Chip Multi Processing aware Linux Kernel Scheduler

Suresh Siddha Venkatesh Pallipadi
suresh.b.siddha@intel.com venkatesh.pallipadi@intel.com

Asit Mallick
asit.k.mallick@intel.com

Abstract logical processors running on the same execu-
tion core, sharing all the resources like func-
: . tional execution units and cache hierarchy. This
Recent advances in semiconductor manufactur- : : :
. : .) approach interleaves the execution of two in-
ing and engineering technologies have led to : : :
) i . _struction streams, making the most effective
the inclusion of more than one CPU core in a .
: . : use of processor resources. It maximizes the
single physical processor package. This, IOOp_erformance vs. transistor count and power
ularly know as Chip Multi Processing (CMP), b ' b

L : consumption.
allows multiple instruction streams to execute

at the same time. CMP is in addition to today'sRrecent advances in semiconductor manufactur-
Simultaneous Multi Threading (SMT) capabil- jng and engineering technologies are leading to
ities, like Intef® Hyper-Threading Technology rapid increase in transistor count on a die. For
which allows a processor to presentitself as WQxample, forthcoming Itaniuff family proces-
logical processors, resulting in best use of exsor code named Montecito will have more than
ecution resources. With CMP, today’s Linux 1 7 pillion transistors on a die! As the next
Kernel will deliver instantaneous performance|ogica| step to SMT, these extra transistors are
improvement. In this paper, we will explore yyt to effective use by including more than one
ideas for further improving peak performanceexecution core with in a single physical pro-
and power savings by making the Linux Kermnelcessor package. This is popularly known as
Scheduler CMP aware. Chip Multi Processing (CMP). Depending on
the number of execution cores in a package,
it's either called a dual-core[4] (two execution
1 Introduction cores) or multi-core (more than two execution
cores) capable processors. In multi-threading
and multi-tasking environment, CMP allows

To meet the growing requirements of procesyoy significant improvement in performance at
sor performance, processor architects are ook« system level.

ing at new technologies and features focusing

on enhanced performance at a lower power disin this paper, in Section 2 we will look at

sipation. One such technology is Simultane-an overview of CMP and some implementa-
ous Multi-Threading (SMT). Hyper-Threading tion examples. Section 3 will talk about the
(HT) Technology[5] introduced in 2002, is In- generic OS scheduler optimization opportuni-
tel's implementation of SMT. HT delivers two ties that are appropriate in CMP environment.

e 193 o

194 e Chip Multi Processing aware Linux Kernel Scheduler

Linux Kernel Scheduler implementation details |7 —— -
of these optimizations will be dwelled in Sec- || esoues Resources
tion 4. We will close the paper with a brief look Mk L1Cache
at CMP trends in future generation processors || 5o Ao

Gameed

‘ Shared L2 Cache ‘

2 Chip Multi Processing

Shared Arsa
In a Chip Multi Processing capable physical | S s

processor package, more than one execution
core reside in a physical package. Each cor&igure 1: CMP implementation with two cores
has its own resources (architectural state, regsharing L2 cache and Bus interface

isters, execution units, up-to a certain level of
cache, etc.). Shared resources between tt

. h . I k d d Architectural | Architectural Architectural | Architectural
cores In a physical package vary depending ol SweT) | Stae T1 Sate T | State T
the |mp|ementat|0n. Some of the Implementa. Execution Resources Execution Resources
tion examples are

L1 and L2 caches L1 and L2 caches
a) each core could have a portion of on-die Bus I Bus IFF
cache (for example L1) exclusively for itself (B

and then have a portion of on-die cache (for
example L2 and above) that is shared betwee
the cores. An example of this is the upcom- Systm Bas
ing first mobile dual-core processor from Intel,
code named Yonah.

Figure 2: CMP implementation with two cores,
each having two logical threads. Each core has
b) each core having its own on-die cache hiertheir own cache hierarchy and communication
archy and its own communication path to thepath to FSB.

Front Side Bus (FSB). An example of this is

the Intef® Pentiun® D processor. logical threads in each core and with each core

Figure 1 shows a simplified block diagram thavmg their own cache hierarchy and their own

a physical package which is CMP Capablecommunlcatlon path to the FSB. An example of

where two execution cores reside in one physil-thls s the InteP Pentiun® D Extreme Edition

cal package, sharing the L2 cache and front sigRrocessor
bus resources.

A physical package can be both CMP and SMT?r CMP Optimization opportunities

capable. In that case, each core in the physica
package can in turn contain more than one log-
ical thread. For example, a dual-core with HTA multi-threaded application that scales well
will enable a single physical package to appeaand is optimized on SMP systems will have an
as four logical processors, capable of runningnstantaneous performance benefit from CMP
four processes or threads simultaneously. Figbecause of these extra logical processors com-
ure 2 shows an example of a CMP with twoing from cores and threads. Even if the appli-

2005 Linux Symposium e 195

cation is not multi-threaded, it can still take ad-3.1 Opportunities for improving peak per-
vantage of these extra logical processors in a formance
multi-tasking environment.

CMP also brings in new optimization oppor- In a CMP implementation where there are no
tunities which will further improve the sys- shared resources between cores sharing a phys-
tem performance. One of the optimization op-ical package, cores are very similar to individ-
portunity is in the area of Operating Systemual CPU packages found in a multi-processor
(OS) scheduler. Making the OS scheduler CMPenvironment. OS scheduler which is optimized
aware will result in an improved peak perfor- for SMT and SMP will be sufficient for deliv-
mance and power savings. ering peak performance in this case.

In general, OS scheduler will try to equally dis- However, in most of the CMP implementations,
tribute the load among all the available procesto make best use of the resources cores in a
sors. In a CMP environment, OS scheduler caphysical package will share some of the re-
be further optimized by looking at micro archi- sources (like some portion of cache hierarchy,
tectural information(like L2 cache misses, Cy-FSB resources, ...). In this case, kernel sched-
cles Per Instruction (CPI), ...) of the running uler should schedule tasks in such a way that it
tasks. OS scheduler can decide which tasks caminimizes the resource contention, maximizes
be scheduled on same core/package and whiche system throughput and acts fair between
can'’t be scheduled together based on this micrequal priority tasks.

architectural information. Based on these deci-

sions, scheduler tries to decrease the resourdet’s consider a system with four physical CPU
contentions in a CPU core or a package andgdackages. Assume that each CPU package has
thereby resulting in increased throughput. Intwo cores sharing the last level cache and FSB
the past, some work[10, 9] has been done in thigueue. Let's further assume that there are four
area and because of the complexities involvedunnable tasks, with two tasks scheduled on
(like what micro architectural information need package 0, one each on package 1, 2 and pack-
to be tracked for each task and issues in incorage 3 being idle. Tasks scheduled on package
porating this processor architecture specific inO will contend for last level cache shared be-

formation into generic OS scheduler) this worktween cores, resulting in lower throughput. If
is not quite ready for the inclusion in today’s all the tasks are FSB intensive (like for exam-

Operating Systems. ple Streams benchmark), because of the shared
FSB resources between cores, FSB bandwidth
We will not address the micro architectural in-for each of the two tasks in package 0 will be
formation based scheduler optimizations in thishalf of what individual tasks get on package
paper. Instead this paper talks about the OF and 2. This scheduling decision isn't quite
CMP scheduler Optimization Opportunities in r|ght both from throughput and fairness per-
the case where the system is lightly loaded (i.e.gpective. The best possible scheduling decision
the number of runnable tasks in the system argi|| be to schedule the four available tasks on
less compared to the number of available prothe four different packages. This will result in
cessors in the system). These optimization opeach task having independent, full access to last
portunities are simple and straight forward tojeve| shared cache in the package and each will

leverage in today’s Operating Systems and willyet fair share of the FSB bandwidth.
help in improving peak performance or power

savings. On CMP with shared resources between cores

196 e Chip Multi Processing aware Linux Kernel Scheduler

in a physical package, for peak performance3.2.1 CMP implications on P and C-states
scheduler must distribute the load equally
among all the packages. This is similar to P_states
SMT scheduler optimizations in todays operat-
ing systems.
In a CMP configuration, typically all cores in
one physical package will share the same volt-
3.2 Opportunities for improving power age plane. Because of this, a CPU package
savings will transition to a higher P-state, only when
all cores in the package can make this transi-
tion. P-state coordination between cores can
Power management is a key feature in today'se either implemented by hardware or soft-
processors across all market segments. Difware. With this mechanism, P-state transition
ferent power saving mechanisms like P-stategequests from cores in a package will be co-
and C-States are being employed to save morerdinated, causing the package to transition to
power. The configuration and control infor- target state only when the transition is guar-
mation of these power saving mechanisms ara@nteed to not lead to incorrect or non-optimal
exported through Advanced Configuration andperformance state. If one core is busy running
Power Interface (ACPI)[2]. Operating Systema task, this coordination will ensure that other
directed Configuration and Power Managemenidle cores in that package can't enter lower
(OSPM) uses these controls to achieve desiregower P-states, resulting in the complete pack-
balance between performance and power. age at the highest power P-state for optimal per-
formance. In general, this coordination will en-
ACPI defines the power state of processors andure that a processor package frequency will be
are designated as CO, C1, C2, C3, ..., Cn. Thehe numerically lowest P-state (highest voltage
CO power state is an active power state wherand frequency) among all the logical processors
the CPU executes instructions. The C1 throughn the processor package.
Cn power states are processor sleeping (idle)
states where the processor consumes less power
and dissipates less heat. C-states
While in the CO state, ACPI allows the perfor-
mance of the processor to be altered througin a CMP configuration with shared resources
performance state (P-state) transitions. Eachetween the cores, processor package can be
P-state will be associated with a typical powerbroken up into different blocks, one block for
dissipation value which depends on the operateach execution core and one common block
ing voltage and frequency of that P-state. Ustepresenting the shared resources between all
ing this, a CPU can consume different amountshe cores (as shown in Figure 1). Depending on
of power while providing varying performance the implementation, each core block can inde-
at CO (running) state. At a given P-state, CPUpendently enter some/all of the C-state’s. The
can transit to numerically higher numbered C-common block will always reside in the numer-
states in idle conditions. In general, numeri-ically lowest (highest power) C-state of all the
cally higher the P states (i.e., lower the CPUcores. For example, if one core is in C1 and
voltage) and C-states, the lesser will be powenpther core is in CO, shared block will reside in
consumed, heat dissipated. Co.

2005 Linux Symposium e 197

3.2.2 Scheduling policy for power savings 4 Linux Kernel Scheduler enhance-
ments

Let's consider a system having two physica|Process scheduler in 2.6 Linux Kernel is based

packages, with each package having two core@" hierarchical scheduler domains constructed
sharing the last level cache and FSB resource§ynamically depending on the processor topol-
If there are two runnable tasks, as observe@9Y In the system. Each domain contains a
in the Section 3.1 peak performance will beliSt of CPU groups having a common property.

achieved when these two tasks are scheduldg?@d balancer runs at each domain level and
on different packages. But, because of the pscheduling decisions happen between the CPU

state coordination, we are restricting idle coreJrOUPs atany given domain.
in both the packages to run at higher power Pa

state. Similarly the shared block in both they, o coming sections, stands for version 2.6.12-

pk;ackages V\]fi” resibde in higher %O\ger C(()]I.StaterCS[6]. Current Linux Kernel domain scheduler
(because of one busy core) and depending 9L aware of three different domains represent-

the implementation, idle cores in both the packamg SMT (calledcpu_domain), SMP (called
ages may not be able to enter the availabl

| ¢ C-state. This will It ‘f:)hys_domain) and NUMA (callednode_
owest power £.-state. - This Wil Tesuit I NoN- 4omain). Current Linux kernel has core de-
optimal power savings.

tection capabilities for x86, x86_64, ia64 ar-
chitectures. This will place all CPU cores in a

: . node into different sched groups in SMP sched-
Instead, if the scheduler picks the same packag&:Ier domain, even though they reside in dif-

for both the tasks, other package with all COreSarant physical packages. The first step nat-
being idle, will transition slowly into the lowest urally is to add a new scheduler domain rep-

power P and C-state, resulting in more powerresenting CMP (calledore_domain). This

sa;]/injjsl.. Bué ashthhe coreks sharr1e last level CEChs\lill help the kernel scheduler identify the cores
scheduling both the tasks to the same pac ag"3haringagiven physical package. This will en-

will not lead to o_ptlmal behavior from perfor-_ able the implementation of scheduling policies
mance perspective. Performance impact WI||h-

depend on the behavior of the tasks and sharedgh“ghted In Section 3.

resources between the cores. In this particulaFigure 3 shows the scheduler domain hierarchy
example, if the tasks are not memory/cache insetup with current Linux Kernel on a system

tensive, performance impact will be very min- having two physical packages. Each package
imal. In general, more power can be savechas two cores and each core having two logical
with relatively smaller impact on performance threads. Figure 4 shows the scheduler domain
by scheduling them on the same package. hierarchy setup with the new CMP scheduler

domain.

Il the references to “Current Linux Kernel” in

On CMP with no shared resources between the .

cores in a physical package, scheduler s.hould/]":L _Scheduler enhancements for improv-
distribute the load among the cores in a pack- ing peak performance

age first, before looking for an idle package. As

a result, more power will be saved with no im- As noted in Section 3.1, when the CPU cores in
pact on performance. a physical package share resources, peak per-

198 e Chip Multi Processing aware Linux Kernel Scheduler

mesenies I will h_elp detecta si_tuation Where more than one
T T T i et core in a package is busy, with another package

1 being completely idle. Similar to the above,

CPU Domains rovey I vy I vy B e active load balance will get kicked on one of
ottt | Pttt [eltad] el the non-idle cores in the busiest package. In

the presence of SMT and CMP, active load bal-
ance needs to pick up an idle package if one is

D i domin v available; otherwise it needs to pick up an idle

» 0 * Scheduler group ¢ %0 | Scheduler domain with

R v grougs core. This will result in load being uniformly
distributed among all the packages in a SMP
domain and all the cores with in a package.

Figure 3: Scheduler domain hierarchy with cur-

rent Linux Kernel on a system having two phys-|n pre 2.6.12 -mm kernels, there is a change in

ical packages, each having two cores and eaciictive load balance code which leverage the do-

core having two logical threads. main scheduler topology more effectively. In-
stead of looking for an idle package, active load

formance will be achieved when the load isPalance code is modified in such a way, that it
distributed uniformly among all physical pack- SIMPly moves the load to the processor which
ages. Following subsections will look into the d€tects the imbalance. In some of the cases[1]

enhancements required for implementing thidhis will take few extra hops in finding a correct
policy. processor destination for a process but because

of simplicity reasons this was pursued. This
modification to active load balance also works
in the presence of both SMT and CMP.

-

4.1.1 Active load balance in presence of

CMP and SMT Figures 4 and 5 show how active balance plays

a role in distributing the load equally among
With SMT and SMP domains in current Linux the physical packages and CPU cores in pres-
Kernel, load balance at SMP domain will helpence of CMP and SMT. Figure 6 shows how
in detecting a situation where all the SMT sib-the new active balance will help in distributing
lings in one physical package are completelythe load equally among the physical packages,
idle and more than one SMT sibling is busyeven though there is no idle package available.
in another physical package. Load balance or his will help from the fairness perspective.
processors in idle package will detect this situa-
tion and will kick active load balance on one of
the non i.dle SMT siblings in the busiest pack-,4 1 5 cpu_power selection
age. Active load balance then looks for a pack-
age with all the SMT threads being idle and
pushes the task (which was just running beforédne of the key parameters of a scheduler do-
active load balance got kicked in) to one of themain is the scheduler groupspu_power .
siblings of the selected idle package, resultindt represents effective CPU horsepower of the
in optimal performance. scheduler group and it depends on the under-
neath domain characteristics. With SMP and
Similarly in the presence of new scheduler do-SMT domains in current Linux Kernetpu_
main for CMP, load balance in SMP domainpower of sched groups in the SMP domain is

2005 Linux Symposium e 199

rActive load balance kicks in

PhysDomains

i
Core Domains

CRU_POWER = 140.5)

BefureLuadBaIam:e 12 [.
After Load Balance] 11

CPU Domains

[:
Before Load Balanc : Lo

| e | e CPU
After Load Balance Lo L)
. Figure 6: Demonstration of active load balance
' Bugy CPU - Idle CPT

with 6 tasks, on a system having two physi-

Figure 4: Demonstration of active load balance®@ Packages, each having four cores. Active
with 4 tasks, on a system having two physical©@d balance kicks in at SMP domain between
packages, each having two cores and each coFtéle two physical packaggs, distributing the load
having two logical threads. Active load balanceequally among the physical packages

kicks in at the core domain for the first package,

distributing the load equally among the cores cgicylated with the assumption that each ex-

tra logical processor in the physical package
will contribute 10% to theepu_power of the
physical package.

With the new CMP domaingpu_power for
CMP domains scheduler group will be same
ascpu_power of schedule group in current
Linux Kernel's SMP domain (as the under-
neath SMT domain will remain same). Be-
cause of the new CMP domain underneath, new
cpu_power for SMP domains sched group

rActive load balance kicks in

il © 6 0 0 e o o o

Core Domains [Toenenny

CPU Domains [

- \ e —- needs to be selected.
After Load Balance] 10
If the cores in a physical package don’t share
| e Tkle CPU

resources, then thepu_power of groups in

Figure 5: Demonstration of active load balanceS'vIP domain, wil sw_nply be the.horsepower
um of all the cores in that physical package.

with 2 tasks, on a system having two physicals

packages, each having two cores and each co%rl lihe ott;]err h?nd, Irf the t(r:]ores n a ph)r/smal
having two logical threads. Active load bal- package share resources, thendpe_powe

ance kicks in at SMP domain between the twoof groups in SMP domain has to be smaller

gfr:]yc')srllzatlhp: ;l:\?/gﬁ:ZI%:tcrnglg:arlsg the load equall)%:uss more about this in the power saving Sec-

tions 4.2.1 and 4.2.2 and determine how much
smaller this needs to be for the peak perfor-
mance mode policy.

200 e Chip Multi Processing aware Linux Kernel Scheduler

4.1.3 exec, fork balance this power savings policy as default. For the
other CMP implementations, we can allow the
Pre 2.6.12 mm kernels has exec, forkadministratorto choose a scheduling policy of-

balance[3] introduced by Nick Piggin. Setting fering either peak performance (covered in Sec-
SD_BALANCE_{EXEC, FORK}flags to do- tion 4.1) or improved power savings. Depend-

mains SMP and above, will enable exec, forking on the requirements one can select either of
balance. Because of this, whenever a new prdhese policies.

cess gets created, it will start on the idlest pack- _ . o
age and idlest core with in that package. Thigollowmg subsections highlights the changes

will remove the dependency on the active |an(equired in kernel S‘?hed”'ef for implementing
balance to select the correct physical packagér,nproveCI power savings policy on CMP.

CPU core for a new task. This makes the pro-

cess of picking the right processor more opti- .

mal as it happens at the time of task creation?-2-1 ~CPU_power selection

instead of happening after a task starts running

on awrong CPU. The first step in implementing this power sav-

. . ings policy is to allow the system under light
exec, fork balance will select the optimal CPU| = 4 - nditions to go into the state with one

at the beginning itself and if dynamics Changephysical package having more than one core

later during the process run, active load bal-busy and with another physical package be-
ance will kick in and distribute the load equally ing completely idle. Using scheduler group’s

among _the_ physical packages and the CPLtJ:pu power in SMP domain and with modifi-
cores with in them. cations to load balance, we can achieve this.

4.2 Scheduler enhancements for improv- In the presence of CMP domain, we will set
ing power savings cpu_power of scheduling group in SMP do-

main to the sum of all the cores horsepower

As observed in Section 3.2, when the systerr'1n thaf[phys'.cal package. And if the_ load bal-

ance is modified such that, the maximum load

is lightly loaded, optimal power savings can bein a physical package can grow up to tei_

achieved when all the cores in a physical pack- ower of that scheduling group, then the sys-

age are completely loaded before distributingf .
: em can enter a state, where one physical pack-
the load to another idle package.

age has all its cores busy and another physical

When the cores in a physical package share rd2ackage in the system being completely idle.
sources, this scheduling policy will slightly im-
pact the peak performance. Performance im k
pact will depend on the application behavior,domain as before (same as the one used for
shared resources between cores and the numbeMP domain in the current Linux Kernel) and
of cores in a physical package. When the corethis will result in active load balance when

don't share resources, this scheduling policyt S€€S @ situation where more than one SMT
will result in an improved power savings with thréad in a core is busy, with another core be-

no impact on peak performance. ing completely idle. As the performance con-
tribution by SMT is not as large as CMP, this

For the CMP implementations which don’t behavior will be retained in power saving mode
share resources between cores, we can make well.

We will leave thecpu_power for the CMP

2005 Linux Symposium e 201

Active load balance kicks in

'.““ulnllln"".)) _"l'.|||lllllli|||._.t.‘
. . 1 A ¥

4.2.2 Active load balance

Phys Demains ‘ i
..""ll|l|||||||u|ll"") ..l-“ll.lllllllllllll"‘

CPUPOWER = 4428

Next step in implementing this power savings A
policy is to detect the situation where there are Core Domins TSI I ORISRy
multiple packages being busy, each having lo |#uroe=z [t St et S
of idle cores and move the complete load intc ;.. ..o &
minimal number of packages for optimal pOwer e Loadgalance [
savings (this minimal number depends on the
number of tasks running and number of coresy

. . § Busy CPU Idle CPT
in each physical package).

L » .
Vg * *
PO T AR

=

b

i |

Let's take an example where there are tWoFlgure 7. Demonstration of active load balance

packages in the system, each having two coreg.)r improved POWET Savings with 4 tasks, on
There can be a situation where there are tw system having two physical packages, each

runnable tasks in the system and each end u aving four cores. Active load balance kicks in

running on a core in two different packages,getween the two physical packages, resulting in

with one core in each package being idle. Thismovement of th_e cqm_plete load to one physmal
ckage, resulting in improved power savings

situation needs to be detected and the comple!%a

load needs to be moved into one physical pack-
age, for more power savings. vent the idle core in package 1 doing the same

thing to the busiest core in package O (caus-
For detecting this situation, scheduler will cal-ing unnecessary ping-pong) load balance algo-
culate watt wastage for each scheduling groupithm needs to follow the ordering. Figure 7
in SMP domain. Watt wastage represents numshows a demonstration of this active load bal-
ber of idle cores in a non-idle physical pack-ance, which will result in improved power sav-
age. This is an indirect indication of wastedings.
power by idle cores in each physical package
so that non-idle cores in that package run unAs the number of cores residing in a physical
affected. Watt wastage will be zero when allpackage increase, shared resources between the
the cores in a package are completely idle ogores will become bottle neck. As the con-
completely busy. Scheduler can try to mini-tention for the resources increase, power sav-
mize watt wastage at SMP domain, by movinging scheduling policy will resultin an increased
the running tasks between the groups. Durindmpact on peak performance. As shown in Fig-
the load balance at SMP domain level, if theure 7, moving the complete load to one physi-
normal load balance doesn't detect any imbalcal package will indeed consume lesser power
ance, idle core (in a package which is not wastcompared to keeping both the packages busy.
ing much power compared to others in SMPBUt if the cores residing in a package share
domain) can run this power saving schedulingast level cache, the impact of sharing the last
policy and see if it can pull a task (using activelevel cache by 4 tasks may outweigh the power

load balance) from a package which is wastingsaving. To limit such performance impact, we
lot of power. can let the administrator choose the allowed

watt wastage for each package. Allowed watt
In the last example, idle core in package Owastage is an indirect indication of the schedul-
can detect this situation and can pickup theang group’s horsepowercpu_power of the
load from busiest core in package 1. To pre-scheduling group in SMP domain can be mod-

202 e Chip Multi Processing aware Linux Kernel Scheduler

ified proportionately based on the allowed watt5 Summary & Future work
wastage. Load balance modifications in Sec-

tion 4.2.1 will limit the maximum load that c\pp related scheduler enhancements dis-
a package can pickup (under light load conyssed in this paper fits naturally to the 2.6
ditions) and hence the impact to peak perfory jnyx Kernel Domain Scheduler environment.
mance. More power will be saved with Sma”erDepending on the requirements, administra-
allowed watt wastage. In the case shown in Figior can select the peak performance or power
ure 7, administrator for example can say, undega\,ing scheduler policy. We have prototyped
light load cond.itions don’t overload one physi- peak performance policy discussed in this pa-
cal package with more than 2 tasks. per. We are currently experimenting with the
power saving policy, so that it behaves as ex-
Setting the scheduler grougpu_power of pected under the presence of CMP, SMT and
SMP domain to the sum of all the cores horseunder the light, heavy load conditions. Once
power (i.e., allowed watt wastage is zero) will e complete the performance tuning and anal-

result in a package picking up the max loadysis with real world workloads, these patches
depending on the number of cores. This willwill hit the Linux Kernel Mailing List.

result in maximum power saving. Setting the _ _
cpu_power to a value less than the combinedFor the future generation CMP imple-
horsepower of two cores (i_e.’ allowed Wattmentanons, researchers and scientists are
wastage is one less than the number of core@xperimenting[8] with “many tens of cores,
in a physical package) will distribute the load Potentially even hundreds of cores per package

equa"y among the physica| packages_ Th|§nd these cores Supportin.g tens, hundreds,
will result in peak performance. Any value for maybe even thousands of simultaneous execu-

cpu_power in between will limit the impact tion threads.” Probably we can extend Moore’s
to peak performance and hence the power say@w[7] to CMP and can dare say that number
ings. of cores per die will double approximately
every two years. This sounds plausible for
dhe coming decade at least. With more CPU
cores per physical package, kernel scheduler
optimizations addressed in this paper will
become critical. In future, more experiments
and work need to be focused on bringing micro
architectural information based scheduling to
the mainline.

Administrator can select the peak performanc
or the power savings policy by setting appro-
priate value to the scheduler grouptspu_
power in SMP domain.

4.2.3 exec, fork balance

Acknowledgments
SD_BALANCE_{EXEC, FORK}flags need

to be reset for domains SMP and above, Ca”%\'/lany thanks to the colleague’s at Intel Open

ing the new process to be started in the same, ;;ce Technology Center for their continuous
physical package. Normal load balance WI||Supp0rt_

kick in when the load of a package is more than

the package’s horsepowespu_power) and Thanks to Nick Piggin and Ingo Molnar for al-
there is an imbalance with respect to anotheways providing quick comments on our sched-
physical package. uler patches.

References

[1] Active load balance maodification in pre

2.6.12 -mm kernelshttp:
/lwww.ussg.iu.edu/hypermail/
linux/kernel/0503.1/0057.html

[2] Advanced configuration and power interface

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

spec 3.0http://www.acpi.info/
DOWNLOADS/ACPIspec30.pdf .

Balance on exec and fork in pre 2.6.12 -mm
kernels.http:

/lwww.ussg.iu.edu/hypermail/
linux/kernel/0502.3/0037.html

Intel dual-core processors.
http://www.intel.com/
technology/computing/dual-core

Intel hyper-threading technology.
http://www.intel.com/
technology/hyperthread

Linux kernel.
http://www.kernel.org

Moore’s law. http://www.intel.com/
research/silicon/mooreslaw.htm

Processor and platform evolution for the next
decadehttp://www.intel.com/
technology/techresearch/idf/
platform-2015-keynote.htm

Daniel Nussbaum Alexandra Fedorova,
Christopher Small and Margo Seltzé&hip
Multithreading Systems Need a New
Operating System Schedul&SIGOPS, ACM,
2004.

Jun Nakajima and Venkatesh Pallipadi.
Enhancements for Hyper-Threading

Technology in the operating System: Seeking

the Optimal SchedulingVIESS, USENIX,
December 2002.

2005 Linux Symposium e 203

204 e Chip Multi Processing aware Linux Kernel Scheduler

Proceedings of the
Linux Symposium

Volume Two

July 20nd-23th, 2005
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.

C. Craig Rossl.inux Symposium
Stephanie Donovaiinux Symposium

Review Committee

Gerrit HuizengalBM

Matthew Wilcox,HP

Dirk Hohndel,Intel

Val Henson Sun Microsystems
Jamal Hadi SalimiZnyx

Matt Domsch Dell
Andrew Hutton Steamballoon, Inc.

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

