privilege ring-0, the guest OS runs in ring-1 and
the user applications run in ring-3. The CVMM
is the only entity that runs in ring-0 of the pro-
cessor and it is responsible for managing all op-
erations of the processor, such as booting, ini-
tialization, memory, exceptions, and so forth.

Virtual processors are mapped to physical pro-

cessors by the CVMM. There are a number of
rules that are followed in performing this map-
ping:

• Virtual processors are scheduled concur-
rently, and there are never more virtual
processors than physical processors within
a single virtual server.

• The CVMM maintains the mapping of vir-
tual processors to physical processors.

• Physical processors may belong to a vir-
tual computer, but are not required to be
used or be active for any particular virtual
server.

These rules lead to a number of conclusions.
First, any number of physical processors may
be assigned to a virtual computer. However, at
any given moment, the number of active phys-
ical processors is the same as the number of
virtual processors in the current virtual server.
Moreover, the number of active virtual proces-
sors in a virtual server is less than or equal
to the number of physical processors available.
For instance, if a node is removed from a vir-
tual computer, it may be necessary for a vir-
tual server on that virtual computer to reduce
the number of active virtual processors.

3.3 Interrupts, Traps and Exceptions

The CVMM is set-up to handle all inter-
rupts, traps and exceptions. Synchronous traps
and exceptions are mapped directly back into
the running virtual processor. Asynchronous
events, such as interrupts, have additional logic
such that they can be mapped back to the ap-
propriate virtual server and virtual processor.



2005 Linux Symposium • 241

3.4 Virtualizing Memory

Memory, like processors, is a resource that is
shared across a virtual computer and used by
the virtual servers. Shared memory imple-
mented within a distributed system naturally
results in non-uniform memory access times.
The CVMM is responsible for memory man-
agement, initialization, allocation and sharing.
Virtual servers are not allowed direct access to
the page tables. However, these tables need
to be managed to accommodate a number of
goals:

• First, they need to be able to specifically
locate an individual page which may re-
side in any one of the physical nodes

• They must be able to allow several levels
of cost. That is, the virtual server should
be able to manipulate page tables at the
lowest possible cost in most instances to
avoid round-trips through the CVMM.

• Isolation is a requirement. No virtual
server should be able to affect any other
virtual server. If several virtual servers
are running on the same virtual computer,
then any failures, either deliberate or acci-
dental, should not impact the other virtual
servers.

The illusion of a shared memory multi-
processor system is maintained in the Virtual
Iron architecture by the sharing of the memory
resident in all of the nodes in a virtual com-
puter. As various processors need access to
pages of memory, that memory needs to be res-
ident and available for local access. As pro-
cesses, or the kernel, require access to pages,
the CVMM is responsible for insuring the rel-
evant pages are accessible. This may involve
moving pages or differences between the mod-
ified pages.

3.5 Virtualizing I/O Devices

Just as with the other resources, the CVMM
manages all I/O devices. No direct access by
a virtual server is allowed to any I/O device,
control register or interrupt. The ViMA pro-
vides APIs to access the I/O devices. The vir-
tual server uses these APIs to access and con-
trol all I/O devices.

All I/O for the virtual computer is done via
interfaces and mechanisms that can be shared
across all the nodes. This requires a set of
drivers within the CVMM that accommodate
this, as well as a proper abstraction at the level
of a virtual server to access the Fibre Channel
and Ethernet.

With the previous comments in mind, the job
of the CVMM is to present a virtualized I/O in-
terface between the virtual computer physical
I/O devices and the virtual servers. This inter-
face provides for both sharing and isolation be-
tween virtual servers. It follows the same style
and paradigm of the other resources managed
by the CVMM.

4 LINUX Kernel Port

This section describes our port of the LINUX
2.6 kernel to the IA-32 implementation of the
Virtual Iron Machine Architecture. It doesn’t
specify the architecture in detail, but rather de-
scribes our general approach and important pit-
falls and optimizations, many of which can ap-
ply to other architectures real and virtual. First
we’ll look at the essential porting work required
to make the kernel run correctly, then at the
more substantial work to make it run well, and
finally at the (substantial) work required to sup-
port dynamic reconfiguration changes.



242 • LINUX R© Virtualization on Virtual IronTM VFe

4.1 Basic Port

We started with an early 2.6 LINUX kernel, de-
riving our architecture port from the i386 code
base. The current release as of this writing
is based on the 2.6.9 LINUX kernel. As the
burden of maintaining a derived architecture is
substantial, we are naturally interested in co-
operating with various recent efforts to refac-
tor and generalize support for derived (e.g.,
x86_64) and virtualized (e.g., Xen) architec-
tures.

The ViMA interface is mostly implemented via
soft interrupts (like syscalls), though memory-
mapped interfaces are used in some special
cases where performance is crucial. The
data structures used to communicate with the
CVMM (e.g., descriptor tables, page tables) are
close, if not identical, to their IA-32 equiva-
lents.

The basic port required only a single modifica-
tion to common code, to allow architectures to
overridealloc_pgd()and free_pgd(). Though
as we’ll see later, optimizing performance and
adding more dynamic reconfiguration support
required more common code modifications.

The virtual server configuration is always avail-
able to the LINUX kernel. As mentioned ear-
lier, it exposes the topology of the underlying
hardware: a cluster ofnodes, each providing
memory and (optionally) CPUs. The configura-
tion also describes the virtual devices available
to the server. Reading virtual server configu-
ration replaces the usual boot-time BIOS and
ACPI table parsing and PCI bus scanning.

4.2 Memory Management

The following terms are used throughout this
section to describe interactions between the

Page Type Meaning
Physical page A local memory instance

(copy) of a ViMA logical
page. The page contents
are of interest to the own-
ing virtual server.

Physical page
frame

A local memory con-
tainer, denoted by a
specific physical address,
managed by the CVMM.

Logical page A virtual server page,
the contents of which are
managed by the guest op-
erating system.The phys-
ical location of a logical
page is not fixed, nor even
exposed to the guest oper-
ating system.

Logical page
frame

A logical memory con-
tainer, denoted by a spe-
cific logical address, man-
aged by the guest operat-
ing system.

Replicated page A logical page may be
replicated on multiple
nodes as long as the
contents are quaranteed
to be identical. Writing to
a replicated logical page
will invalidate all other
copies of the page.

Table 1: Linux Memory Management in Virtual
Iron VFe

LINUX guest operating system and the Virtual
Iron CVMM.

Isolating a virtual server from the CVMM and
other virtual servers sharing the same hardware
requires that memory management be carefully
controlled by the CVMM. Virtual servers can-
not see or modify each other’s memory under
any circumstances. Even the contents of freed
or “borrowed” physical pages are never visible
to any other virtual server.



2005 Linux Symposium • 243

Accomplishing this isolation requires explicit
mechanisms within the CVMM. For example,
CPU control register cr3 points to the top-level
page directory used by the CPU’s paging unit.
A malicious guest OS kernel could try to point
this to a fake page directory structure map-
ping pages belonging to other virtual servers
into its own virtual address space. To prevent
this,only the CVMM can create and modify the
page directories / tables used by the hardware,
and it must ensure that cr3 is set only to a top-
level page directory that it created for the ap-
propriate virtual server.

On the other hand, the performance of memory
management is also of crucial importance. Tak-
ing a performance hit on every memory access
is not acceptable; thecommon case(in which
the desired logical page is in local memory,
mapped, and accessible)suffers no virtualiza-
tion overhead.

The MMU interface under ViMA 32-bit archi-
tecture is mostly the same as that of the IA-32
in PAE mode, with three-level page tables of
64-bit entries. A few differences exist, mostly
that ours map 32-bit virtual addresses to 40-
bit logical addresses, and that we use software
dirty and access bits since these aren’t set by
the CVMM.

The page tables themselves live in logical
memory, which can be distributed around the
system. To reduce possibly-remote page table
accesses during page faults, the CVMM im-
plements fairly aggressive software TLB. Un-
like the x86 TLB, the CVMM supports Ad-
dress Space Number tags, used to differenti-
ate and allow selective flushing of translations
from different page tables. The CVMM TLB is
naturally kept coherent within a node, so a lazy
flushing scheme is particularly useful since (as
we’ll see later) we try to minimize cross-node
process migration.

4.3 Virtual Address Space

The standard 32-bit LINUX kernel reserves the
last quarter (gigabyte) of virtual addresses for
its own purposes. The bottom three quarters of
virtual addresses makes up the standard process
(user-mode) address space.

Much efficiency is to be gained by having the
CVMM share its virtual address space with the
guest OS. So the LINUX kernel is mapped into
the top of the CVMM’s user-space, somewhat
reducing the virtual address space available to
LINUX users. The amount of virtual address
space required by the CVMM depends on a
variety of factors, including requirements of
drivers for the real hardware underneath. This
overhead becomes negligible on 64-bit archi-
tectures.

4.4 Booting

As discussed earlier, a guest OS kernel runs
at privilege level 1 in the IA-32 ViMA. We
first replaced the privileged instructions in the
arch code by syscalls or other communication
with the CVMM. Kernel execution starts when
the CVMM is told to start a virtual server and
pointed at the kernel. The boot virtual proces-
sor then starts executing the boot code. VPs are
always running in protected mode with paging
enabled, initially using anull page table sig-
nifying direct (logical = virtual) mapping. So
the early boot code is fairly trivial, just estab-
lishing a stack pointer and setting up the ini-
tial kernel page tables before dispatching to C
code. Boot code for secondary CPUs is even
more trivial since there are no page tables to
build.

4.5 Interrupts and Exceptions

The LINUX kernel registers handlers for inter-
rupts with the CVMM via a virtualized Inter-



244 • LINUX R© Virtualization on Virtual IronTM VFe

rupt Descriptor Table. Likewise, the CVMM
provides a virtualized mechanism for masking
and unmasking interrupts. Any information
(e.g., cr2, etc.) necessary for processing an in-
terrupt or exception that is normally readable
only at privilege level 0 is made available to
the handler running at level 1. Interrupts actu-
ally originating in hardware are delivered to the
CVMM, which processes them and routes them
when necessary to the appropriate virtual server
interrupt handlers. Particular care is taken to
provide a “fast path” for exceptions (like page
faults) and interrupts generated and handled lo-
cally.

Particularly when sharing a physical proces-
sor among several virtual servers, interrupts
can arrive when a virtual server is not cur-
rently running. In this case, the interrupt(s) are
pended , possibly coalescing several for the
same device into a single interrupt. Because
the CVMMs handle all actual device communi-
cation, LINUX is not subject to the usual hard-
ware constraints requiring immediate process-
ing of device interrupts, so such coalescing is
not dangerous, provided that the interrupt han-
dlers realize the coalescing can happen and act
accordingly.

4.6 I/O

The ViMA I/O interface is designed to be
flexible and extensible enough to support new
classes of devices as they come along. The
interface is not trying to present something
that looks likereal hardware , but rather
higher-level generic conduits between the guest
OS and the CVMM. That is, the ViMA itself
has no understanding of I/O operation seman-
tics; it merely passes data and control signals
between the guest operating system and the
CVMM. It supports the following general ca-
pabilities:

• device discovery

• device configuration

• initiation of (typically asynchronous) I/O
operations

• completion of asynchronous I/O opera-
tions

Because I/O performance is extremely impor-
tant, data is presented in large chunks to mit-
igate the overhead of going through an extra
layer. The only currently supported I/O devices
are Console (VCON), Ethernet (VNIC), and Fi-
bre Channel storage (VHBA). We have imple-
mented thebottom layer of three new de-
vice drivers to talk to the ViMA, while the in-
terface from above remains the same for drivers
in the same class. Sometimes the interface
from above is used directly by applications, and
sometimes it is used by higher-level drivers. In
either case, the upper levels work “as is.”

In almost all cases, completion interrupts are
delivered on the CPU that initiated the opera-
tion. But since CPUs (and whole nodes) may
be dynamically removed, LINUX can steer out-
standing completion interrupts elsewhere when
necessary.

4.7 Process and Thread Scheduling

The CVMM runs one task per virtual proces-
sor, corresponding to its main thread of control.
The LINUX kernel further divides these tasks
to run LINUX processes and threads, starting
with the vanilla SMP scheduler. This approach
is more like the one taken by CoVirt[King-03]
and VMWare Workstation[Sugerman-01], as
opposed to having the underlying CVMM
schedule individual LINUX processes as done
in L4[Liedtke-95] . This is consistent with our



2005 Linux Symposium • 245

general approach of exposing as much informa-
tion and control as possible (without compro-
mising virtual server isolation) to the guest OS,
which we assume can make better decisions be-
cause it knows the high-level context. So, other
than porting the architecture-specific context-
switching code, no modifications were neces-
sary to use the LINUX scheduler.

4.8 Timekeeping

Timekeeping is somewhat tricky on such a
loosely coupled system. Because thejiffies
variable is used all over the place, updating
the global value on every clock interrupt gener-
ates prohibitively expensive cross-node mem-
ory traffic. On the other hand, LINUX ex-
pects jiffies to progress uniformly. Normally
jiffies is aliased tojiffies_32, the lower 32 bits
of the full 64-bit jiffies_64counter. Through
some linker magic, we makejiffies_32 point
into a special per-node page (a page whose log-
ical address maps to a different physical page
on each node), so each node maintains its own
jiffies_32. The globaljiffies_64is still updated
every tick, which is no longer a problem since
most readers are looking atjiffies_32. The
local jiffies_32values are adjusted (incremen-
tally, without going backwards) periodically to
keep them in sync with the global value.

4.9 Crucial Optimizations

The work described in the previous sections is
adequate to boot and run LINUX, but the re-
sulting performance is hardly adequate for all
but the most contrived benchmarks. The tough-
est challenges lie in minimizing remote mem-
ory access (and communication in general).

Because the design space of potentially useful
optimizations is huge, we strive to focus our op-
timization efforts by guiding them with perfor-
mance data. One of the advantages of a virtual

machine is ease of instrumentation. To this end,
our CVMM has a large amount of (optional)
code devoted to gathering and reporting per-
formance data, and in particular for gathering
information about cross-node memory activity.
Almost all of the optimizations described here
were driven by observations from this perfor-
mance data gathered while running our initial
target applications.

4.9.1 Logical Frame Management and
NUMA

When LINUX runs on non-virtualized hard-
ware, page frames are identified by physical
address, but when it runs on the ViMA, page
frames are described bylogical address.
Though logical page frames are analogous to
physical page frames, logical page frames have
somewhat different properties:

• Logical page frames are dynamically
mapped to physical page frames by the
CVMM in response to page faults gener-
ated while the guest OS runs

• Logical page frames consume physical
page frames only when mapped and ref-
erenced by the guest OS.

• The logical page frames reserved by the
CVMM are independent of the physical
page frames reserved for PC-compatible
hardware and BIOS.

Suppose we have a system consisting of four
dual-processor SMP nodes. Such a system
can be viewed either as a “flat” eight-processor
SMP machine or (viaCONFIG_NUMA) as
a two-level hierarchy of four two-processor
nodes (i.e., the same as the underlying hard-
ware). While the former view works correctly,



246 • LINUX R© Virtualization on Virtual IronTM VFe

hiding the real topology has serious perfor-
mance consequences. The NUMA kernel as-
sumes each node manages its own range of
physical pages. Though pages can be used any-
where in the system, the NUMA kernel tries to
avoid frequent accesses to remote data.

In some sense, the ViMA can be treated is a
virtual cache coherent NUMA (ccNUMA) ma-
chine, in that access to memory is certainly
non-uniform.

By artificially associating contiguous logical
page ranges with nodes, we can make our
virtual server look like a ccNUMA machine.
We realized much better performance by treat-
ing the virtual machine as a ccNUMA ma-
chine reflecting the underlying physical hard-
ware. In particular the distribution of mem-
ory into more zones alleviates contention for
the zone lock and lru_lock. Furthermore, the
optimizations that benefit most ccNUMA ma-
chines benefit ours. And the converse is true
as well. We’re currently cooperating with other
NUMA LINUX developers on some new op-
timizations that should benefit all large cc-
NUMA machines.

For various reasons, the most important be-
ing some limitations of memory removal sup-
port, we currently have a fictitious CPU-less
node 0 that manages all of low memory (the
DMA and NORMAL zones). So HIGHMEM
is divvied up between the actual nodes in pro-
portion to their relative logical memory size.

4.9.2 Page Cache Replication

To avoid the sharing of page metadata by nodes
using replicas of read-only page cache pages,
we have implemented a NUMA optimization
to replicate such pages on-demand from node-
local memory. This improves benchmarks that
do a lot of exec’ing substantially.

4.9.3 Node-Aware Batch Page Updates

Both fork() andexit()update page metadata for
large numbers of pages. As currently coded,
they update the metadata in the order the pages
are walked. We see measurable improvements
by splitting this into multiple passes, each up-
dating the metadata only for pages on a specific
node.

4.9.4 Spinlock Implementation

The i386 spinlock implementation also turned
out to be problematic, as we expected. The
atomic operation used to try to acquire a spin-
lock requires write access to the page. This
works fine if the lock isn’t under contention,
particularly if the page is local. But if some-
one else is also vying for the lock, spinning
as fast as possible trying to access remote data
and causing poor use of resources. We con-
tinue to experiment with different spinlock im-
plementations (which often change in response
to changes in the memory access characteris-
tics of the underlying CVMM). Currently we
always try to get the lock in the usual way first.
If that fails, we fall into our ownspinlock_
wait() that does a combination of “remote”
reads and yielding to the CVMM before trying
the atomic operation again. This avoids over-
loading the CVMM to the point of restricting
useful work from being done.

4.9.5 Cross-Node Scheduling

The multi-level scheduling domains intro-
duced in 2.6 LINUX kernel match very nicely
with a hierarchical system like Virtual Iron
VFe. However, we found that the cross-node
scheduling decisions in an environment like
this are based on much different factors than the
schedulers for more tightly-coupled domains.



2005 Linux Symposium • 247

Moreover, because cross-node migration of a
running program is relatively expensive, we
want to keep such migrations to a minimum. So
the cross-node scheduler can runmuchless of-
ten than the other domain schedulers, so it be-
comes permissible to take a little longer mak-
ing the scheduling decision and take more fac-
tors into account. In particular, task and node
memory usage are crucial—much more impor-
tant than CPU load. So we have implemented a
different algorithm for the cross-node schedul-
ing domain.

The cross-node scheduling algorithm repre-
sents node load (and a task’s contribution
to it) with a 3-d vector whose compo-
nents represent CPU, memory, and I/O us-
age. Loads are compared by taking the vector
norm[Bubendorfer-96]. While we’re still ex-
perimenting heavily with this scheduler, a few
conclusions are clear. First, memory matters
far more than CPU or I/O loads in a system like
ours. Hence we weight the memory component
of the load vector more heavily than the other
two. It’s also important to be smart about how
tasks share memory.

Scheduling and logical memory management is
tightly intertwined. Using the default NUMA
memory allocation, processes try to get mem-
ory from the node on which they’re running
when they allocate. We’d prefer that processes
use such local pages so they don’t fight with
other processes or the node’s swap daemon
when memory pressure rises. This implies that
we would rather avoid moving a process af-
ter it allocates its memory. Redistributing a
process to another node atexec()time makes
a lot of sense, since the process will have its
smallest footprint at that point. Processes often
share data with other processes in the same pro-
cess group. So we’ve modifiedsched_exec()to
consider migrating an exec’ing process to an-
other node only if it’s a process group leader
(and with even more incentive—via a lower im-

balance threshold—for session group leaders).
Furthermore, whensched_exec()does consider
migrating to another node, it looks at the 3-
d load vectors described earlier. This policy
has been particularly good for distributing the
memory load around the nodes.

4.10 Dynamic Reconfiguration Support
(Hotplug Everything)

When resources (CPU or memory) are added or
removed from a the cluster, the CVMM noti-
fies the guest OS via a special “message” inter-
rupt also used for a few other messages (“shut-
down,” “reboot,” etc.). LINUX processes the
interrupt by waking a message handler thread,
which then reads the new virtual server config-
uration and starts taking the steps necessary to
realize it. Configuration changes occur in two
phases. During the first phase, all resources
being removed are going away. LINUX ac-
knowledges the change when it has reduced
its resource usage accordingly. The resources
are, of course, not removed until LINUX ac-
knowledges. During the second phase, all re-
sources being added are added (this time be-
fore LINUX acknowledges), so LINUX simply
adds the new resources and acknowledges that
phase. This implies certain constraints on con-
figuration changes. For example, there must be
at least one VP shared between the old and new
configurations.

4.10.1 CPU and Device Hotplug

Adding and removing CPUs and devices re-
quired some porting to our methods of start-
ing and stopping CPUs and devices, but for the
most part this is much easier with idealized vir-
tual hardware than with the real thing.



248 • LINUX R© Virtualization on Virtual IronTM VFe

4.10.2 Node Hotplug

Adding and removing whole nodes was a little
more problematic as most iterations over nodes
in the system assumes online nodes are con-
tiguous going from 0 tonumnodes-1. Node re-
moval can leave a “hole” which invalidates this
assumption. The CPUs associated with a node
are made “physically present” or absent as the
node is added or removed.

4.10.3 Memory Hotplug

Memory also comes with a node (though
nodes’ logical memory can be increased or de-
creased without adding or removing nodes),
and must be made hotpluggable. Unfortunately
our efforts in this area proceeded independently
for quite a while until we encountered the
memory hotplug effort being pursued by other
members of LINUX development community.
We’ve decided to combine our efforts and plan
on integrating with the new code once we move
forward from 2.6.9 code base. Adding memory
isn’t terribly hard, though some more synchro-
nization is needed. At the global level, a mem-
ory hotplug semaphore, analogous to the CPU
hotplug semaphore, was introduced. Careful
ordering of the updates to the zones allows
most of the existing references to zone memory
info to continue to work without locking.

Removing memory is much more difficult. Our
existing approach removes only high memory,
and does so by harnessing the swap daemon. A
new page bit,PG_capture, is introduced (name
borrowed from the other memory hotplug ef-
fort) to mark pages that are destined for re-
moval. Such pages are swapped out more ag-
gressively so that they may be reclaimed as
soon as possible. Freed pages marked for cap-
ture are taken off the free lists (and out of the
per-cpu pagesets), zeroed (so the CVMM can

forget them), then counted as removed. During
memory removal, the swap daemons on nodes
losing memory are woken often to attempt to
reclaim pages marked for capture. In addi-
tion, we try reclaiming targeted pages from the
shrinking zones’ active lists.

This approach works well on a mostly idle (or
at least suspended) machine, but has a num-
ber of weaknesses, particularly when the mem-
ory in question is being actively used. Direct
page migration (bypassing swap) would be an
obvious performance improvement. There are
pages that can’t be removed for various rea-
sons. For example, pages locked into memory
via mlock()can’t be written to disk for security
reasons.

But because our logical pages aren’t actually
tied to nodes (but just artificially assigned to
them for management purposes), we can tol-
erate a substantial number of “unremovable”
pages. A node that has been removed, but still
has some “unremovable” pages is known as a
“zombie” node. No new pages are allocated
from the node, but existing pages and zone data
are still valid. We’ll continue to try and re-
claim the outstanding pages via the node’s swap
daemon (now running on a different node, of
course). If another node is added in its place
before all pages are removed, the new node can
subsume the “unremovable” pages and it be-
comes a normal page again. In addition, it is
also possible to exchange existing free pages
for “unremovable” pages to reclaim space for
replicas. While this scheme is currently far
from perfect or universal, it works predictably
in enough circumstances to be useful.

5 Conclusion

In this paper we have presented a Clustered
Virtual Machine Monitor that virtualizes a set



2005 Linux Symposium • 249

of distributed resources into a shared mem-
ory multi-processor machine. We have ported
LINUX Operating System onto this platform
and it has shown to be an excellent platform
for deploying a wide variety of general purpose
applications.

6 Acknoweledgement

We would like to thank all the members of the
Virtual Iron Software team without whom Vir-
tual Iron VFe and this paper would not be pos-
sible. Their contribution is gratefully acknowl-
edged.

Virtual Iron and Virtual Iron VFe are trademarks of
Virtual Iron Software, Inc. LINUXR© is a registered
trademark of Linus Torvalds. XEON is a trademark
of Intel Corp. All other other marks and names men-
tioned in this paper may be trademarks of their re-
spective companies.

References

[Pfister-98] Gregory F. Pfister.In Search of
Clusters, Second Edition, Prentice Hall
PTR, pp. 358–369, 1998.

[Goldberg-74] R.P. Goldberg. Survey of Vir-
tual Machines Research.Computer, pp.
34–45, June 1974.

[Robin-00] J.S. Robin and C.E. Irvine. Analy-
sis of the Intel Pentium’s Ability to Sup-
port a Secure Virtual Machine Monitor. In
Proceedings of the 9th USENIX Security
Symposium, pp. 3–4, August 20, 2000.

[Goldberg-72] R.P. Goldberg.Architectural
Principles for Virtual Computer Systems.
Ph.D. Thesis, Harvard University, Cam-
bridge, MA, 1972.

[Whitaker-00] A. Whitaker, M. Shaw, and S.
Gribble. Scale and Performance in the De-
nali Isolation Kernel. InACM SIGOPS
Operating System Rev., vol. 36, no SI, pp.
195–209, Winter 2000.

[King-03] S. King, G. Dunlap, and P. Chen
Operating System Support for Virtual
Machines. InProceedings of the 2003
USENIX Technical Conference, 2003.

[Sugerman-01] J. Sugerman, G. Venkitacha-
lam, and B. Lim. Virtualizing I/O Devices
on VMWare Workstation’s Hosted Vir-
tual Machine Monitor. InProceedings of
the 2001 USENIX Technical Conference,
June, 2001.

[Liedtke-95] Dr. Jochen Liedtke. On Micro-
Kernel Construction. InProceedings of
the 15th ACM Symposium on Operating
Systems Principles, December, 1995.

[Bubendorfer-96] K.P. Bubendorfer.Resource
Based Policies for Load Distribution.
Masters Thesis, Victoria University of
Wellington, Wellington, New Zealand,
1996.



250 • LINUX R© Virtualization on Virtual IronTM VFe



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


