Ho Hum, Yet Another Memory Allocator. . .

Do We Need Another Dynamic Per-CPU Allocator?

Ravikiran G Thirumalai
kiran.th@gmail.com
Dipankar Sarma
Linux Technology Center, IBM India Software Lab
dipankar@in.ibm.com
Manfred Spraul
manfred@-colorfullife.com

Abstract 1 Introduction

The Linux kernel has a number of alloca-
tors, including the page allocator for allocating
physical pages, the slab allocator for allocat-
ing objects with caching, and vmalloc alloca-
The Linux® kernel currently incorporates tor. Each of these allocators provide ways to
a minimalistic slab-based dynamic per-CPUmanage kernel memory in different ways. With
memory allocator. While the current alloca- the introduction of symmetric multi-processing
tor exists with some applications in the form of (SMP) support in the Linux kernel, managing
block layer statistics and network layer StatiS-data that are rarely shared among processors
tics, the current implementation has issuespecame important. While statically allocated
Apart from the fact that it is not even guar- per-CPU data has been around for a while, sup-
anteed to be correct on all architectures, theyort for dynamic allocation of per-CPU data
current implementation is slow, fragments, andyas added during the development of 2.6 ker-
does not do true node local allocation. A newne|. Dynamic allocation allowed per-CPU data
per-CPU allocator has to be fast, work welltg be used within dynamically allocated data

with its static sibling, minimize fragmentation, structures making it more flexible for users.
co-exist with some arch-specific tricks for per-

CPU variables and get initialized early enoughThe dynamic per-CPU allocator in the 2.6 ker-
during boot up for some users like the slab subnel was, however only the first step toward bet-
system. In this paper, we describe a new perter management of per-CPU data. It was a com-
CPU allocator that addresses all issues merpromise given that the use of dynamically allo-
tioned above, along with possible uses of thiscated per-CPU data was limited. But with the
allocator in cache friendly reference counterseed for per-CPU data increasing and support
(bigrefs), slab head arrays, and performancéor NUMA becoming important, we decided to
benefits due to these applications. revisit the issue.
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struct abc *ptr = alloc_percpu(struct abc);

In this paper, we present a new dynamic per-
CPU data allocator that saves memory by in-
terleaving objects of the same processor, sup-
ports allocating objects from memory close to
the CPUs (for NUMA platforms), works during
early boot and is independent of the slab allo+=-crvs
cator. We also show it allows implementation
of more complex synchronization primitives
like distributed reference counters. We discuss
some preliminary results and future course of
action.

21_cachep (size, GFP_KERN

struct percpu_data.ptrs[]

Figure 1: Current allocator

2 Background allowed better management of cache lines by

sharing them between CPU-local versions of

ory access. This is even more important incally, the first RFC for a dynamic per.-CPU data
multi-processor systems where accessing menfllocator was proposed [6] along with a refer-
ory shared between the processors could bgnce implementation [7].

significantly more costly if the corresponding

cache line is not available in that processor’ Subsequent discussions led to a simplified im-

plementation of a dynamic allocator in the 2.5

cache. kernel as shown in Figure 1. This allocator pro-
[Operation | Cost (ns)] vides an interfacalloc_percpu() that re-

Instruction 07 turns a pointer cookie. The pointer cookie is

Clock Cycle 14 the address of an array of pointers to CPU-local

L2 Cache Hit 12.9 objects each corresponding to a CPU in the

Main Memory 162.4 system. The array and the CPU-local objects

are allocated from the slab. Simplicity was the
most important factor with this allocator, but it

Table 1: 700 MHz P-IIl Operation Costs clearly had a number of problems.

Table 1 shows the cost of memory opera-
tions on a 700 MHz Pentium IlI processor.
When global data is shared between proces-
sors, cache lines bouncing between processors
reduce memory bandwidth and thereby nega-
tively impact scalability. As scalability im-
proved during the development of the 2.6 ker-
nel, the need for efficient management of in-
frequently shared data also increased. The first
step towards this was interleaved static per-
CPU areas proposed by Rusty Russell [3]. This 3. The array itself is not NUMA-friendly.

1. The slab allocations are no longer padded
to cache line boundaries. This means that
the current implementation would lead to
false sharing.

2. An additional memory access (array of
CPU-local object pointers) has a perfor-
mance penalty, mostly due to associativity
miss.
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4. It wastes space. v | UGN | s
f - objN
ob) N
CPU1 CHUNK s
We therefore implemented a new dynamic al- i =
locator that worked around the problems of R CONTIGHOVYM SPACE
the current one. This allocator is based on M s sk
the reference implementation [7] published ear- N
lier. The key improvement has been the use of POPU BLKCSIZE CPUn CHONK
. . . . ' obj
pointer arithmetics to determine the address of ! ‘
. B BLOCK,MAP}JAGEMENT,SIZE BLOCK MANAGEMENT
the CPU-local objects, which reduces derefer- :

encing overhead.

BLOCK

Figure 2: A block

3 Interleaved Dynamic Per-CPU

Allocator copy of the object’s private data to the corre-

sponding CPU. In our allocator, this record is a
3.1 Design Goals cookie and the CPU-local versions of the allo-
cated objects can be accessed using it. Deref-
. o erencing speeds are very important, since this
In order to address the inadequacies in the CUky the fast path for all users of per-CPU data.
rent per-CPU allocation schemes in the Linuxthe cpy-local versions of the object also need
kernel, a new allocator must do the following: {4 pe allocated from the memory nearest to the
CPU on NUMA systems. Also, in order to
1. Fast pointer dereferencing to get to thef’iVOid the overhead of an extrq memory access
per-CPU object in the current per-CE’U datg |mpI9mentat|on,
we needed to use pointer arithmetics to access
2. Allocate node local memory for all CPUs the object corresponding to a given CPU. The
pointer arithmetic should be simple and should

3. Save on memory, minimize fragmentation, ;ca as few CPU cycles as possible.

maximize cache line utilization

4. Work well with CPU hotplug and memory

hotplug, sparse CPU numbers. 3.2 Allocating a Block

5. Get initialized early during boot
The internal allocation unit of the interleaved
per-CPU allocator is &lock . Requests for
7. Work well with its static sibling (static per- per-CPU objects are served frombeock — of
memory. Theblock s are allocated on demand
CPU areas) . .
for new per-CPU objects. Alock is a con-
tiguous virtual memory space (VA space) that
A typical memory allocator returns a recordis reserved to contain a chunk of objects cor-
(usually a pointer) that can be used to access thesponding to every CPU. It also contains ad-
allocated object. A per-CPU allocator needs talitional space that is used to maintain internal
return a record that can be used to access evesgructures for managing the blocks.

6. Independent of the slab allocator
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Figure 2 shows the layout oftdock . The VA
space within &lock consists of two sections: :
1. The top section consists diR_CPU
chunks of VA space each of siRCPU _ cris
BLK_SIZE. PCPU_BLKSIZEis a com-
pile time constant. It represents the capacs«vwsemesize |y

ity of oneblock . Each CPU has one such
per-CPU chunk within &lock . Cur-
rently the size of each per-CPU chunk is
two pages. PCPU_BLKSIZEIs the size
limit of a per-CPU object.

VIRTUALLY CONTIGUOUS BLOCK

Figure 3: Page allocation for a block

2. The bottom section of dlock con-
sists of memory used to maintain the
per-CPU object buffer control information
for this block and plus block descrip-
tor size. This section is of siZzBLOCK _
MANAGEMENT_SIZE

3.3 Allocating Objects from a block

The per-CPU chunks insideldock are fur-
ther divided into units ofcurrency . A
currency is the size of the smallest object
that can be allocated in this scheme. The cur-
rency size is defined aszeof(void *) in

the current implementation. Any object in this

While the VA for the entireblock is allo-  gjiocator consists of one or more contiguous
cated, the actual pages for each per-CPU chunlts ofcurrency

are allocated only if the corresponding CPU is

present in theepu_possible_mask . This  Eachblock in the system has a descriptor as-
has two benefits—it avoids unnecessary wastsociated with it. The descriptor is defined as
of memory and each chunk can be allocated sbelow:

itis closest to the corresponding CRAlloc_

page_node() is used to get pages nearest t0, .\ ncou biock

the CPU. The management pages at the bottom void *start_addr;
of a block are always allocated. Once the
pages are allocated, VA space is then mapped

struct page *pages[PCPUPAGES_PER_BLOCK * 2];
struct list_head blKlist;

unsigned long bitmap[BITMAP_ARR_SIZE];

int bufctl_fl[OBJS_PER_BLOCK];

with pages for the CPU-local chunks. int bufctl fi_head:

unsigned int size_used;

Also, as shown in Figure 3, there won't be map-}’

pings for any VA space corresponding to CPUs

that are “not possible” on the system. The VAThis is embedded into the block management
space is contiguous fAdR_CPUSprocessors part of the block. In the current implementa-
and this allows us to use pointer arithmetics taion, it is at the beginning of the block man-
calculate the address of an object corresponcagement section of block . Each per-CPU
ing to a given CPU. We also save memoryobjectis allocated from one sublock main-

by not allocating for CPUs that are not in thetained by the interleaved allocator. The block
cpu_possible  mask. descriptor records the base effective address of
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Figure 4. Managing blocks |
Figure 5: Object layout

the block 6tart_addr ) as well as the al-
location state of eaclurrency  within the

block . The allocation state is recorded using,:igure 5 shows the relation betweemlack
a bitmap wherein each bit represents an iSomoi, the allocator, per-CPU objects allocated from
phic currency  of every per-CPU chunk in theplock |, the bitmap corresponding to these
that block. There are as many bits as the NUMgpjects,bufctl  structures andufctl  list
ber ofcurrency in one chunk of the block. o these objects. In this example, a per-CPU
block starts at 0xf8880000. The currency size
Figure 4 shows the organization of the blockis 3ssumed to be &igeof (void *) on
management area. Block descriptor has agge).  The squares in CPU chunks represent
array of pointers, each pointing to a CPU-ihe ajiocator currency. The first five consecu-
local chunk of physical pages allocated for thistjye currencies make OBJ1 (shaded currencies
block. Each object allocated fromtdock i, the block). Each currency is represented by
is represented by dufctl  data structure. 45 pit in the bitmap. Hence, bits 0—4 of the
Thesebufctl  structures are embedded in thebitmap correspond to OBJ1. OBJ1 starts at ad-
block management section of tikock and  gress 0xf8880000. OBJ2 starts at 0xf8888018.

they start right after the block descriptor. TheTne figure also depicts the bufctl structures and
block descriptor also has an array-based fregfct| list for OBJ1 and OBJ2.

list to allocatebufctl  or object descriptors.
bufctl_fl is the array-based free list and
bufctl_head  stores the head of this free list.

correspondingurrency units are allocated.

3.4 Managing blocks

During allocation of a per-CPU object, the The amount of per-CPU objects served by a sin-
bitmap indicatingcurrency allocation state gle block is limited. So, our allocator allows
is sorted and saved. This array is sorted in asallocation of newblock on demand. When-
cending order of available object sizes in thatever a request for a per-CPU object cannot be
block due to contiguousurrency regions. met with anyblock currently in the system, a
This array is traversed and the first element thanew block is added to the system that is iso-
fits the allocation requirement is used and thanorphic to existing ones.
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object for CPU 0. To get to the CPU-local
version of CPU N, the following arithmetics
is used—epu_local_address = p + N *
PCPU_BLKSIZE where p is the cookie re-
turned by the interleaved allocator. Since
PCPU_BLKSIZE is a carefully chosen com-
pile time constant of a proper page order, the
above arithmetics is optimized to a simple add
and bit shift operations. The most expensive
operation in accessing the CPU-local object is
usually the determination of the current CPU
number émp_processor_id() ). This is
true for static per-CPU areas as well. To avoid
Figure 6: Managing block lists the cost ofsmp_processor_id() during
per-CPU data access, kernel developers like
Rusty Russell have been contemplating using
These blocks are linked to one another in aa dedicated processor register to get a handle to
circular doubly linked sorted list (Figure 6). that processor's CPU-local data. The current
pcpu_block counts the amount of memory static per-CPU area in the Linux kernel uses

Sorted list of allocator blocks

used in the blockgize_used ). This listis an array (_per_cpu_offset[] ) to store
sorted in descending order usisige_used . a handle to each CPU’s per-CPU data. With
Thefirstnotfull field contains the list po- a dedicated processor register,per_cpu_

sition of the firstblock in the list that has offset[cpuN] would be loaded into the reg-
available memory for allocation. On an al- ister and users of per-CPU data would not need
location request, the list traversed from theto make a call tamp_processor_id() to
firstnotfull position and the first avail- get to the CPU-local versions—simple arith-
able block with sufficient space is chosen formetic on the contents of the processor ded-
allocation. If no such block is found, a new icated register will suffice. In factsmp_
block is created and added to this list. Theprocessor_id() could be derived from the
blocks are repositioned in the list to preserveregister based per_cpu_offset[] ta-
the sorted nature of the list upon every allo-ble. This scheme can co-exist with our per-
cation and free request. During the course oCPU allocator.

freeing per-CPU objects, if the allocator notices

thatblkp->size used goesto zero, the en-

tire block—VA space, per-CPU pages, block . .
management pages and the VA mapping are deAf Using Dynamic Per-CPU Alloca-

stroyed. tor
3.5 Accessing Per-CPU Data 4.1 Per-CPU structures within the slab al-
locator

A per-CPU allocation returns a pointer that is

used as a cookie to access CPU-local versiofhe Linux slab allocator uses arrays of object
of the object for any given CPU. This pointer pointers to speed up object allocation and re-
effectively points to address of the CPU-locallease. This avoids doing costly linked list or
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struct kmem_cache_s { struct kmem_cache_s { /* per-CPU variable */
struct array_cache *array[NR_CPUS]; struct kmem_globalcache *global;
/* ... additional members, only unsigned int avail;
* touched from slow path ... */ unsigned int limit;

}.

; void * objects[];
struct array_cache {

unsigned int avalil; struct kmem_globalcache { /* one instance */
unsigned int limit; /* ... additional members, only
void * objects]]; * touched from slow path ... */

Table 2: Main structures in the fast-path— Table 3: Main structures for fast-path—after
before

. o . and thus cache line transfers on the cache
spinlock operations in each operation. Eachob-  |ine that contains the table.

ject cache contains one array for each CPU. If
an array is not empty, then an allocation little e The implementation is fixed within
more than looking up the per-CPU array and slab.c , it's not possible to override it

returning one entry from that array. There- with arch specific code, even if an archi-
fore the time required for the pointer lookup tecture supports a fast per-CPU variable
is the most significant part of the execution lookup.

time for kmem_cache_alloc and kmem_

cache_free

Therefore the slab code was rearranged to

At present, the lookup code mimics the imple-US€ Per-CPU variables natively for the ob-
mentation of the dynamic per-CPU variablesi€Ct caches:kmem_cache_create  returns
kmem_cache create returns a pointer to thg pointer to the per-CPU structure_ that con-
the structure that contains the array of pointerd@ins the members that are needed in the fast-
to the per-CPU variables. Each allocation ofP@th of the allocator.  The other members
release looks up the correct per-CPU structur@r€ stored in a new structurstuctkmem_
and returns an object from the array. Table Zlobalcache ). The new structure layout is
shows the (slightly simplified) structures. shown in Table 3.

While this is a simple implementation, it has The functionskmem_cache_alloc() and
several disadvantages: kmem_cache_free()  only need to access

avail ,limit , andobjects |, thus there are

_ o _ no accesses to the global structure from the
e Itis acode duplication and itwould be bet- fast-path,

ter if slab could reuse the primitives pro-

vided by the dynamic per-CPU variables.

This is not possible, because it would cre-4.2  Statistics counters
ate a cyclic dependency: the dynamic per-

CPU variable implementation relies on the

slab allocator for its own allocations. As part of the scalable statistics counter work

we carried out earlier, it has already been es-

e Itis a simple per-CPU allocator, therefore tablished that per-CPU data is useful for ker-

each access required a table lookup. Denrel statistics counters, and solves the problem
pending on the value dIR_CPUSthere of cache line bouncing on NUMA and multi-

might be even frequent write operations,processor systems [5]. During the development
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of the 2.6 kernel, a number of kernel statisticsmake sure all CPUs recognize slow mode op-
were converted to use a dynamic per-CPU aleration before the 'disowning’ completes. The
locator. These include networking MIBs, disk reference counter is biased with a high value
statistics and th@ercpu_counter  used in by setting theatomic_t counter with the high
ext2 and ext3 filesystems. With our allocator,bias value before the switch to slow mode is ini-
the per-CPU statistics counters become moré&ated. In fact this biasing itself indicates begin-
efficient. In addition to faster dereferencing andning of the switch. This bias value is subtracted
node-local allocation, our allocator saveR_  from the reference counter after the switch to
CPUS x sizeof(void *) bytes of memory slow mode.

for each per-CPU counter by avoiding the array
storing the CPU-local object pointers. Bigrefs save on space and dereference speeds

when they use our per-CPU allocator. In ad-

dition to space saving, our allocator interlaces

4.3 Distributed reference counters (bi- counters on cache lines too, which results in in-
grefs) creased cache utilization.

Rusty Russell has an experimental patch that
makes use of the dynamic per-CPU memonp Results
allocator to avoid global atomic operations on

reference counters[4]. 51 Slab enhancements

A “bigref” reference counter would con-

sist of two counters internally; one of type The new slab implementation discussed in
atomic_t  which is the global counter, and Section 4.1 was tested with both micro-
another per-CPU counter of tydecal t , benchmarks and real-world test loads.

the distributed counter. Per-CPU memory for

thelocal_t is allocated when the blgref ref- e Micro-benchmarks showed no Change be-
erence counter is initialized. The reference  tween the old and the new implemen-

counter usually operates in the “fast” mode— tation; In a tight loop,kmem_cache

it just increments or decrements the CPU- alloc needed around 35 CPU cycles on
local local_t  counter whenever the bigref an 64-bit AMD Athlon" . The lack of im-
reference counter needs to be incremented or  ,rgyement is not unexpected because a ta-
decrementedyet() andput() operationsin ble lookup is only slow on a cache miss.

Linux parlance). This operation docal_t
per-CPU counters is much cheaper compared e Tests with tbench (version 3.03 with

to operations on a globatomic_t type. In warm-up) on a 4-CPU HT Pentium 4
fact on x86, local increment is just amcl  in- (2.8GHz Xeon) system showed an im-
struction. provement of around 1%.

The reference counter switches to a “slow”

mode when the element being protected by th

reference counter is no longer needed in the
system and is being released or 'disowned'.
This switch from fast mode to slow mode is The new allocator is not without its own limita-
done by usingynchronize_kernel() to tions:

Future Work
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