Glen or Glenda

Empowering Users and Applications with Private Namespaces

Eric Van Hensbergen
IBM Research

bergevan@us.ibm.com

Abstract in a network, and reference resources within
a file system. Within each of these cate-
ories names are evaluated in a specific con-

Private nam were first intr in .
ate name spaces were first introduced text. Program variables have scope, database

LINUX during the 2.5 kernel series. Their use, s
2 ._‘Indexes are evaluated within tables, networks
has been limited due to name space manipu-) o :
) : . . .~ ‘machine names are valid within a particular
lation being considered a privileged operation. . . . :
- o . domain, and file names provide a mapping to
Giving users and applications the ability to cre- ; T :
. ... underlying resources within a particulaame
ate private name spaces as well as the ability t0

mount and bind resources is the key to unlock>Pac® This paper is primarily concerned with

ing the full potential of this technology. There the evaluation and manipulation of names and

: name space contexts for file systems under the
are serious performance, security and stabilit

issues involved with user-controlled dynamicxf‘lNUX operating system.

private name spaces inNuUX. This paper pro- Fjle systems evolved from flat mappings of
poses mechanisms and policies for maintainpgmes to multi-level mappings where each cat-
ing system integrity while unlocking the power gjoq (or directory) provided a context for name
of dynamic name spaces for normal users. ltesolution. This design was carried further
discusses relevant potential applications of thi%y MULTICS[1] with deep hierarchies of di-
technology including its use WithlIEESYSTEM rectories including the concept of links be-
IN USERSPACE24], VOFS[8] (the LINUX port tween directories within the hierarchy[5]. Den-
of the RLAN 9 resource sharing protocol) and pis Ritchie, Rudd Canaday and Ken Thomp-
PLAN 9 FROM USER SPACE[4] (the RLAN 9 gon puilt the first UNIX file system based
application suite including user space synthetign MULTICS, but with an emphasis on
file servers ported to UNIX variants). simplicity[22]. All these file systems had a sin-
gle, global name space.

In the late 1980s, Thompson joined with Rob
Pike and others in designing the AN 9 oper-
ating system. Their intent was to explore po-
Names are used in all aspects of computetential solutions to some of the shortcomings
science[21]. For example, they are used to refef UNIX in the face of the widespread use of
erence variables in programing languages, inhigh-speed networks[19]. It was designed from
dex elements in a database, identify machine8rst principles as a seamless distributed system

1 What's in a name?

o 221 o

222 e Glen or Glenda

with integrated secure network resource shar2 Background: Plan 9
ing.

The configuration of an environment to useln PLAN 9, all system resources and interfaces
remote application components or services irre represented as files. UNIX pioneered the
place of their local equivalent is achieved with aconcept of treating devices as files, providing a
few simple command line instructions. For thesimple, clear interface to system hardware. In
most part, application implementations operatdhe 8th edition, this methodology was taken fur-
independent of the location of their actual re-ther through the introduction of the /proc syn-
sources. PAN 9 achieves these goals throughthetic file system to manage user processes[10].
a simple well-defined interface to services, aSynthetic file systems are comprised of ele-
simple protocol for accessing both local and rements with no physical storage, that is to say
mote resources, and through dynamic, stackthe files represented are not present as files on
able, per-process private name spaces whichny disk. Instead, operations on the file com-

can be manipulated by any user or applicationmunicate directly with the sub-system or ap-
plication providing the service. INUX con-

On the other hand, theikiux file system name tains multiple examples of synthetic file sys-
space has traditionally been a global flat namgems representing device®HvFS), process

space much like the original UNIX operat- control (PROCF9, and interfaces to system ser-
ing system. In November of 2000, Alexanderyices and data structuresysrs.

Viro proposed implementinglAN 9 style per-
process name space bindings[28], and in lat€LAN 9 took the file system metaphor fur-
February 2001 released a patch[2] against thther, using file operations as the simple, well-
2.4 kernel. This code was later adopted intadefined interface to all system and application
the mainline kernel in 2.5. This support, whichservices. The design was based on the knowl-
is described in more detail in section 4, estabedge that any programmer knows how to inter-
lished an infrastructure for private name spacegct with files. Interfaces to all kernel subsys-
but restricted the creation and manipulation otems from the networking stack to the graphics
name spaces as privileged. frame buffer are represented within synthetic
file systems. User-space applications and ser-
This paper presents the case for making namgices export their own synthetic file systems in
space operations available to common usergych the same way as the kernel interfaces.
and applications while extending the existindcommon services such as domain name ser-
LINUX dynamic name space support to havejice (DNS), authentication databases, and win-
the power and flexibility of PAN 9 name gow management are all provided as file sys-
spaces. Section 2 describes the design, implgams. End-user applications such as editors and
mentation and advantages of theAR 9 dis- g_majl systems export file system interfaces as a
tributed system. Example applications of thisyeans for data exchange and control. The ben-
technology are discussed in Section 3. The eXafits and details of this approach are covered in
isting LINUX support is described in more de- great detail in the existinglAN 9 papers[18]

tail in Section 4. Perceived barriers and soluzng will be covered to a lesser extent by appli-
tions to extended INUX name space SUPPOrt cation examples in section 3.

are covered in Section 5. Section 6 overviews

related work and recent proposals as alterna@P[15] represents the abstract interface used to
tives to our approach and Section 7 summarizeaccess resources undaraR 9. It is somewhat
our conclusions and recommendations. analogous to the VFS layer inilux[11].

2005 Linux Symposium e 223

In PLAN 9, the same protocol operations areor from a remote server. Bind commands al-
used to access both local and remote resourcesw reorganization of the existing name space,
making the transition from local resources toallowing certain services to be bound to well-
cluster resources to grid resources completelknown locations. Bind operations can sub-
transparent from an implementation standpointstitute one resource for another, for example,
Authentication is built into the protocol and binding a remote device over a local one. Bind-
was extended in itsNFERNJ20] derivative ing can also be used to create stackable layers
Styx[14] to include various forms of encryption by interposing one interface over another. Such
and digesting. interposer interfaces are particularly useful for

o debugging and statistics gathering.
It is important to understand that all 9P opera-

tions can be associated with different active seThe default mount and bind behavior is to re-
mantics in synthetic file systems. Traversal of gplace the mount-point. HoweverLEN 9 also
directory hierarchy can allocate resources or sedllows multiple directories to be stacked at a
locks. Reading or writing data to a file interfacesingle point in the name space, creatingnon

can initiate actions on the server. The dynamiairectory. Within such a directory, each compo-
nature of these semantics makes caching dament is searched to resolve name lookups. Flags
gerous and in-order synchronous execution ofo the mount and bind operations determine the
file system operations a must. position of a particular component in the stack.

. . . A special flag determines whether or not file
The 9P protocol itself requires only a reliable, oreation is allowed within a particular compo-
in-order transport mechanism to function. Itisont

commonly used on top of TCP/IP[16], but has

also been used over RUDP[13], PPP[23], anBy default, processes inherit an initial name

over raw reliable mechanisms such as the PCg},pace from their parent, but changes made to

bus, serial port connections, and shared menthe child’s name space are not reflected in the

ory. The IL protocol was designed specifically parent’s. This allows each process to have a

to provide 9P with a reliable, in order transportcontext-specific name space. TheaR 9 fork

on top of an IP stack without the overhead ofsystem call may be called with several flags al-

TCP[17]. lowing for the creation of processes with shared
name spaces, blank name spaces, and restricted

The final key design point of ;AN 9 is the name spaces where no new file systems can be

organization of all local and remote resources, J inted. PAN 9 also provides library func-

into a dynamic private name space. IVI""r"pmat'tions (and associated system calls) for creating

ing an element's Iogation wit.hin a Name Space, naw name space without creating a process
can be used to configure which services to US€,\d for constructing a name space based on a

interpose stackable layers onto service intergq yoscrining mount sources, destinations, and
faces, and create restricted "sandbox" environ-

options.
ments. Under PAN 9 and NFERNO, the name
space of each process is unique and can be ma-
nipulated by ordinary users through mount and
bind system callls. 3 Applications

Mount operations allow a client to attach new
interfaces and resources which can be provide@here are many areas where the pervasive use
by the operating system, a synthetic file serverpf private dynamic name spaces undenR 9

224 e Glen or Glenda

can be applied in similar ways underNuUx. vices. Daemons exporting network services
Many of these are detailed in the foundationalkcan be locked into a very restrictive name
PLAN 9 papers [19, 18] as well as the AN space, thus helping to protect system integrity
9 manual pages[15]. We will step through aeven if the daemon itself becomes compro-
subset of these applications and provide someised. Similarly, users accessing data from
additional potential applications in theNux other domains over mounted file systems don't
environment. run as much risk of other users gaining access
_ if they mount the resources in a private name
Under RAN 9, one of the more straightfor- gn406 Users can craft custom sandboxes for

ward uses of dynamic name space is t0 bindynsted applications to help protect against
resources into well-known locations. For ex- potential malicious software and applets.

ample, instead of using a PATH environment

variable, various executables are bound into As mentioned earlier, AN 9 combines dy-
single/bin union directory. PAN 9 clusters
use a single file server providing resources fo
multiple architectures. Typical startup profiles
bind the right set of binaries to tlkin direc-
tory. For example, if you logged in on an x86
host, the binaries froni386/bin would be
bound to/bin , while on PPC/power/bin
would be bound over bin. Then the user’s pri-

namic name space with a remote resource shar-
ing protocol to enable transparent distributed
resource utilization. Remote resources are
bound into the local name space as appropri-
ate and applications run completely oblivious
to what resources they are actually using. A
straightforward example of this is mounting

) : _ a networked stereo component’s audio device
vate binary directory is bound on top of the sys-t,;m across the room instead of using your

tem binaries. This has a side benefit of searchy,qstation’s sound card before starting an au-
ing the various directories in a single 100kup i, jukebox application. A more practical ex-

system call versus individually walking to ele- ample is mounting the external network proto-
ments in the path list from the shell. col stack of a firewall device before running a
Another use of stackable binds inLan 9 Web browser client. Since the external network

is within a development environment. You protocol stack is only mounted for the particu-

can bind directories (or even individual files) l&r browser client session, other services run-
with your changes over read-only versions of "9 in separate sessions with separate name
larger hierarchy. You can even recursively bingSPaces (and protocol stacks) are safe from ex-

a blank hierarchy over the read-only hierarchyf€nal access. ThetRN 9 paradigm of mount-

to deposit compiled object files and executaiNd any distributed resource and transparently

bles. The RPAN 9 development environment replacing local resources (or providing a net-

at Bell Labs has a single source tree which peowork resource when a local resource isn’t avail-
able) provides an interesting model for imple-

ple bind their working directories and private _ _ S _
object/executable trees over. Once they are saf€Nnting grid and utility based computing.

isfied with their changes, they can push them o
from the local versions to the core directories Another example of this is thetRN 9 cpu(1)

Using similar techniques developers can als¢mmand which is used to connect from a ter-
keep distinct groups of changes separated witH1inal to a cluster compute node. Note that
out having to maintain copies of the entire tree {NiS command doesn’t operate like ssh or telnet.

The cpu(l) command will export to the server
Crafting custom name spaces is also a goothe current name space of the process from

way to provide tighter security controls for ser- which it was executed on the client. Server side

2005 Linux Symposium e 225

scripts take care of binding the correct archi-<4 Linux Name Spaces
tectural binaries for the cpu server over those

of the client terminal. Interactive I/O between . .
the cpu and the client is actually performed byThe private name space support added in the
2.5 kernel revolved around the addition of a

the cpu server mounting the client’s keyboard’CLONE_NEWNSag to the LNUX clone(2)

mouse, and display devices into the session’s stem call. The clone(2) system call allows

) . S
rivate name space and binding those resourc %/ . .
privat b ding $Re creation of new threads which share a cer-
over its own. Custom profiles can be used tq_. .
- tain amount of context with the parent process.
limit the resources exported to the cpu server. :)
: ._The flags to clone specify the degree of sharing
or to add resources such as local audio devices, . , . .) -
Which is desired and include the ability to share
or protocol stacks. It represents a more ele;

. file descriptor tables, signal handlers, memory
gant approach to the problems of grid, cluster :
T . . 5pace, and file system name space. The current
and utility-based computing providing a mech-

) : . default behavior is for processes and threads
anism for the seamless integration and orga:-

nization of local resources with those spreaaIo start with a shared copy of the global name

space.
across the network. P

When theCLONE_NEWN#g is specified, the

o _ _child thread is started with a copy of the name
Similar approaches can be provided 1o virtu-space hierarchy. Within this thread context,
alization and para-virtualization environments.mqgifications to either the parent or child’s
Atthe moment, the LnuX kernelis plagued by name space are not reflected in the other. In
aplethora of “virtual” device drivers supporting other words, when a new name space is re-
ments. Separate gateway devices are support@bunted by the child process will not be vis-
for Xen[7], VMware[30], IBM Hypervisors[3], iple in the parent's name space. The converse
User Moder Linux[9], and others. Additionally, is a|so true. In this way, a thread’s name space
each of these virtualization engines requireperations can be isolated from the rest of the
separate gateways for each class of device. Thg/stem. The use of tHeLONE_ NEWN®g is
PLAN 9 paradigm provides a unified, simple, yrotected by th€AP_SYS_ADMINapability,

and secure method for supporting these varimaking its use available only to privileged users
ous virtual architectures and their device, fileg,ch as root.

system, and communication needs. Dynamic

private name spaces enable a natural envirorz-INUX name spaces are currently manipu-
ment for sub-dividing and organizing resourcedated by two system calls:mount(2) and
for partitioned environments. Application file umount(2) . Themount(2) system call at-
servers or generic plug-in kernel modules protaches a file system to a mount-point within
vide a variety of services including copy-on- the current name space and tinaount(2)
write file systems, copy-on-write devices, mul-system call detaches it. More recently in the
tiplexed network connections, and command.4 kernel series, theS_BINDflag was added
and control structures. IBM Research is curto allow an existing file or directory subtree
rently investigating using/ 9rs together with to be visible at other mount-points in the cur-
private name spaces and application synthetipent name space. Both system calls are only
file servers to provide just such an approach fowalid for users withCAP_SYS_ ADMINcapa-
partitioned scale-out clusters executing high-ility, and so are predominately used only by
performance computing applications. root. The table of mount points in a thread’s

226 e Glen or Glenda

current name space can be viewed by lookingpowerful computing environment. Addition-
at the/proc/xxx/mounts file. ally, providing a more flexible, yet consistent
set of kernel enforced policies would be far su-

Users may be granted the ability to mountyerior 1o the wide range of semantics currently
and unmount file systems through the mount(1}ntorced by file system specific set-uid mount
application and certain flags in the fStab(5)appIications.

configuration file. This support requires that
the mount application be configured with set-
uid privileges and that the exact mount source
and destination be specified in the fstab(5)5 Barriers and Solutions
Certain network file systems (such a8IBFS
CIFs, and VIFs) which have a more user-
centric paradigm circumvent this by having PLAN 9 is not LINUX, and LINUX is not RLAN
their own set-uid mount utilities: smbmnt(8), 9. There are significant security model and file
cifs.mount(8), and 9fs(1). More recently, theresystem paradigm differences between the two
has been increased interest in user-space figystems. Concerns related to these differences
servers such asIEESYSTEM IN USERSPACE have been broken down into four major cate-
(FUSE)[24] with its own set-uid mount appli- gories: concerns with user name space manipu-
cation fusermount(8). lation, problems with users being able to mount

. . . . arbitrary file systems, potential problems with
The proliferation of these various set-uid ap-;,ser file systems, and problems with allowing

mechanisms indicates the need to re-evaluate

the existing restrictions so that a more practi-

cal set of policies can be put in place within5.1 Binding Concerns

the kernel. Users should be able to mount file

systems when and where appropriate. Private

name spaces seem to be a natural fit for prelhe mount(l) command specified with the
venting global name space pollution with in- -bind option, hereafter referred to as a bind
dividual user mount and bind activities. Theyoperation, is an incredibly useful tool even in
also provide a certain degree of isolation froma shared global name space. When combined
user mounted synthetic file systems, providingVith the notion of private name spaces, it allows
an additional degree of protection to systemiiSers and applications to craft custom environ-
demons and Other users Who m|ght Otherwisénents in Wh|Ch to WOI‘k. However, the ab'“ty to

unwittingly access a malicious user-level file dynamically bind directories and/or files over
server. one another creates several security concerns

that revolve around the ability to transparently
Private name space support inNUX is un- replace system configuration and common data
der utilized primarily due to the classification with potentially compromised versions.
of name space operations as privileged. It is
further crippled by the lack of stackable namePLAN 9 places no restrictions on bind op-
space semantics and application file serversrations. Users are free to bind over any
Unlocking applications and environments suchsystem directory or file regardless of access
as those described in Section 3 by removingermissions—binding writable layers over oth-
some of the restrictions enforced by thewux erwise read-only directories can be one of the
kernel would create a much more elegant ananore useful operations. HoweverLAN 9’s

2005 Linux Symposium e 227

authentication and system configuration mechextend this protection to user name space ma-
anisms are constructed in such a way as taipulation is to return a permissions error when
not rely on accessing files when running undel normal user attempts to bind over a directory
user contexts. In other words, authenticatiorin which the sticky bit is set.
and configuration are system services which are
started at boot (or reside on different servers)While limiting binds to sticky-bit directories is
and so aren'’t affected by user manipulations ofeasonable enough, it is an unnecessary restric-
their private name spaces. tion. The use of private name spaces solves sev-
eral security concerns with user-modifications
Under LINUX, system services are constructeddo name space, and does so without overly
differently and there is still heavy reliance onlimiting the user’s ability to mount over these
well-known files which are accessed throughshared spaces. Another benefit of requiring
out user sessions. Examples include suchiser binds to be within a private name space
sensitive files agetc/passwd and/etc/ is that it prevents such binds from polluting the
fstab . global system name space.

Similar concerns apply to certain system direc-
tories which multiple users may have write ac-5.2 Mounting Concerns
cess to, such asmp or/usritmp . If users
are able to bind over these public directories
under the global name space, they could potenAnother set of concerns has to do with allowing
tially compromise the data of another user whausers to mount new file systems into a name
inadvertently used a bourftmp instead of the space. As discussed previously, this is some-
system/tmp . thing currently accomplished through set-uid
mount applications which check the user’s per-
These problems can be addressed with a sinmissions versus particular policies. A more
ple policy of only allowing a user to bind over global policy would give administrators more
a directory they have explicit write access to.consistent control over users and help eliminate
This solves the problem of system configura-the potential problems caused by the use of set-
tion files, but doesn’t cover globally writable uid applications
spaces such aasr/tmp . A simple solu-
tion to protecting such shared spaces is to onl¥Dne of the primary problems with giving users
allow user initiated binds within private name the ability to mount arbitrary file systems is
spaces. A slightly more complicated form of the concern that they may mount a file system
protection is based on the assumption that suclith set-uid scripts allowing them to gain ac-
public spaces have thaicky bitset in the di- cess to privileged accounts (i.e., root). It is
rectory permissions. relatively trivial for a user to construct a file
system image, floppy, or CD-ROM on a per-
When used within directory permissions, thesonal machine with set-uid shells. If they were
sticky bit specifies that files or subdirectoriesallowed to mount these on an otherwise se-
can only be renamed or deleted by their origi-cure system, they could instantly compromise
nal owner, the owner of the directory, or a priv-it. The existing mount applications circum-
ileged process. This prevents users from deletvent such a vulnerability by providing Ro-
ing or otherwise interfering with each other’s suiD flag which disables interpretation of set-
files in shared public spaces. A simple policy touid and set-gid permission flags. A similar

228 e Glen or Glenda

mechanism enforced as the default for all user5.3 User File System Concerns
mounts would provide a certain level of protec-

tion against such an attack. . L . -
g A driving motivation behind providing users

Another possible attack vector would be the im-the ability to mount and bind file systems is the
age being mounted. Most file systems are writincrease in popularity of user-space file servers.
ten on the assumption that the backing store i$hese predominantly synthetic file systems are
somewhat secure and reputablenlux kernel enabled through a number of different pack-
community members have expressed concerages includingy9rs and more predominantly
that disk images could be constructed specifiFUSE. These packages export VFS interfaces
cally to crash or corrupt certain file systems, sor equivalent APIs to user space, allowing ap-
as to disable or disrupt system activity. This isplications to act as file servers. Practical uses
particularly difficult to protect against, but not for such file servers include the exporting of
all file systems are vulnerable to such attacksarchive file contents as mountable name spaces,
In particular, network file systems are writtenadding cryptographic layers, and mapping of
defensively to prevent such corruption from af-network transports such as ftp to synthetic file
fecting the rest of the system. Such defensivelhierarchies.

written file systems could be marked with an

additional file system flag marking them as safe>ince they are implemented as user applica-
for users to mount. tions, these synthetic file servers pose an even

greater danger to system integrity by allow-
Each mounted file system uses a certain amouitg users to implement arbitrary semantics for
of system resources. Unlocking the ability tooperations. These implementations can easily
mount a new file system also unlocks the abilprovide corrupt data to system calls or block
ity for the user to abuse the system resourcesystem call resolution indefinitely, bringing the
by mounting new file systems until all sys- entire system to a grinding halt. Because of
tem memory is expended. This sort of activitythis, application file servers have fallen under
is easily controlled with per-user mount limits harsh criticism from the INUx kernel commu-
maintained using the kernel resource limit sysmity. However their many practical uses makes
tem with a policy set by the system administra-the engineering of a safe and reliable mecha-
tor. nism allowing their use in a INUX environ-

ment highly desirable.
A slightly different form of resource abuse gy

mentioned earlier is name space pollution. |fMany of the prior solutions mentioned can be
users are granted the ability to mount and bind gsed to limit the damage done by a malicious
large number of file systems, the resulting name;ser-space file servers. Private name spaces can
space pollution could prove to be distracting, ifprotect system daemons and other users from
not damaging to performance. Enforcing a pol-stumbling into a synthetic file system trap. Re-
icy in which users are only able to mount newstrictions preventing set-uid and set-gid inter-
file systems within a private name space easpretation within user mounts can prevent mali-
ily contains such pollution to the user’s sessioncjous users from using application file servers

Additionally, the current name space garbaggo gain access to privileged accounts or infor-
collection will take care of conveniently un- mation.

mounting file servers and recovering resources
when the session associated with the privaté different sort of permissions problem is also
name space closes. introduced by application file servers. Typi-

2005 Linux Symposium e 229

cally, the file servers are started by a certaircharged for every mount he inherits when cre-
user and information within the file system is ating a private name space. If these two limita-
accessed under that user’s authority, potentiallyions are deemed insufficient, an additional per-
in a different authentication domain. For ex-user limit can be established for private name
ample, if a user mounts a ftpfs or an sshfs byspaces.
logging into a remote server domain, they are
potentially exposing the data from that domainMore prevalent among these perceived prob-
to other users and administrators on the localems is the change in basic paradigm. No
domain. As this is undesirable, it is importantlonger can the same file system environment
that other users (besides the initiator) do nobe expected from every session on a particu-
obtain direct access to mounted file systemdar system. In fact, depending on the extent to
While there are several ways of approachingvhich private name spaces are used there may
this (including overloaded permissions checksven be different file system views in different
that deny access to anyone but the mounter)yindows on the same session. The plurality of
private name spaces seem to handle this nicelyame spaces across processes and sessions pro-
without changing other system semantics. vides a great deal of flexibility in construction
of private environments, but is quite a departure
from expected behavior.
5.4 Private Name Space Concerns
The ability to maintain a certain degree of tra-
ditional semantics is desirable during a transi-
While they are limited, several barriers do existtion in paradigms. Further, having to mount
to user creation and use of private name spacesore resources for each session is rather te-
One objection to allowing users to create theirdious and undesirable. To a certain extent this
own private name spaces is the existence of aan be mitigated by more advanced inheritance
vulnerability in thechroot(1) infrastructure techniques within the private hame spaces—
in the presence of such private name spacesllowing changes in parents to be propagated
The chroot(1) command is used to estab- to children but not vice versa. This is further
lish a new root for a particular user’s namediscussed in the Related Work section regard-
space. However, if a private name space is creng Alexander Viro’s shared subtrees proposal.
ated with theCLONE_N$Slag, the new thread is
allowed to traverse out of the chroot “jail” sim- Another possibility is a per-session name space
ply using the dot-dot traversal. This appears tareated when a user logs into the system. This
be more of a bug than a feature and should bprovides a single name space for that session
easy to defend against by never allowing a useseparate from the global name space insulat-
to traverse out of the root of their current nameing user modifications from the unsuspecting.
space. However, in simpler embodiments it doesn’t
provide the per-user name space semantics
The same resource concerns that apply to ussome desire (ie. the name space wouldn't ac-
mounts also apply to private name spacedually bridge two different SSH sessions). One
However, since the user can have no more pripossibility here is to tightly bind creation and
vate name spaces than processes, there is a pestoption of the per-user name space to the lo-
existing constraint. Additionally, due to the gin process (potentially as part of the PAM in-
copy semantics present in the existinguux frastructure). Another possibility would be to
name space infrastructure, the user will beuse the name space description present in the

230 e Glen or Glenda

/proc/xxxx/mounts synthetic file to cre- propagating name space changes from parent to
ate a duplicate name space in different processhildren. This provides a more convenient form
groups. This would work well for network file of inheritance allowing name space changes in
systems, binds, and9rs but may not work parents to also take effect in children with pri-
well for certain user file servers such as FUSEvate name spaces.

VOFs enables multi-session user file serverdViklos Szeredi, the project leader of FUSE has
without problems as it separates mount-poinProposed several patches related to opening up
from the file system semantics. In other words@nd expanding name space support. Among
when you run as9Fs application file server, it these were an altered permission semantics[25]
creates a mount point which could be used byo prevent users other than the mounting user
several different clients to mount the resultingfrom accessing FUSE mounts. After this met
file system. Besides giving the ability to sharefrom some resistance from theiNuX ker-

the resulting file system between user session§g! community, Miklos proposed an invisible
this technique potentially allows other users tomount patch[26] which tries to protect other
access the mount-point. User credentials arésers from potentially malicious mounts by
part of thev9Fs mount protocoL so each useris hldlng them from other users without the use
authenticated on the file system based on theRf private name spaces. A separate patch[27]
own credentials instead of the credentials of thé@ttempted to unlock mount privileges by en-

user who initially started the file server applica-forcing a static policy on user-mounts includ-
tion. ing some of the protections we have described

previously (only writable directories can be
mounted over, only safe file systems can be
mounted, and set-uid/set-gid permissions are
6 Related Work disabled). To date, none of these patches have
been incorporated into the mainline, but most

. . of these events are happening concurrently with
There are several historical as well as ongoingy, writing and revision of this paper

attempts to provide more dynamic name space
operations in INUX and/or open up those op- One of the responses to the FUSE patches was
erations to end-users and not just privileged adthe assertion that the job may have been bet-
ministrators. There are also several outstandinger done in user-space by an extended form of
request-for-comments on extensions to the exthe mount(1) application. The advantage to us-
isting name space support. ing a user-space policy solution is a much wider
and dynamic set of policies than would be de-
The originalv9rs project had tried to integrate sjrable to incorporate directly into the kernel.
private name space support into the file syssych an application would have set-uid style
tem and remote-resource sharing [12]. Whilepermissions, which several in the community
this worked in practice, Alexander Viro's re- haye criticized as undesirable. An alternative
lease of private name space support within thep this approach would be to use up-calls from

LiNux kernel suspended work on th®Fspri- the kernel to a user-space policy daemon.
vate name space implementation.
Another outcome of the FUSE discussion was

As a follow-up to Viro’s initial name space sup- a patch[6] providing an unshare system call
port, he released a shared sub-tree request-farhich could be used to create private name
comments[29] detailing specific policies for spaces in a pre-existing thread. In other words,

2005 Linux Symposium e 231

this would allow a thread to request a private/ Conclusions

name space without having been spawned with

one, making the creation of private name spaces

more accessible. The unshare patch also prépening up name space operations to com-
vides similar facilities for controlling other re- mon users will enable better working environ-
sources originally only available via flags dur- ments and transparent cluster computing. Users
ing the clone system call. should be granted the permission to establish

private name spaces through flags provided to
The file system translator projecti&T)[33] the clone(2) system call or using the newly
takes a different approach, offering users thgyroposed unshare system call. Once isolated
ability to add incremental features to existingj, g private name space, normal users should
file systems. It provides a set of templatesye granted the ability to mount new resources
and a toolkit which allow for relatively easy gng organize existing resources in ways they
creation of kernel file system modules whichgee fit. A simple set of system-wide restric-
sit atop pre-existing conventional file systems4jons on these activities will prevent malicious
The resulting modules have to be installed anq,sers from obtaining privileged access, disrupt-
mounted by a privileged user. Instead of r€ing system operation, or compromising pro-
lying on set-uid helper applications|&T al- tected data. Adding stackable file name spaces

lows use of “private” instances of the file sys-intg the kernel file system interfaces would fur-
tem through a special ioctl attach command angher extend these benefits.

per-user sub-hierarchies. Several example file

system layers are provided with the standard

FIST distribution including cryptographic lay-

ers and access control list enforcement layers.g Acknowledgements

One of the more interestingI&T file system

layers isUNIONFS[32][31]. It provides a fan- . .
y S[32][31]. Itp Between the time this paper was proposed and

out file system which goes beyond the rel-)
atively sir?;ple semantic% oﬂRNy9’s union published, much debate has occurred on the
LiNnux kernel mailing list and the Inux file

directories by providing additional flexibility L .
systems developers mailing list. I've incorpo-

and granular control of specific components. ted t deal of that di i d
There is also support for rudimentary sandbox: 2c0 & great deaf of that discussion and com-

ing without the use of private name spaces. mentary into this document and many of the
ideas represented here come from that commu-

Among the additional features afNIONFSis nity.

recursive unification allowing deep binds of di-

rectories. In PAN 9 and the existing Inux I'd like to thank Alexander Viro for laying the
name space implementations, a bind only afground work by adding the initial private name
fects a single file or directory. The recursivespace support toINux. I'd also like to thank
unification feature of WiiONFs allows entire Miklos Szeredi and the FUSE team for push-
hierarchies to be bound. This is particularlying the ideas of unprivileged mounts and user
useful in the context of copy-on-write file sys- application file servers.

tem semantics. While such functionality can

be provided with scripts underLRN 9 and Support for this paper was provided in part
LiINuX, the UNIONFS approach would seem to by the Defense Advance Research Projects
provide a more efficient and scalable solution. Agency under Contract No. NBCH30390004.

232 e Glen or Glenda

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

F. J. Corbato and V.A. Vyssotsky.
Introduction and overview of the multics
system.Joint Computer Conferengce
1965.

Jonathan Corbet. Kernel development.
LWN.NET Weekly NewB8301, March
2001.

IBM Corp. Virtualization engine.
http://www.ibm.com/

Russ Cox. Plan 9 from user space.
http://swtch.com/plan9port

R.C. Daley and P.G. Neumann. A
general-purpose file system for
secondary storag&all Joint Computer
Conferencel965.

Janak Desai. new system call, unshare.
EMAIL, May 2005.
http://marc.theaimsgroup.
com/?I=linux-fsdevel&m=
111573064706562&w=2 .

B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, I. Pratt, A. Warfield,

P. Barham, and R. Neugebauer. Xen and
the art of virtualization. IrfProceedings

of the ACM Symposium on Operating
Systems Principle©ctober 2003.

E. Van Hensbergen and R. Minnich.
Grave robbers from outer space: Using
9p200 under linux. IfProceedings of
Freenix Annual Conferengcpages
83-94, 2005.

Hans jorg H Oxer, Hans jorg Hoxer,
Kerstin Buchacker, and Volkmar Sieh.
Implementing a user mode linux with
minimal changes from original kernel.
unknown 2002.

[10] T.J. Killian. Processes as files. In

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

USENIX Summer Conf. Proceedin@slt
Lake City, UT, June 1984.

Robert Love.Linux Kernel Development
Sam’s Publishing, 800 E. 96th Street,
Indianapolis, Indiana 46240, 2nd edition,
August 2003.

Ron Minnich. V9fs: A private name
space system for unix and its uses for
distributed and cluster computing. In
Conference Francaise sur les Systemes
June 1999.

C. Partridge and r. Hinden. Reliable data
protocol. Internet RFC/STD/FYI/BCP
Archives, April 1990.

R. Pike and D. M. Ritchie. The styx
architecture for distributed systeni3ell
Labs Technical journal4(2):146-152,
April-June 1999.

Rob Pike et alPlan 9 Programmer’s
Manual - Manual PagesVita Nuova
Holdings Limited, 3rd edition, 2000.

J. Postel. Transmission control protocol
darpa internet program protocol
specification. Internet
RFC/STD/FYI/BCP Archives,
September 1981.

D. Presotto and P. Winterbottorithe IL
Protocol volume 2, pages 277-282.
AT&T ell Laboratories, Murray Hill, NJ,
1995.

D. Presotto R. Pike et al. The use of name
spaces in plan Qperating Systems
Review 27(2):72-76, April 1993.

K. Thompson R. Pike et al. Plan 9 from
bell labs.Computing System¥ol
8(3):221-254, Summer 1995.

2005 Linux Symposium e 233

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Pike S. Dorward et al. The inferno
operating systemBell Labs Technical
Journal 2(1):5-18, Winter 1997.

J. H. SaltzerLecture Notes in computer
Science, 60, Operating systems - An
Advanced Coursehapter 3.A.: Naming
and Binding of Objects, pages 99-208.
Springer-Verlag, 1978.

Peter H. SalusThe Daemon, the GNU,
and the Penguinchapter 2 & 3: UNIX.
Groklaw, 2005.

W. Simpson. The point-to-point protocol
(ppp) for the transmission of
multi-protocol datagrams over
point-to-point links. Internet
RFC/STD/FYI/BCP Archives, May
1992.

Miklos Szeredi. Filesystem in userspace.
http://fuse.sourceforge.net

Miklos Szeredi. Fuse permission modell.
EMAIL, April 2005.
http://marc.theaimsgroup.
com/?I=linux-fsdevel&m=
111323066112311&w=2 .

Miklos Szeredi. Private mounts. EMAIL,
April 2005.

http://marc.theaimsgroup.
com/?I=linux-fsdevel&m=
111437333932219&w=2 .

Miklos Szeredi. Unpriviledged
mount/umount. EMAIL, May 2005.
http://marc.theaimsgroup.
com/?I=linux-fsdevel&m=
111513156417879&w=2 .

Alexander Viro. Re: File system
enhancement handled above the file
system level. Email, November 2000.

Alexander Viro. Shared subtrees.
EMAIL, January 2005.

http://marc.theaimsgroup.
com/?l=linux-fsdevel&m=
110565591630267&w=2 .

VMware. Vmware home page.
http://www.vmware.com

C. P. Wright et al. Versatility and unix
semantics in a fan-out unification file
system. Technical Report FSL-04-01B,
Computer Science Department, Stony
Brook University, October 200ttp:
[Iwww.fsl.cs.sunysb.edu/
docs/unionfs-tr/unionfs.pdf

C.P. Wright and E. Zadok. Unionfs:
Bringing file systems togethelinux
Journal December 2004.

[33] E. Zadok. Writing stackable file systems.

Linux Journa) pages 22-25, May 2003.

234 e Glen or Glenda

Proceedings of the
Linux Symposium

Volume Two

July 20nd-23th, 2005
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.

C. Craig Rossl.inux Symposium
Stephanie Donovaiinux Symposium

Review Committee

Gerrit HuizengalBM

Matthew Wilcox,HP

Dirk Hohndel,Intel

Val Henson Sun Microsystems
Jamal Hadi SalimiZnyx

Matt Domsch Dell
Andrew Hutton Steamballoon, Inc.

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

