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Abstract

Private name spaces were first introduced into
L INUX during the 2.5 kernel series. Their use
has been limited due to name space manipu-
lation being considered a privileged operation.
Giving users and applications the ability to cre-
ate private name spaces as well as the ability to
mount and bind resources is the key to unlock-
ing the full potential of this technology. There
are serious performance, security and stability
issues involved with user-controlled dynamic
private name spaces in LINUX . This paper pro-
poses mechanisms and policies for maintain-
ing system integrity while unlocking the power
of dynamic name spaces for normal users. It
discusses relevant potential applications of this
technology including its use with FILESYSTEM

IN USERSPACE[24], V9FS[8] (the LINUX port
of the PLAN 9 resource sharing protocol) and
PLAN 9 FROM USER SPACE[4] (the PLAN 9
application suite including user space synthetic
file servers ported to UNIX variants).

1 What’s in a name?

Names are used in all aspects of computer
science[21]. For example, they are used to ref-
erence variables in programing languages, in-
dex elements in a database, identify machines

in a network, and reference resources within
a file system. Within each of these cate-
gories names are evaluated in a specific con-
text. Program variables have scope, database
indexes are evaluated within tables, networks
machine names are valid within a particular
domain, and file names provide a mapping to
underlying resources within a particularname
space. This paper is primarily concerned with
the evaluation and manipulation of names and
name space contexts for file systems under the
L INUX operating system.

File systems evolved from flat mappings of
names to multi-level mappings where each cat-
alog (or directory) provided a context for name
resolution. This design was carried further
by MULTICS[1] with deep hierarchies of di-
rectories including the concept of links be-
tween directories within the hierarchy[5]. Den-
nis Ritchie, Rudd Canaday and Ken Thomp-
son built the first UNIX file system based
on MULTICS, but with an emphasis on
simplicity[22]. All these file systems had a sin-
gle, global name space.

In the late 1980s, Thompson joined with Rob
Pike and others in designing the PLAN 9 oper-
ating system. Their intent was to explore po-
tential solutions to some of the shortcomings
of UNIX in the face of the widespread use of
high-speed networks[19]. It was designed from
first principles as a seamless distributed system
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with integrated secure network resource shar-
ing.

The configuration of an environment to use
remote application components or services in
place of their local equivalent is achieved with a
few simple command line instructions. For the
most part, application implementations operate
independent of the location of their actual re-
sources. PLAN 9 achieves these goals through
a simple well-defined interface to services, a
simple protocol for accessing both local and re-
mote resources, and through dynamic, stack-
able, per-process private name spaces which
can be manipulated by any user or application.

On the other hand, the LINUX file system name
space has traditionally been a global flat name
space much like the original UNIX operat-
ing system. In November of 2000, Alexander
Viro proposed implementing PLAN 9 style per-
process name space bindings[28], and in late
February 2001 released a patch[2] against the
2.4 kernel. This code was later adopted into
the mainline kernel in 2.5. This support, which
is described in more detail in section 4, estab-
lished an infrastructure for private name spaces
but restricted the creation and manipulation of
name spaces as privileged.

This paper presents the case for making name
space operations available to common users
and applications while extending the existing
L INUX dynamic name space support to have
the power and flexibility of PLAN 9 name
spaces. Section 2 describes the design, imple-
mentation and advantages of the PLAN 9 dis-
tributed system. Example applications of this
technology are discussed in Section 3. The ex-
isting LINUX support is described in more de-
tail in Section 4. Perceived barriers and solu-
tions to extended LINUX name space support
are covered in Section 5. Section 6 overviews
related work and recent proposals as alterna-
tives to our approach and Section 7 summarizes
our conclusions and recommendations.

2 Background: Plan 9

In PLAN 9, all system resources and interfaces
are represented as files. UNIX pioneered the
concept of treating devices as files, providing a
simple, clear interface to system hardware. In
the 8th edition, this methodology was taken fur-
ther through the introduction of the /proc syn-
thetic file system to manage user processes[10].
Synthetic file systems are comprised of ele-
ments with no physical storage, that is to say
the files represented are not present as files on
any disk. Instead, operations on the file com-
municate directly with the sub-system or ap-
plication providing the service. LINUX con-
tains multiple examples of synthetic file sys-
tems representing devices (DEVFS), process
control (PROCFS), and interfaces to system ser-
vices and data structures (SYSFS).

PLAN 9 took the file system metaphor fur-
ther, using file operations as the simple, well-
defined interface to all system and application
services. The design was based on the knowl-
edge that any programmer knows how to inter-
act with files. Interfaces to all kernel subsys-
tems from the networking stack to the graphics
frame buffer are represented within synthetic
file systems. User-space applications and ser-
vices export their own synthetic file systems in
much the same way as the kernel interfaces.
Common services such as domain name ser-
vice (DNS), authentication databases, and win-
dow management are all provided as file sys-
tems. End-user applications such as editors and
e-mail systems export file system interfaces as a
means for data exchange and control. The ben-
efits and details of this approach are covered in
great detail in the existing PLAN 9 papers[18]
and will be covered to a lesser extent by appli-
cation examples in section 3.

9P[15] represents the abstract interface used to
access resources under PLAN 9. It is somewhat
analogous to the VFS layer in LINUX [11].
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In PLAN 9, the same protocol operations are
used to access both local and remote resources,
making the transition from local resources to
cluster resources to grid resources completely
transparent from an implementation standpoint.
Authentication is built into the protocol and
was extended in its INFERNO[20] derivative
Styx[14] to include various forms of encryption
and digesting.

It is important to understand that all 9P opera-
tions can be associated with different active se-
mantics in synthetic file systems. Traversal of a
directory hierarchy can allocate resources or set
locks. Reading or writing data to a file interface
can initiate actions on the server. The dynamic
nature of these semantics makes caching dan-
gerous and in-order synchronous execution of
file system operations a must.

The 9P protocol itself requires only a reliable,
in-order transport mechanism to function. It is
commonly used on top of TCP/IP[16], but has
also been used over RUDP[13], PPP[23], and
over raw reliable mechanisms such as the PCI
bus, serial port connections, and shared mem-
ory. The IL protocol was designed specifically
to provide 9P with a reliable, in order transport
on top of an IP stack without the overhead of
TCP[17].

The final key design point of PLAN 9 is the
organization of all local and remote resources
into a dynamic private name space. Manipulat-
ing an element’s location within a name space
can be used to configure which services to use,
interpose stackable layers onto service inter-
faces, and create restricted "sandbox" environ-
ments. Under PLAN 9 and INFERNO, the name
space of each process is unique and can be ma-
nipulated by ordinary users through mount and
bind system calls.

Mount operations allow a client to attach new
interfaces and resources which can be provided
by the operating system, a synthetic file server,

or from a remote server. Bind commands al-
low reorganization of the existing name space,
allowing certain services to be bound to well-
known locations. Bind operations can sub-
stitute one resource for another, for example,
binding a remote device over a local one. Bind-
ing can also be used to create stackable layers
by interposing one interface over another. Such
interposer interfaces are particularly useful for
debugging and statistics gathering.

The default mount and bind behavior is to re-
place the mount-point. However, PLAN 9 also
allows multiple directories to be stacked at a
single point in the name space, creating aunion
directory. Within such a directory, each compo-
nent is searched to resolve name lookups. Flags
to the mount and bind operations determine the
position of a particular component in the stack.
A special flag determines whether or not file
creation is allowed within a particular compo-
nent.

By default, processes inherit an initial name
space from their parent, but changes made to
the child’s name space are not reflected in the
parent’s. This allows each process to have a
context-specific name space. The PLAN 9 fork
system call may be called with several flags al-
lowing for the creation of processes with shared
name spaces, blank name spaces, and restricted
name spaces where no new file systems can be
mounted. PLAN 9 also provides library func-
tions (and associated system calls) for creating
a new name space without creating a process
and for constructing a name space based on a
file describing mount sources, destinations, and
options.

3 Applications

There are many areas where the pervasive use
of private dynamic name spaces under PLAN 9
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can be applied in similar ways under LINUX .
Many of these are detailed in the foundational
PLAN 9 papers [19, 18] as well as the PLAN

9 manual pages[15]. We will step through a
subset of these applications and provide some
additional potential applications in the LINUX

environment.

Under PLAN 9, one of the more straightfor-
ward uses of dynamic name space is to bind
resources into well-known locations. For ex-
ample, instead of using a PATH environment
variable, various executables are bound into a
single/bin union directory. PLAN 9 clusters
use a single file server providing resources for
multiple architectures. Typical startup profiles
bind the right set of binaries to the/bin direc-
tory. For example, if you logged in on an x86
host, the binaries from/386/bin would be
bound to/bin , while on PPC/power/bin
would be bound over bin. Then the user’s pri-
vate binary directory is bound on top of the sys-
tem binaries. This has a side benefit of search-
ing the various directories in a single lookup
system call versus individually walking to ele-
ments in the path list from the shell.

Another use of stackable binds in PLAN 9
is within a development environment. You
can bind directories (or even individual files)
with your changes over read-only versions of a
larger hierarchy. You can even recursively bind
a blank hierarchy over the read-only hierarchy
to deposit compiled object files and executa-
bles. The PLAN 9 development environment
at Bell Labs has a single source tree which peo-
ple bind their working directories and private
object/executable trees over. Once they are sat-
isfied with their changes, they can push them
from the local versions to the core directories.
Using similar techniques developers can also
keep distinct groups of changes separated with-
out having to maintain copies of the entire tree.

Crafting custom name spaces is also a good
way to provide tighter security controls for ser-

vices. Daemons exporting network services
can be locked into a very restrictive name
space, thus helping to protect system integrity
even if the daemon itself becomes compro-
mised. Similarly, users accessing data from
other domains over mounted file systems don’t
run as much risk of other users gaining access
if they mount the resources in a private name
space. Users can craft custom sandboxes for
untrusted applications to help protect against
potential malicious software and applets.

As mentioned earlier, PLAN 9 combines dy-
namic name space with a remote resource shar-
ing protocol to enable transparent distributed
resource utilization. Remote resources are
bound into the local name space as appropri-
ate and applications run completely oblivious
to what resources they are actually using. A
straightforward example of this is mounting
a networked stereo component’s audio device
from across the room instead of using your
workstation’s sound card before starting an au-
dio jukebox application. A more practical ex-
ample is mounting the external network proto-
col stack of a firewall device before running a
web browser client. Since the external network
protocol stack is only mounted for the particu-
lar browser client session, other services run-
ning in separate sessions with separate name
spaces (and protocol stacks) are safe from ex-
ternal access. The PLAN 9 paradigm of mount-
ing any distributed resource and transparently
replacing local resources (or providing a net-
work resource when a local resource isn’t avail-
able) provides an interesting model for imple-
menting grid and utility based computing.

Another example of this is the PLAN 9 cpu(1)
command which is used to connect from a ter-
minal to a cluster compute node. Note that
this command doesn’t operate like ssh or telnet.
The cpu(1) command will export to the server
the current name space of the process from
which it was executed on the client. Server side
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scripts take care of binding the correct archi-
tectural binaries for the cpu server over those
of the client terminal. Interactive I/O between
the cpu and the client is actually performed by
the cpu server mounting the client’s keyboard,
mouse, and display devices into the session’s
private name space and binding those resources
over its own. Custom profiles can be used to
limit the resources exported to the cpu server,
or to add resources such as local audio devices
or protocol stacks. It represents a more ele-
gant approach to the problems of grid, cluster,
and utility-based computing providing a mech-
anism for the seamless integration and orga-
nization of local resources with those spread
across the network.

Similar approaches can be provided to virtu-
alization and para-virtualization environments.
At the moment, the LINUX kernel is plagued by
a plethora of “virtual” device drivers supporting
various devices for various virtualized environ-
ments. Separate gateway devices are supported
for Xen[7], VMware[30], IBM Hypervisors[3],
User Moder Linux[9], and others. Additionally,
each of these virtualization engines requires
separate gateways for each class of device. The
PLAN 9 paradigm provides a unified, simple,
and secure method for supporting these vari-
ous virtual architectures and their device, file
system, and communication needs. Dynamic
private name spaces enable a natural environ-
ment for sub-dividing and organizing resources
for partitioned environments. Application file
servers or generic plug-in kernel modules pro-
vide a variety of services including copy-on-
write file systems, copy-on-write devices, mul-
tiplexed network connections, and command
and control structures. IBM Research is cur-
rently investigating usingV9FS together with
private name spaces and application synthetic
file servers to provide just such an approach for
partitioned scale-out clusters executing high-
performance computing applications.

4 Linux Name Spaces

The private name space support added in the
2.5 kernel revolved around the addition of a
CLONE_NEWNSflag to the LINUX clone(2)
system call. The clone(2) system call allows
the creation of new threads which share a cer-
tain amount of context with the parent process.
The flags to clone specify the degree of sharing
which is desired and include the ability to share
file descriptor tables, signal handlers, memory
space, and file system name space. The current
default behavior is for processes and threads
to start with a shared copy of the global name
space.

When theCLONE_NEWNSflag is specified, the
child thread is started with a copy of the name
space hierarchy. Within this thread context,
modifications to either the parent or child’s
name space are not reflected in the other. In
other words, when a new name space is re-
quested during thread creation, file servers
mounted by the child process will not be vis-
ible in the parent’s name space. The converse
is also true. In this way, a thread’s name space
operations can be isolated from the rest of the
system. The use of theCLONE_NEWNSflag is
protected by theCAP_SYS_ADMINcapability,
making its use available only to privileged users
such as root.

L INUX name spaces are currently manipu-
lated by two system calls:mount(2) and
umount(2) . Themount(2) system call at-
taches a file system to a mount-point within
the current name space and theumount(2)
system call detaches it. More recently in the
2.4 kernel series, theMS_BINDflag was added
to allow an existing file or directory subtree
to be visible at other mount-points in the cur-
rent name space. Both system calls are only
valid for users withCAP_SYS_ADMINcapa-
bility, and so are predominately used only by
root. The table of mount points in a thread’s
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current name space can be viewed by looking
at the/proc/xxx/mounts file.

Users may be granted the ability to mount
and unmount file systems through the mount(1)
application and certain flags in the fstab(5)
configuration file. This support requires that
the mount application be configured with set-
uid privileges and that the exact mount source
and destination be specified in the fstab(5).
Certain network file systems (such asSMBFS,
CIFS, and V9FS) which have a more user-
centric paradigm circumvent this by having
their own set-uid mount utilities: smbmnt(8),
cifs.mount(8), and 9fs(1). More recently, there
has been increased interest in user-space file
servers such as FILESYSTEM IN USERSPACE

(FUSE)[24] with its own set-uid mount appli-
cation fusermount(8).

The proliferation of these various set-uid ap-
plications that circumvent the kernel protection
mechanisms indicates the need to re-evaluate
the existing restrictions so that a more practi-
cal set of policies can be put in place within
the kernel. Users should be able to mount file
systems when and where appropriate. Private
name spaces seem to be a natural fit for pre-
venting global name space pollution with in-
dividual user mount and bind activities. They
also provide a certain degree of isolation from
user mounted synthetic file systems, providing
an additional degree of protection to system
demons and other users who might otherwise
unwittingly access a malicious user-level file
server.

Private name space support in LINUX is un-
der utilized primarily due to the classification
of name space operations as privileged. It is
further crippled by the lack of stackable name
space semantics and application file servers.
Unlocking applications and environments such
as those described in Section 3 by removing
some of the restrictions enforced by the LINUX

kernel would create a much more elegant and

powerful computing environment. Addition-
ally, providing a more flexible, yet consistent
set of kernel enforced policies would be far su-
perior to the wide range of semantics currently
enforced by file system specific set-uid mount
applications.

5 Barriers and Solutions

PLAN 9 is not LINUX , and LINUX is not PLAN

9. There are significant security model and file
system paradigm differences between the two
systems. Concerns related to these differences
have been broken down into four major cate-
gories: concerns with user name space manipu-
lation, problems with users being able to mount
arbitrary file systems, potential problems with
user file systems, and problems with allowing
users to create their own private name spaces.

5.1 Binding Concerns

The mount(1) command specified with the
-bind option, hereafter referred to as a bind
operation, is an incredibly useful tool even in
a shared global name space. When combined
with the notion of private name spaces, it allows
users and applications to craft custom environ-
ments in which to work. However, the ability to
dynamically bind directories and/or files over
one another creates several security concerns
that revolve around the ability to transparently
replace system configuration and common data
with potentially compromised versions.

PLAN 9 places no restrictions on bind op-
erations. Users are free to bind over any
system directory or file regardless of access
permissions—binding writable layers over oth-
erwise read-only directories can be one of the
more useful operations. However, PLAN 9’s
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authentication and system configuration mech-
anisms are constructed in such a way as to
not rely on accessing files when running under
user contexts. In other words, authentication
and configuration are system services which are
started at boot (or reside on different servers),
and so aren’t affected by user manipulations of
their private name spaces.

Under LINUX , system services are constructed
differently and there is still heavy reliance on
well-known files which are accessed through-
out user sessions. Examples include such
sensitive files as/etc/passwd and /etc/
fstab .

Similar concerns apply to certain system direc-
tories which multiple users may have write ac-
cess to, such as/tmp or /usr/tmp . If users
are able to bind over these public directories
under the global name space, they could poten-
tially compromise the data of another user who
inadvertently used a bound/tmp instead of the
system/tmp .

These problems can be addressed with a sim-
ple policy of only allowing a user to bind over
a directory they have explicit write access to.
This solves the problem of system configura-
tion files, but doesn’t cover globally writable
spaces such as/usr/tmp . A simple solu-
tion to protecting such shared spaces is to only
allow user initiated binds within private name
spaces. A slightly more complicated form of
protection is based on the assumption that such
public spaces have thesticky bitset in the di-
rectory permissions.

When used within directory permissions, the
sticky bit specifies that files or subdirectories
can only be renamed or deleted by their origi-
nal owner, the owner of the directory, or a priv-
ileged process. This prevents users from delet-
ing or otherwise interfering with each other’s
files in shared public spaces. A simple policy to

extend this protection to user name space ma-
nipulation is to return a permissions error when
a normal user attempts to bind over a directory
in which the sticky bit is set.

While limiting binds to sticky-bit directories is
reasonable enough, it is an unnecessary restric-
tion. The use of private name spaces solves sev-
eral security concerns with user-modifications
to name space, and does so without overly
limiting the user’s ability to mount over these
shared spaces. Another benefit of requiring
user binds to be within a private name space
is that it prevents such binds from polluting the
global system name space.

5.2 Mounting Concerns

Another set of concerns has to do with allowing
users to mount new file systems into a name
space. As discussed previously, this is some-
thing currently accomplished through set-uid
mount applications which check the user’s per-
missions versus particular policies. A more
global policy would give administrators more
consistent control over users and help eliminate
the potential problems caused by the use of set-
uid applications

One of the primary problems with giving users
the ability to mount arbitrary file systems is
the concern that they may mount a file system
with set-uid scripts allowing them to gain ac-
cess to privileged accounts (i.e., root). It is
relatively trivial for a user to construct a file
system image, floppy, or CD-ROM on a per-
sonal machine with set-uid shells. If they were
allowed to mount these on an otherwise se-
cure system, they could instantly compromise
it. The existing mount applications circum-
vent such a vulnerability by providing aNO-
SUID flag which disables interpretation of set-
uid and set-gid permission flags. A similar
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mechanism enforced as the default for all user-
mounts would provide a certain level of protec-
tion against such an attack.

Another possible attack vector would be the im-
age being mounted. Most file systems are writ-
ten on the assumption that the backing store is
somewhat secure and reputable. LINUX kernel
community members have expressed concern
that disk images could be constructed specifi-
cally to crash or corrupt certain file systems, so
as to disable or disrupt system activity. This is
particularly difficult to protect against, but not
all file systems are vulnerable to such attacks.
In particular, network file systems are written
defensively to prevent such corruption from af-
fecting the rest of the system. Such defensively
written file systems could be marked with an
additional file system flag marking them as safe
for users to mount.

Each mounted file system uses a certain amount
of system resources. Unlocking the ability to
mount a new file system also unlocks the abil-
ity for the user to abuse the system resources
by mounting new file systems until all sys-
tem memory is expended. This sort of activity
is easily controlled with per-user mount limits
maintained using the kernel resource limit sys-
tem with a policy set by the system administra-
tor.

A slightly different form of resource abuse
mentioned earlier is name space pollution. If
users are granted the ability to mount and bind a
large number of file systems, the resulting name
space pollution could prove to be distracting, if
not damaging to performance. Enforcing a pol-
icy in which users are only able to mount new
file systems within a private name space eas-
ily contains such pollution to the user’s session.
Additionally, the current name space garbage
collection will take care of conveniently un-
mounting file servers and recovering resources
when the session associated with the private
name space closes.

5.3 User File System Concerns

A driving motivation behind providing users
the ability to mount and bind file systems is the
increase in popularity of user-space file servers.
These predominantly synthetic file systems are
enabled through a number of different pack-
ages includingV9FS and more predominantly
FUSE. These packages export VFS interfaces
or equivalent APIs to user space, allowing ap-
plications to act as file servers. Practical uses
for such file servers include the exporting of
archive file contents as mountable name spaces,
adding cryptographic layers, and mapping of
network transports such as ftp to synthetic file
hierarchies.

Since they are implemented as user applica-
tions, these synthetic file servers pose an even
greater danger to system integrity by allow-
ing users to implement arbitrary semantics for
operations. These implementations can easily
provide corrupt data to system calls or block
system call resolution indefinitely, bringing the
entire system to a grinding halt. Because of
this, application file servers have fallen under
harsh criticism from the LINUX kernel commu-
nity. However their many practical uses makes
the engineering of a safe and reliable mecha-
nism allowing their use in a LINUX environ-
ment highly desirable.

Many of the prior solutions mentioned can be
used to limit the damage done by a malicious
user-space file servers. Private name spaces can
protect system daemons and other users from
stumbling into a synthetic file system trap. Re-
strictions preventing set-uid and set-gid inter-
pretation within user mounts can prevent mali-
cious users from using application file servers
to gain access to privileged accounts or infor-
mation.

A different sort of permissions problem is also
introduced by application file servers. Typi-
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cally, the file servers are started by a certain
user and information within the file system is
accessed under that user’s authority, potentially
in a different authentication domain. For ex-
ample, if a user mounts a ftpfs or an sshfs by
logging into a remote server domain, they are
potentially exposing the data from that domain
to other users and administrators on the local
domain. As this is undesirable, it is important
that other users (besides the initiator) do not
obtain direct access to mounted file systems.
While there are several ways of approaching
this (including overloaded permissions checks
that deny access to anyone but the mounter),
private name spaces seem to handle this nicely
without changing other system semantics.

5.4 Private Name Space Concerns

While they are limited, several barriers do exist
to user creation and use of private name spaces.
One objection to allowing users to create their
own private name spaces is the existence of a
vulnerability in thechroot(1) infrastructure
in the presence of such private name spaces.
The chroot(1) command is used to estab-
lish a new root for a particular user’s name
space. However, if a private name space is cre-
ated with theCLONE_NSflag, the new thread is
allowed to traverse out of the chroot “jail” sim-
ply using the dot-dot traversal. This appears to
be more of a bug than a feature and should be
easy to defend against by never allowing a user
to traverse out of the root of their current name
space.

The same resource concerns that apply to user
mounts also apply to private name spaces.
However, since the user can have no more pri-
vate name spaces than processes, there is a pre-
existing constraint. Additionally, due to the
copy semantics present in the existing LINUX

name space infrastructure, the user will be

charged for every mount he inherits when cre-
ating a private name space. If these two limita-
tions are deemed insufficient, an additional per-
user limit can be established for private name
spaces.

More prevalent among these perceived prob-
lems is the change in basic paradigm. No
longer can the same file system environment
be expected from every session on a particu-
lar system. In fact, depending on the extent to
which private name spaces are used there may
even be different file system views in different
windows on the same session. The plurality of
name spaces across processes and sessions pro-
vides a great deal of flexibility in construction
of private environments, but is quite a departure
from expected behavior.

The ability to maintain a certain degree of tra-
ditional semantics is desirable during a transi-
tion in paradigms. Further, having to mount
core resources for each session is rather te-
dious and undesirable. To a certain extent this
can be mitigated by more advanced inheritance
techniques within the private name spaces—
allowing changes in parents to be propagated
to children but not vice versa. This is further
discussed in the Related Work section regard-
ing Alexander Viro’s shared subtrees proposal.

Another possibility is a per-session name space
created when a user logs into the system. This
provides a single name space for that session
separate from the global name space insulat-
ing user modifications from the unsuspecting.
However, in simpler embodiments it doesn’t
provide the per-user name space semantics
some desire (ie. the name space wouldn’t ac-
tually bridge two different SSH sessions). One
possibility here is to tightly bind creation and
adoption of the per-user name space to the lo-
gin process (potentially as part of the PAM in-
frastructure). Another possibility would be to
use the name space description present in the
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/proc/xxxx/mounts synthetic file to cre-
ate a duplicate name space in different process
groups. This would work well for network file
systems, binds, andV9FS but may not work
well for certain user file servers such as FUSE.

V9FS enables multi-session user file servers
without problems as it separates mount-point
from the file system semantics. In other words,
when you run aV9FS application file server, it
creates a mount point which could be used by
several different clients to mount the resulting
file system. Besides giving the ability to share
the resulting file system between user sessions,
this technique potentially allows other users to
access the mount-point. User credentials are
part of theV9FSmount protocol, so each user is
authenticated on the file system based on their
own credentials instead of the credentials of the
user who initially started the file server applica-
tion.

6 Related Work

There are several historical as well as ongoing
attempts to provide more dynamic name space
operations in LINUX and/or open up those op-
erations to end-users and not just privileged ad-
ministrators. There are also several outstanding
request-for-comments on extensions to the ex-
isting name space support.

The originalV9FS project had tried to integrate
private name space support into the file sys-
tem and remote-resource sharing [12]. While
this worked in practice, Alexander Viro’s re-
lease of private name space support within the
L INUX kernel suspended work on theV9FSpri-
vate name space implementation.

As a follow-up to Viro’s initial name space sup-
port, he released a shared sub-tree request-for-
comments[29] detailing specific policies for

propagating name space changes from parent to
children. This provides a more convenient form
of inheritance allowing name space changes in
parents to also take effect in children with pri-
vate name spaces.

Miklos Szeredi, the project leader of FUSE has
proposed several patches related to opening up
and expanding name space support. Among
these were an altered permission semantics[25]
to prevent users other than the mounting user
from accessing FUSE mounts. After this met
from some resistance from the LINUX ker-
nel community, Miklos proposed an invisible
mount patch[26] which tries to protect other
users from potentially malicious mounts by
hiding them from other users without the use
of private name spaces. A separate patch[27]
attempted to unlock mount privileges by en-
forcing a static policy on user-mounts includ-
ing some of the protections we have described
previously (only writable directories can be
mounted over, only safe file systems can be
mounted, and set-uid/set-gid permissions are
disabled). To date, none of these patches have
been incorporated into the mainline, but most
of these events are happening concurrently with
the writing and revision of this paper.

One of the responses to the FUSE patches was
the assertion that the job may have been bet-
ter done in user-space by an extended form of
the mount(1) application. The advantage to us-
ing a user-space policy solution is a much wider
and dynamic set of policies than would be de-
sirable to incorporate directly into the kernel.
Such an application would have set-uid style
permissions, which several in the community
have criticized as undesirable. An alternative
to this approach would be to use up-calls from
the kernel to a user-space policy daemon.

Another outcome of the FUSE discussion was
a patch[6] providing an unshare system call
which could be used to create private name
spaces in a pre-existing thread. In other words,
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this would allow a thread to request a private
name space without having been spawned with
one, making the creation of private name spaces
more accessible. The unshare patch also pro-
vides similar facilities for controlling other re-
sources originally only available via flags dur-
ing the clone system call.

The file system translator project (FIST)[33]
takes a different approach, offering users the
ability to add incremental features to existing
file systems. It provides a set of templates
and a toolkit which allow for relatively easy
creation of kernel file system modules which
sit atop pre-existing conventional file systems.
The resulting modules have to be installed and
mounted by a privileged user. Instead of re-
lying on set-uid helper applications, FIST al-
lows use of “private” instances of the file sys-
tem through a special ioctl attach command and
per-user sub-hierarchies. Several example file
system layers are provided with the standard
FIST distribution including cryptographic lay-
ers and access control list enforcement layers.

One of the more interesting FIST file system
layers isUNIONFS[32][31]. It provides a fan-
out file system which goes beyond the rel-
atively simple semantics of PLAN 9’s union
directories by providing additional flexibility
and granular control of specific components.
There is also support for rudimentary sandbox-
ing without the use of private name spaces.

Among the additional features ofUNIONFS is
recursive unification allowing deep binds of di-
rectories. In PLAN 9 and the existing LINUX

name space implementations, a bind only af-
fects a single file or directory. The recursive
unification feature of UNIONFS allows entire
hierarchies to be bound. This is particularly
useful in the context of copy-on-write file sys-
tem semantics. While such functionality can
be provided with scripts under PLAN 9 and
L INUX , theUNIONFS approach would seem to
provide a more efficient and scalable solution.

7 Conclusions

Opening up name space operations to com-
mon users will enable better working environ-
ments and transparent cluster computing. Users
should be granted the permission to establish
private name spaces through flags provided to
the clone(2) system call or using the newly
proposed unshare system call. Once isolated
in a private name space, normal users should
be granted the ability to mount new resources
and organize existing resources in ways they
see fit. A simple set of system-wide restric-
tions on these activities will prevent malicious
users from obtaining privileged access, disrupt-
ing system operation, or compromising pro-
tected data. Adding stackable file name spaces
into the kernel file system interfaces would fur-
ther extend these benefits.
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