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Abstract

The Linux 2.6 release provides four disk I/O
schedulers: deadline, anticipatory, noop, and
completely fair queuing (CFQ), along with an
option to select one of these four at boot time
or runtime. The selection is based ona pri-
ori knowledge of the workload, file system,
and I/O system hardware configuration, among
other factors. The anticipatory scheduler (AS)
is the default. Although the AS performs
well under many situations, we have identi-
fied cases, under certain combinations of work-
loads, where the AS leads to process starvation.
To mitigate this problem, we implemented an
extension to the AS (called Cooperative AS or
CAS) and compared its performance with the
other four schedulers. This paper briefly de-
scribes the AS and the related deadline sched-
uler, highlighting their shortcomings; in addi-
tion, it gives a detailed description of the CAS.
We report performance of all five schedulers
on a set of workloads, which represent a wide
range of I/O behavior. The study shows that
(1) the CAS has an order of magnitude im-
provement in performance in cases where the
AS leads to process starvation and (2) in sev-
eral cases the CAS has performance compa-
rable to that of the other schedulers. But, as

the literature and this study reports, no one
scheduler can provide the best possible perfor-
mance for all workloads; accordingly, Linux
provides four I/O schedulers from which to se-
lect. Even when dealing with just four, in sys-
tems that service concurrent workloads with
different I/O behaviors,a priori selection of
the scheduler with the best possible perfor-
mance can be an intricate task. Dynamic se-
lection based on workload needs, system con-
figuration, and other parameters can address
this challenge. Accordingly, we are developing
metrics and heuristics that can be used for this
purpose. The paper concludes with a descrip-
tion of our efforts in this direction, in particular,
we present a characterization function, based
on metrics related to system behavior and I/O
requests, that can be used to measure and com-
pare scheduling algorithm performance. This
characterization function can be used to dy-
namically select an appropriate scheduler based
on observed system behavior.

1 Introduction

The Linux 2.6 release provides four disk I/O
schedulers: deadline, anticipatory, completely
fair queuing (CFQ), and noop, along with an
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option to select one of these at boot time or run-
time. Selection is based ona priori knowledge
of the workload, file system, and I/O system
hardware configuration, among other factors.
In the absence of a selection at boot time, the
anticipatory scheduler (AS) is the default since
it has been shown to perform better than the
others under several circumstances [8, 9, 11].

To the best of our knowledge, there are no
performance studies of these I/O schedulers
under workloads comprised of concurrent I/O
requests generated by different processes that
exhibit different types of access patterns and
methods. We call these types of workloads
“mixed workloads.” Such studies are of in-
terest since, in contemporary multiprogram-
ming/multiprocessor environments, it is quite
natural to have several different types of I/O
requests concurrently exercising the disk I/O
subsystem. In such situations, it is expected
that the I/O scheduler will not deprive any pro-
cess of its required I/O resources even when
the scheduler’s performance goals are met by
the processing of concurrent requests gener-
ated by other processes. In contrast, due to the
anticipatory nature of the AS, there are situa-
tions, which we identify in this paper, when
the AS leads to process starvation; these situ-
ations occur when a mixed workload stresses
the disk I/O subsystem. Accordingly, this pa-
per answers the following three questions and
addresses a fourth one, which is posed in the
next paragraph.

Q1. Are there mixed workloads that potentially
can starve under the AS due to its anticipatory
nature?

Q2. Can the AS be extended to prevent such
starvation?

Q3. What is the impact of the extended sched-
uler on the execution time of some realistic
benchmarks?

In this paper we also explore the idea of dy-
namic scheduler selection. In an effort to de-
termine the best scheduler, [13] quantifies the
performance of the four I/O schedulers for dif-
ferent workloads, file systems, and hardware
configurations. The conclusion of the study is
that there is “no silver bullet,” i.e., none of the
schedulers consistently provide the best possi-
ble performance under different workload, soft-
ware, and hardware combinations. The study
shows that (1) for the selected workloads and
systems, the AS provides the best performance
for sequential read requests executed on sin-
gle disk hardware configurations; (2) for mod-
erate hardware configurations (RAID systems
with 2-5 disks), the deadline and CFQ sched-
ulers perform better than the others; (3) the
noop scheduler is particularly suitable for large
RAID (e.g., RAID-0 with tens of disks) sys-
tems consisting of SCSI drives that have their
own scheduling and caching mechanisms; and
(4) the AS and deadline scheduler provide sub-
stantially good performance in single disk and
2-5 disk configurations; sometimes the AS per-
forms better than the deadline scheduler and
vice versa. The study infers that to get the
best possible performance, scheduler selection
should be dynamic. So, the final question we
address in this paper is:

Q4. Can metrics be used to guide dynamic se-
lection of I/O schedulers?

The paper is organized as follows. Section 2
describes the deadline and anticipatory sched-
ulers, highlighting similarities and differences.
The first and second questions are answered in
Sections 3 and 4, respectively, by demonstrat-
ing that processes can potentially starve under
the AS and presenting an algorithm that ex-
tends the AS to prevent process starvation. To
answer the third question, Section 5 presents
a comparative analysis of the deadline sched-
uler, AS, and extended AS for a set of mixed
workloads. Furthermore, the execution times
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of a set of benchmarks that simulate web, file,
and mail servers, and metadata are executed un-
der all five schedulers are compared. Finally,
the fourth question is addressed in Section 6,
which presents microbenchmark-based heuris-
tics and metrics for I/O request characterization
that can be used to guide dynamic scheduler se-
lection. Sections 7, 8, and 9 conclude the paper
by highlighting our future work, describing re-
lated work, and presenting conclusions, respec-
tively.

2 Description of I/O Schedulers

This section describes two of the four sched-
ulers provided by Linux 2.6, the deadline
scheduler and the anticipatory scheduler (AS).
The deadline scheduler is described first be-
cause the AS is built upon it. Similarities
and differences between the two schedulers are
highlighted. For a description of the CFQ and
noop schedulers, refer to [13].

2.1 Deadline Scheduler

The deadline scheduler maintains two separate
lists, one for read requests and one for write
requests, which are ordered by logical block
number—these are called thesort lists. During
the enqueue phase, an incoming request is as-
signed an expiration time, also calleddeadline,
and is inserted into one of the sort lists and one
of two additional queues (one for reads and one
for writes) ordered by expiration time—these
are called thefifo lists. Scheduling a request to
a disk drive involves inserting it into a dispatch
list, which is ordered by block number, and
deleting it from two lists, for example, the read
fifo and read sort lists. Usually a set of contigu-
ous requests is moved to the dispatch list. A
request that requires a disk seek is counted as

16 contiguous requests. Requests are selected
by the scheduler using the algorithm presented
below.

Step 1: If there are write requests in the write
sort list and the last two scheduled requests
were selected using step 2 and/or step 3, then
select a set of write requests from the write sort
list and exit.

Step 2: If there are read requests with expired
deadlines in the read fifo list, then select a set
of read requests from this list and exit.

Step 3: If there are read requests in the read sort
list, then select a set of read requests from this
list and exit.

Step 4: If there are write requests in the write
sort list, then select a set of write requests from
this list and exit.

When the scheduler assigns deadlines, it gives
a higher preference to reads; a read is satisfied
within a specified period of time—500ms is the
default—while a write has no strict deadline. In
order to prevent write request starvation, which
is possible under this policy, writes are sched-
uled after a certain number of reads.

The deadline scheduler is work-conserving—
it schedules a request as soon as the previous
request is serviced. This can lead to poten-
tial problems. For example, in many applica-
tions read requests aresynchronous, i.e., suc-
cessive read requests are separated by small
chunks of computation, and, thus, successive
read requests from a process are separated by
a small delay. Ifp (p > 1) processes of this
type are executing concurrently, then ifp re-
quests, one from each process, arrive during
a time interval, a work-conserving scheduler
may first select a request from one process and
then select a request from a different process.
Consequently, the work-conserving nature of
the deadline scheduler may result in deceptive
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idleness [7], a condition in which the sched-
uler alternately selects requests from multiple
processes that are accessing disjoint areas of
the disk, resulting in a disk seek for each re-
quest. Such deceptive idleness can be elimi-
nated by introducing into the scheduler a short
delay before I/O request selection; during this
time the scheduler waits for additional requests
from the process that issued the previous re-
quest. Such schedulers are called non-work-
conserving schedulers because they trade off
disk utilization for throughput. The anticipa-
tory scheduler, described next in Section 2.2,
is an example of such a scheduler. The de-
ceptive idleness problem, with respect to the
deadline scheduler, is illustrated in Section 5,
which presents experimental results for various
microbenchmarks and real workloads. A study
of the performance of the deadline scheduler
under a range of workloads also is presented in
the same section.

The Linux 2.6 deadline scheduler has several
parameters that can be tuned to obtain better
disk I/O performance. Some of these param-
eters are the deadline time for read requests
(read_expire ), the number of requests to
move to the dispatch list (fifo_batch ),
and the number of times the I/O sched-
uler assigns preference to reads over writes
(write_starved ). For a complete descrip-
tion of the deadline scheduler and various tun-
able parameters, refer to [13].

2.2 Anticipatory Scheduler

Theseek-reducing anticipatory scheduleris de-
signed to minimize the number of seek op-
erations in the presence of synchronous read
requests and eliminate the deceptive idleness
problem [7]. Due to some licensing issues [14],
the Linux 2.6 implementation of the AS, which
we refer to asLAS, is somewhat different from
the general idea described in [7]. Nonetheless,

the LAS follows the same basic idea, i.e., if the
disk just serviced a read request from process
p then stall the disk and wait (some period of
time) for more requests from processp.

The LAS is comprised of three components:
(1) the original, non-anticipatory disk sched-
uler, which is essentially the deadline scheduler
algorithm with the deadlines associated with re-
quests, (2) the anticipation core, and (3) the an-
ticipation heuristic. The latter two serve read
requests. After scheduling a request for dis-
patch, the deadline scheduler selects a pending
I/O request for dispatch. In contrast, the LAS,
selects a pending I/O request, using the same
criteria as the deadline scheduler, and evaluates
it via its anticipation heuristic.

The anticipation core maintains statistics re-
lated to all I/O requests and decaying frequency
tables of exit probabilities, mean process seek
distances, and mean process think times. The
exit probabilityindicates the probability that an
anticipated request, i.e., a request from thean-
ticipated process, i.e., the process that gener-
ated the last request, will not arrive. Accord-
ingly, it is decremented when an anticipated
request arrives and is incremented otherwise,
e.g., when a process terminates before generat-
ing a subsequent I/O request. If the exit proba-
bility exceeds a specified threshold, any request
that arrives at the anticipation core is scheduled
for dispatch. The seek distance (think time) is
the difference between the logical block num-
bers (arrival times) of two consecutive requests.
These metrics—exit probability, mean process
seek distance, and mean process seek time—
are used by the anticipation heuristic, in combi-
nation with current head position and requested
head position, to determine anticipation time.

The anticipation heuristic evaluates whether to
stall the disk for a specific period of time (wait
period or anticipation time), in anticipation of
a “better request", for example from the an-
ticipated process, or to schedule the selected
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request for dispatch. The anticipation heuris-
tic used in the LAS is based on the shortest
positioning time first (SPTF) scheduling pol-
icy. Given the current head position, it evalu-
aes which request, anticipated or selected, will
potentially result in the shortest seek distance.
This evaluation is made by calculating the po-
sitioning times for both requests. If the logical
block of the selected request is close to the cur-
rent head position, the heuristic returns zero,
which causes the request to be scheduled for
dispatch. Otherwise, the heuristic returns a pos-
itive integer, i.e., the anticipation time, the time
to wait for an anticipated request. Since syn-
chronous requests are initiated by a single pro-
cess with interleaved computation, the process
that issued the last request may soon issue a re-
quest for a nearby block.

During the anticipation time, which usually is
small (a few milliseconds—6ms is the default)
and can be adjusted, the scheduler waits for the
anticipated request. If a new request arrives
during the wait period, it is evaluated immedi-
ately with the anticipation heuristic. If it is the
anticipated request, the scheduler inserts it into
the dispatch list. Otherwise, the following al-
gorithm is executed. If the algorithm does not
result in the new request being scheduled for
dispatch, the core continues to anticipate and
the disk is kept idle; this leads to potential prob-
lems, some of which are described in Section 3.

Step 1: If anticipation has been turned off, e.g.,
as a result of a read request exceeding its dead-
line, then update process statistics, schedule the
starving request for dispatch, and exit.

Step 2: If the anticipation time has expired then
update process statistics, schedule the request
for dispatch, and exit.

Step 3: If the anticipated process has termi-
nated, update the exit probability, update pro-
cess statistics, schedule the new request for dis-
patch, and exit.

Step 4: If the request is a read request that will
access a logical block that is “close” to the cur-
rent head position, then update process statis-
tics, schedule the new request for dispatch, and
exit. In this case, there is no incentive to wait
for a “better” request.

Step 5: If the anticipated process just started
I/O and the exit probability is greater than 50%,
update process statistics, schedule the new re-
quest for dispatch, and exit; this process may
exit soon, thus, there is no added benefit in fur-
ther anticipation. This step creates some prob-
lems, further described in Section 3, when co-
operative processes are executing concurrently
with other processes.

Step 6: If the mean seek time of the anticipated
process is greater than the anticipation time, up-
date process statistics, schedule the request for
dispatch, and exit.

Step 7: If the mean seek distance of the an-
ticipated process is greater than the seek dis-
tance required to satisfy the new request, up-
date process statistics, schedule the request for
dispatch, and exit.

Unlike the deadline scheduler, the LAS allows
limited back seeks. A back seek occurs when
the position of the head is in front of the head
position required to satisfy the selected request.
In deadline and other work-conserving sched-
ulers, such requests are placed at the end of
the queue. There is some cost involved in back
seeks, thus, the number of back seeks is limited
to MAXBACK(1024*1024) sectors; see [13]
for more information.

As described, the essential differences between
the LAS and deadline scheduler are the antici-
pation core and heuristics, and back seeks. Per-
formance of the LAS under a range of work-
loads is studied in Section 5, which highlights
its performance problems.
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3 Anticipatory Scheduler Problems

The anticipatory scheduler (LAS) algorithm is
based on two assumptions: (1) synchronous
disk requests are issued by individual processes
[7] and, thus, anticipation occurs only with re-
spect to the process that issued the last request;
and (2) for anticipation to work properly, the
anticipated process must be alive; if the an-
ticipated process dies, there is no further an-
ticipation for requests to nearby sectors. In-
stead, any request that arrives at the scheduler
is scheduled for dispatch, irrespective of the re-
quested head position and the current head po-
sition. These two assumptions hold true as long
as synchronous requests are issued by individ-
ual processes. However, when a group of pro-
cesses collectively issue synchronous requests,
the above assumptions are faulty and can result
in (1) faulty anticipation, but not necessarily
bad disk throughput, and (2) a seek storm when
multiple sets of short-lived groups of processes,
which are created and terminated in a very
short time interval, issue synchronous requests
collectively and simultaneously to disjoint sets
of disk area, resulting in poor disk through-
put. We call processes that collectively issue
synchronous requests to a nearby set of disk
blocks cooperative processes. Examples of
programs that generate cooperative processes
include shell scripts that read the Linux source
tree, different instances ofmake scripts that
compile large programs and concurrently read
a small set of source files, and different pro-
grams or processes that read several database
records. We demonstrate related behavior and
associated performance problems using the two
examples below.

3.1 Concurrent Streaming and Chunk
Read Programs

First, we demonstrate how the first assump-
tion of the LAS can lead to process starvation.

Consider two programs, A and B, presented in
Figure 2. Program A generates a stream of
synchronous read requests by a single process,
while program B generates a sequence of de-
pendent chunk read requests, each set of which
is generated by a different process.

Assume that Program B is reading the top-level
directory of the Linux source tree. The pro-
gram reads all the files in the source tree, in-
cluding those in the subdirectories, one file at
a time, and does not read any file outside the
top-level directory. Note that each file is read
by a different process, i.e., when Program B is
executed, a group of processes is created, one
after the other, and each issues synchronous
disk read requests. For this program, con-
sider the performance effect of the first assump-
tion, i.e., the per-process anticipation built into
the LAS. Recall that LAS anticipation works
only on a per-process basis and provides im-
proved performance only under multiple out-
standing requests that will access disjoint sets
of disk blocks. When Program A or B is ex-
ecuted while no other processes are accessing
the disk, anticipation does not reap a benefit
because there is only a small set of pending I/O
requests (due to prefetching) that are associated
with the executing program. There are no disk
head seeks that are targets for performance im-
provement.

Now consider executing both programs concur-
rently. Assume that they access disjoint disk
blocks and the size of thebig-file read
by Program A is larger than that of the buffer
cache. In this case, each read request results
in a true disk access rather than a read from
the buffered file copy. Since the two programs
are executing concurrently, at any point in time
there are at least two pending I/O requests, one
generated by each of the processes. Program B
sequentially creates multiple processes that ac-
cess the disk and only a small set of the total
number of I/O requests generated by Program
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B corresponds to a single process; all read re-
quests associated with a particular file are gen-
erated by one process. In contrast, the execu-
tion of Program A involves only one process
that generates all I/O requests. Since the antic-
ipation built into the LAS is associated with a
process, it fails to exploit the disk spatial local-
ity of reference of read requests generated by
the execution of Program B; however, it works
well for the requests generated by Program A.
More important is the fact that concurrent ex-
ecution of these two programs results in star-
vation of processes generated by Program B.
Experimental evidence of this is presented in
Section 5.

3.2 Concurrent Chunk Read Programs

This section demonstrates how the second as-
sumption of the LAS can fail and, hence, lead
to poor disk throughput. Consider the concur-
rent execution of two instances of Program B,
instances 1 and 2, reading the top-level direc-
tory of two separate Linux source trees that
are stored in disjoint sets of disk blocks. As-
sume that there areF files in each source tree.
Accordingly, each instance of Program B cre-
atesF different processes sequentially, each of
which reads a different file from the disk.

For this scenario, consider the performance ef-
fect of the second assumption, i.e., once the
anticipated process terminates, anticipation for
requests to nearby sectors ceases. When two
instances of program B are executing concur-
rently, at any point in time there are at least
two pending I/O requests, one generated by
each program instance. Recall that requests
to any one file correspond to only one pro-
cess. In this case, the anticipation works well
as long as only processess associated with one
program instance, say instance 1, are reading
files. When there are processess from the two

instances reading files then the second assump-
tion does not allow the scheduler to exploit
the disk spatial locality of reference of read
requests generated by another process associ-
ated with instance 1. For example, given pend-
ing I/O requests generated by two processes,
one associated with instance 1 and one asso-
ciated with instance 2, anticipation will work
well for each process in isolation. However,
once a process from one instance, say instance
1, terminates, even if there are pending requests
from another process of instance 1, the sched-
uler schedules for dispatch a request of the pro-
cess of instance 2. This results in a disk seek
and anticipation on the instance 2 process that
generated the request. This behavior iterates
for the duration of the execution of the pro-
grams. As a result, instead of servicing all read
requests corresponding to one source tree and,
thus, minimizing disk seeks, an expensive se-
quence of seeks, caused by alternating between
processes of the two instances of Program B,
occurs. For this scenario, at least 2F −1 seeks
are necessary to service the requests generated
by both instances of Program B. As demon-
strated, adherence to the second assumption of
the LAS leads to seek storms that result in poor
disk throughput. Experimental evidence of this
problem is presented in Section 5.

4 Cooperative Anticipatory Sched-
uler

In this section we present an extension to the
LAS that addresses the faulty assumptions de-
scribed in Section 3 and, thus, solves the prob-
lems of potential process starvation and poor
disk throughput. We call this scheduler the
Cooperative Anticipatory Scheduler (CAS). To
address potential problems, the notion of antic-
ipation is broadened. When a request arrives
at the anticipation core during an anticipation
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time interval, irrespective of the state of the an-
ticipated process (alive or dead) and irrespec-
tive of the process that generated the request,
if the requested block is near the current head
position, it is scheduled for dispatch and an-
ticipation works on the process that generated
the request. In this way, anticipation works not
only on a single process, but on a group of pro-
cesses that generate synchronous requests. Ac-
cordingly, the first assumption of the LAS and
the associated problem of starvation of coop-
erative processes is eliminated. Since the state
of the anticipated process is not taken into ac-
count in determining whether or not to schedule
a new request for dispatch, short-lived coopera-
tive processes accessing disjoint disk block sets
do not prevent the scheduler from exploiting
disk spatial locality of reference. Accordingly,
the second assumption is broadened and the as-
sociated problem of reduced disk throughput is
eliminated.

The CAS algorithm appears below. As in the
LAS algorithm, during anticipation, if a re-
quest from the anticipated process arrives at the
scheduler, it is scheduled for dispatch immedi-
ately. In contrast to the LAS, if the request is
from a different process, before selecting the
request for scheduling or anticipating for a bet-
ter request, the following steps are performed
in sequence.

Step 1: If anticipation has been turned off, e.g.,
as a result of a read request exceeding its dead-
line, then update process statistics, schedule the
starving request for dispatch, and exit.

Step 2: If the anticipation time has elapsed,
then schedule the new request, update process
statistics and exit.

Step 3: If the anticipation time has not elapsed
and the new request is a read that accesses
a logical block number “close” to the current
head position, schedule the request for dispatch
and exit. A request is considered close if the

requested block number is within some delta
distance from the current head position or the
process’ mean seek distance is greater than the
seek distance required to satisfy the request.
Recall that this defines a request from a coop-
erative process. At this point in time the an-
ticipated process could be alive or dead. If it
is dead, update the statistics for the request-
ing process and increment the CAScoopera-
tive exit probability, which indicates the exis-
tence of cooperative processes related to dead
processes. If the anticipated process is alive,
update the statistics for both processes and in-
crement the cooperative exit probability.

Step 4: If the anticipated process is dead, up-
date the system exit probability and if it is less
than 50% then schedule the new request and
exit. Note that this request is not from a co-
operative process.

Step 5: If the anticipated process just started
I/O, the system exit probability is greater than
50%, and the cooperative exit probability is less
than 50%, schedule the new request and exit.

Step 6: If the mean think time of the antic-
ipated process is greater than the anticipation
time, schedule the new request and exit.

This concludes the extensions to the anticipa-
tory scheduler aimed at solving the process
starvation and reduced throughput problems.

5 Experimental Evaluation

This section first presents a comparative perfor-
mance analysis, using a set of mixed workload
microbenchmarks, of the deadline scheduler,
LAS, and CAS. The workloads are described in
Sections 5.4, 5.5, and 5.6. The goal of the anal-
ysis is to highlight some of the problems with
the deadline scheduler and LAS, and to show
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that the CAS indeed solves these problems.
Second, we compare the execution times, under
all five schedulers, of a set of benchmark pro-
files that simulate web, file, and mail servers,
and metadata. A general description of these
profiles is provided in Section 5.1 and individ-
ual workloads are described in Sections 5.7-
5.10. The goal of this comparison is to show
that the CAS, in fact, performs better or as good
as the LAS under workloads with a wide range
of characteristics. Using these benchmarks, we
show that (1) the LAS can lead to process star-
vation and reduced disk throughput problems
that can be mitigated by the CAS, and (2) un-
der various workload scenarios, which are dif-
ferent from those used to demonstrate process
starvation or reduced throughput, the CAS has
performance comparable to the LAS.

5.1 Workload Description

The Flexible File System Benchmark (FFSB)
infrastructure [6] is the workload generator
used to simulate web, file, and mail servers,
and metadata. The workloads are specified us-
ing profiles that are input to the FFSB infras-
tructure, which simulates the required I/O be-
havior. Initially, each profile is configured to
create a total of 100,000 files in 100 directo-
ries. Each file ranges in size from 4 KB to 64
KB; the total size of the files exceeds the size
of system memory so that the randomopera-
tions (file read, write, append, create, or delete
actions) are performed from disk and not from
memory. File creation time is not counted in
benchmark execution time. A profile is config-
ured to create four threads that randomly ex-
ecute a total of 80,000 operations (20,000 per
thread) on files stored in different directories.
Each profile is executed three times under each
of the five schedulers on our experimental plat-
form (described in Section 5.2). The average of
the three execution times, as well as the stan-
dard deviation, are reported for each scheduler.

5.2 Experimental Platform

We conducted the following experiments on a
dual-processor (2.28GHz Pentium 4 Xeon) sys-
tem, with 1 GB main memory and 1 MB L2
cache, running Linux 2.6.9. Only a single pro-
cessor is used in this study. In order to elim-
inate interference from operating system (OS)
I/O requests, benchmark I/O accesses an ex-
ternal 7,200 RPM Maxtor 20 GB IDE disk,
which is different from the disk hosting the
OS. The external drive is configured with the
ext3 file system and, for every experiment,
is unmounted and re-mounted to remove buffer
cache effects.

5.3 Metrics

For the microbenchmark experiments, two ap-
plication performance metrics, application ex-
ecution time (in seconds) and aggregate disk
throughput (in MB/s), are used to demonstrate
the problems with different schedulers. With no
other processes executing in the system (except
daemons), I/O-intensive application execution
time is inversely proportional to disk through-
put. In such situations, the scheduler with the
smallest application execution time is the best
scheduler for that workload. In mixed work-
load scenarios, however, the execution time of
any one application cannot be used to compare
schedulers. Due to the non-work-conserving
nature of the LAS and CAS, these schedulers,
when serving I/O requests, introduce delays
that favor one application over another, some-
times at the cost of increasing the execution
times of other applications. Hence, in the pres-
ence of other I/O-intensive processes, the ap-
plication execution time metric must be cou-
pled with other metrics to quantify the relative
merit of different schedulers. Consequently,
we use the aggregate disk throughput metric in
such scenarios. Application execution time in-
dicates the performance of a single application
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while true
do

Program 1:

done

 

Program 2:
time cat 200mb-file > /dev/null

   dd if=/dev/zero of=file \
      count=2048 bs=1M

Figure 1: Program 1—generates stream write
requests; Program—2 generates stream read re-
quests

and disk throughput indicates overall disk per-
formance. Together, these two metrics help ex-
pose potential process starvation and reduced
throughput problems with the LAS.

5.4 Experiment 1: Microbenchmarks—
Streaming Writes and Reads

This experiment uses a mixed workload com-
prised of two microbenchmarks [9], shown in
Figure 1, to compare the performance of the
deadline scheduler, LAS, and CAS. It demon-
strates the advantage of the LAS and CAS over
the deadline scheduler in a mixed workload
scenario. One microbenchmark, Program 1,
generates a stream of write requests, while the
other, Program 2, generates a stream of read re-
quests. Note that the write requests generated
by Program 1 are asynchronous and can be de-
layed to improve disk throughput. In contrast,
Program 2 generates synchronous stream read
requests that must be serviced as fast as possi-
ble.

When Programs 1 and 2 are executed concur-
rently under the three different schedulers, ex-
perimental results, i.e., application execution
times and aggregate disk throughput, like those

shown in Table 1 are attained. These results in-
dicate the following. (1) For synchronous read
requests, the LAS performs an order of mag-
nitude better, in terms of execution time, and
it provides 32% more disk throughput than the
deadline scheduler. (2) The CAS has perfor-
mance similar to that of the LAS.

The LAS and CAS provide better performance
than the deadline scheduler by reducing un-
necessary seeks and serving read requests as
quickly as possible. For many such workloads,
these schedulers improve request latency and
aggregate disk throughput.

Scheduler Execution Time Throughput
(sec.) (MB/s)

Deadline 129 25
LAS 10 33
CAS 9 33

Table 1: Performance of Programs 1 and 2 un-
der the Deadline Scheduler, LAS, and CAS

5.5 Experiment 2: Microbenchmarks—
Streaming and Chunk Reads

To compare the performance of the deadline
scheduler, LAS, and CAS, illustrate the process
starvation problem of the LAS, and show that
the CAS solves this problem, this experiment
uses a mixed workload microbenchmark com-
prised of two microbenchmarks [9], shown in
Figure 2. One microbenchmark, Program A,
generates a stream of read requests, while the
other, Program B, generates a sequence of de-
pendent chunk read requests. Concurrent exe-
cution of the two programs results in concur-
rent generation of read requests from each pro-
gram. Thus, assume that the read requests of
these two programs are interleaved. In general,
the servicing of a read request from one of the
programs will be followed by an expensive seek
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Program A:
while true
do
   cat big-file > /dev/null
done

Program B:
time find . -type f -exec \
        cat ’{}’ ’;’ > /dev/null 

Figure 2: Program—A generates stream read
requests; Program—B generates chunk read re-
quests

in order to service a request from the other pro-
gram; this situation repeats until one program
terminates. However, if a moderate number of
requests are anticipated correctly, the number
of expensive seeks is reduced. For each cor-
rect anticipation, two seek operations are elim-
inated; an incorrect anticipation costs a small
delay. Accordingly, anticipation can be advan-
tageous for a workload that generates depen-
dent read requests, i.e., that exhibit disk spatial
locality of reference. However, as described
previously, the LAS can anticipate only if de-
pendent read requests are from the same pro-
cess. In this experiment the dependent read re-
quests of Program A are from the same pro-
cess, while the dependent chunk read requests
of Program B are from different processes.

Assume that Program B is reading the top-level
directory of the Linux source tree, as described
in Section 3.1. In this case, thefind command
finds each file in the directory tree, then thecat
command (spawned as a separate process) is-
sues a read request to read the file, with the
file name provided by thefindprocess from the
disk. The newcat process reads the entire file,
then the file is closed. This sequence of ac-
tions is repeated until all files in the directory
are read.

Note that, in this case, each file read operation
is performed by a different process, while LAS
anticipation works only on a per-process basis.
Thus, if these processes are the only ones ac-
cessing the disk, there will be no delays due
to seek operations to satisfy other processes.
However, when run concurrently with Program
A, the story is different, especially if, to elim-
inate disk cache effects, we assume that the
big-file read by Program A is larger than
the buffer cache. Note that during the execu-
tion of Program A a single process generates
all read requests.

When these two programs are executed con-
currently, anticipation works really well for the
streaming reads of Program A but it does not
work at all for the dependent chunk reads of
Program B. The LAS is not able to recognize
the dependent disk spatial locality of reference
exhibited by thecat processes of Program B;
this leads to starvation of these processes. In
contrast, the CAS identifies this locality of ref-
erence and, thus, as shown in Table 2, provides
better performance both in terms of execution
time and aggregate disk throughput. In addi-
tion, it does not lead to process starvation.

Scheduler Execution Throughput
Time (sec.) (MB/s)

Deadline 297 9
LAS 4767 35
CAS 255 34

Table 2: Performance of Program A and B un-
der the Deadline Scheduler, LAS, and CAS

The results in Table 2 show the following. (1)
The LAS results in very bad execution time;
this is likely because LAS anticipation does
not work for Program B and, even worse, it
works really well for Program A, resulting in
good disk utilization for Program A and a very
small amount of disk time being allocated for
requests from Program B. (2) The execution
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time under the deadline scheduler is 16 times
smaller than that under the LAS; this is likely
because there is no anticipation in the deadline
scheduler. (3) Aggregate disk throughput un-
der the deadline scheduler is 3.9 times smaller
than under the LAS; this is likely because LAS
anticipation works really well for Program A.
(4) The CAS alleviates the anticipation prob-
lems exhibited in the LAS for both dependent
chunk reads (Program B) and dependent read
workloads (Program A). As a result, CAS pro-
vides better execution time and aggregate disk
throughput.

5.6 Experiment 3: Microbenchmarks—
Chunk Reads

To illustrate the reduced disk throughput prob-
lem of the deadline scheduler and LAS and to
further illustrate the performance of the CAS,
this experiment first uses one instance of a mi-
crobenchmark that generates a sequence of de-
pendent chunk reads and then uses two con-
currently executing instances of the same pro-
gram, Program B of Figure 2, that access dis-
joint Linux source trees. The results of this ex-
periment are shown in Table 3 and Figure 3.

Scheduler Throughput (MB/s)
1 Instance 2 Instances

Deadline 14.5 4.0
LAS 15.5 4.0
CAS 15.5 11.6

Table 3: Chunk Reads under the Deadline
Scheduler, LAS, and CAS

As described before, in Program B a differ-
ent cat process reads each of the files in the
source tree, thus, each execution of the program
generates, in sequence, multiple processes that
have good disk spatial locality of reference.
With two concurrently executing instances of
Program B accessing disjoint sections of the
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Figure 3: Reading the Linux Source: multi-
ple, concurrent instances cause seek storms
with the deadline scheduler and LAS, which are
eliminated by the CAS

disk, the deadline scheduler seeks back and
forth several thousand times. The LAS is not
able to identify the dependent read requests
generated by the differentcat processes and,
thus, does not anticipate for them. As a re-
sult, like the deadline scheduler, the LAS be-
comes seek bound. In contrast, the CAS cap-
tures the dependencies and, thus, provides bet-
ter disk throughput and execution time. Recall
that, in this case, throughput is inversely pro-
portional to execution time.

As shown in Figure 3 and Table 3, with one in-
stance of Program B the three schedulers have
a performance difference of about 7%. One
would normally expect the execution time to
double for two instances of the program, how-
ever, for the reasons described above the dead-
line scheduler, LAS, and CAS increase their ex-
ecution times by a factor of 7, 7, and 2.5, re-
spectively. Again, the CAS has a smaller factor
increase (2.5) in execution time because it de-
tects the dependencies among cooperative pro-
cesses working in a localized area of disk and,
thus, precludes the seek storms that occur oth-
erwise in the deadline scheduler and LAS.
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5.7 Experiment 4: Web Server Benchmark

This benchmark simulates the behavior of a
web server by making read requests to ran-
domly selected files of different sizes. The
mean of the three execution times for each
scheduler are reported in Figure 4 and Table 4.
The numbers in the table are in seconds, and
bold numbers indicate the scheduler with the
best execution time for each benchmark. It is
worthwhile to point out that the standard de-
viations of the results are less than 4% of the
average values, which is small for all practi-
cal purposes. From the table we can conclude
that the CAS has the best performance of all the
schedulers in the case of random reads and the
CFQ has the worst performance. The LAS has
very good execution time performance which is
comparable to that of CAS; it trails the CAS by
less than 1%. The deadline, CFQ, and noop
schedulers trail the CAS by 8%, 8.9%, and
6.5%, respectively.

Scheduler Web Mail File Meta
Server Server Server Data

Deadline 924 118 1127 305
LAS 863 177 916 295
CAS 855 109 890 288
CFQ 931 112 1099 253
noop 910 125 1127 319

Table 4: Mean Execution Times (seconds) of
Different Benchmark Programs

5.8 Experiment 5: File Server Benchmark

This benchmark simulates the behavior of a
typical file server by making random read and
write operations in the proportions of 80% and
20%, respectively. The average of the three ex-
ecution times are reported in Figure 4 and Ta-
ble 4. The standard deviations of the results are
less than 4.5% of the average values. Here we
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Figure 4: Mean Execution Time (seconds) on
ext3 File System

can conclude that the CAS has the best perfor-
mance; the LAS trails the CAS by 2.9%; and
the other schedulers trail the CAS by at least
23%.

5.9 Experiment 6: Mail Server Benchmark

This benchmark simulates the behavior of a
typical mail server by executing random file
read, create, and delete operations in the pro-
portions of 40%, 40%, and 20%, respectively.
The average of the three execution times are
reported in Figure 4 and Table 4. The stan-
dard deviations of the results are less than 3.5%
of the average values except for the LAS for
which the standard deviation is about 11%.
From these results we can conclude that the
CAS has the best performance and the LAS has
the worst performance, the LAS trails the CAS
by more than 62%. The CFQ scheduler has
very good execution time performance com-
pared to the CAS; it trails by a little more than
3%. The deadline and noop schedulers trail the
CAS by 8% and 14%, respectively.
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5.10 Experiment 7: MetaData Program

This benchmark simulates the behavior of a
typical MetaData program by executing ran-
dom file create, write-append, and delete opera-
tions in the proportions of 40%, 40%, and 20%,
respectively. Note that in this benchmark there
are no read requests. The average of the three
execution times are reported in Figure 4 and Ta-
ble 4. The standard deviations of the results
are less than 3.5% of the average values except
for the noop scheduler for which the standard
deviation is 7.7%. From these results, we can
conclude that the CFQ scheduler has the best
performance. The LAS trails the CAS by 2%.
The deadline, LAS, CAS, and noop schedulers
trail the CFQ, the best, scheduler by as much as
26%.

6 I/O Scheduler Characterization
for Scheduler Selection

Our experimentation (e.g., see Figure 4) as
well as the study in [13] reveals that no one
scheduler can provide the best possible per-
formance for different workload, software, and
hardware combinations. A possible approach
to this problem is to develop one scheduler that
can best serve different types of these com-
binations, however, this may not be possible
due to diverse workload requirements in real
world systems [13, 15]. This issue is further
complicated by the fact that workloads have
orthogonal requirements. For example, some
workloads, such as multimedia database appli-
cations, prefer fairness over performance, oth-
erwise streaming video applications may suffer
from discontinuity in picture quality. In con-
trast, server workloads, such as file servers, de-
mand performance over fairness since small de-
lays in serving individual requests are well tol-
erated. In order to satisfy these conflicting re-

quirements, operating systems provide multi-
ple I/O schedulers—each suitable for a differ-
ent class of workloads—that can be selected, at
boot time or runtime, based on workload char-
acteristics.

The Linux 2.6.11 kernel provides four different
schedulers and an option to select one of them
at boot time for the entire I/O system and switch
between them at runtime on a per-disk basis [2].
This selection is based ona priori understand-
ing of workload characteristics, essentially by a
system administrator. Moreover, the scheduler
selection varies based on the hardware config-
uration of the disk (e.g., RAID setup), software
configuration of the disk, i.e., file system, etc.
Thus, static or dynamic scheduler selection is
a daunting and intricate task. This is further
complicated by two other factors. (1) Systems
that execute different kinds of workloads con-
currently (e.g., a web server and a file server)—
that require, individually, a different scheduler
to obtain best possible performance—may not
provide best possible performance with a sin-
gle scheduler selected at boot time or runtime.
(2) Similarly, workloads with different phases,
each phase with different I/O characteristics,
will not be best served bya priori scheduler
selection.

We propose a scheduler selection methodol-
ogy that is based primarily on runtime work-
load characteristics, in particular the average
request size. Ideally, dynamic scheduler selec-
tion would be transparent to system hardware
and software. Moreover, a change in hard-
ware or software configurations would be de-
tected automatically and the scheduler selec-
tion methodology would re-evaluate the sched-
uler choice. With these goals in mind, we de-
scribe below ideas towards the realization of a
related methodology.

We propose that runtime scheduler selection
be based ona priori measurements of disk
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throughput under the various schedulers and re-
quest sizes. These measurements are then used
to generate a function that at runtime, given the
current average request size, returns the sched-
uler that gives the best measured throughput for
the specified disk. Using the four schedulers
on our experimental system, described in Sec-
tion 5.2, augmented by a RAID-0 device with
four IDE 10 GB drives, we tooka priori mea-
surements by executing a program that creates
and randomly reads data blocks of various sizes
from several large files. The system is config-
ured with the ext3 file system; it runs the Linux
2.6.11 kernel to permit switching schedulers.
The ranking of the schedulers based on aver-
age request size and disk throughput is shown
in Figure 5. Experiments using this proposed
methodology to guide dynamic scheduler se-
lection are in progress.

7 Future Work

Our cooperative anticipatory scheduler elim-
inates the starvation problem of the AS by
scheduling requests from other processes that
access disk blocks close to the current head
position. It updates statistics related to re-
quests on a per-process basis such that future-
scheduling decisions can be made more appro-

priately. This scheduler has several tunable pa-
rameters, e.g., the amount of time a request
spends in the queue before it is declared expired
and the amount of time the disk is kept idle in
anticipation of future requests.

Because we were interested in investigating the
possible starvation problem and proposing a
solution, we did not investigate the effects of
changing these parameters; however, we have
begun to do so. We are especially interested in
studying the performance effects of the CAS,
with various parameter sets, on different disk
systems. Given that the study shows that differ-
ent parameter sets provide better performance
for systems with different disk sizes and config-
urations [13], a methodology for dynamically
selecting parameters is our goal. Furthermore,
we intend to experiment with maintaining other
statistics that can aid in making scheduling de-
cisions for better disk performance. An exam-
ple statistic is the number of times a process
consumes its anticipation time; if such a met-
ric exceeds a certain threshold, it indicates that
there is a mismatch between the workload ac-
cess pattern and the scheduler and, hence, such
a process should not be a candidate for antici-
pation.

With these types of advances, we will develop
a methodology for automatic and dynamic I/O
scheduler selection to meet application needs
and to maximize disk throughput.

8 Related Work

To our knowledge the initial work on antici-
patory scheduling, demonstrated on FreeBSD
Unix, was done in [7]. Later, the general idea
was implemented in the Linux kernel by Nick
Piggin and was tested by Andrew Martin [11].
To our surprise, during the time we were ex-
ploring the I/O scheduler, the potential starva-
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tion problem was reported to the Linux com-
munity independently on Linux mailing lists,
however, no action was taken to fix the prob-
lem [3].

Workload dependent performance of the four
I/O schedulers is presented in [13]; this work
points out some performance problems with
the anticipatory scheduler in the Linux oper-
ating system. There is work using genetic al-
gorithms, i.e., natural evolution, selection, and
mutation, to tune various I/O scheduler param-
eters to fit workload needs [12]. In [15] the au-
thors explore the idea of using seek time, av-
erage waiting time in the queue, and the vari-
ance in average waiting time in a utility func-
tion that can be used to match schedulers to
a wide range of workloads. This resulted in
the development of a maximum performance
two-policy algorithm that essentially consists
of two schedulers, each suitable for different
ranges of workloads. There also have been
attempts [2] to include in the CFQ scheduler
priorities and time slicing, analogous proces-
sor scheduler concepts, along with the antic-
ipatory statistics. This new scheduler, called
Time Sliced CFQ scheduler, incorporates the
“good” ideas of other schedulers to provide the
best possible performance; however, as noted
in posts to the Linux mailing list, this may not
work well in large RAID systems with Tagged
Command Queuing.

To the best of our knowledge, we are the first
to present a cooperative anticipatory scheduling
algorithm that extends traditional anticipatory
scheduling in such a way as to prevent process
starvation, mitigate disk throughput problems
due to limited anticipation, and present a pre-
liminary methodology to rank schedulers and
provide ideas to switch between them at run-
time.

9 Conclusions

This paper identified a potential starvation
problem and a reduced disk throughput prob-
lem in the anticipatory scheduler and proposed
a cooperative anticipatory scheduling (CAS) al-
gorithm that mitigates these problems. It also
demonstrated that the CAS algorithm can pro-
vide significant improvements in application
execution times as well as in disk throughput.
At its core, the CAS algorithm extends the LAS
by broadening anticipation of I/O requests; it
gives scheduling priority to requests not only
from the process that generated the last request
but also to processes that are part of a coop-
erative process group. We implemented this
methodology in Linux.

In addition, the paper evaluated performance
for different workloads under the CAS and the
four schedulers in Linux 2.6. Microbench-
marks were used to demonstrate the problems
with the Linux 2.6 schedulers and the effective-
ness of the solution, i.e., the CAS. It was shown
that under the CAS web, mail, and file server
benchmarks run as much as 62% faster.

Finally, the paper describes our efforts in rank-
ing I/O schedulers based on system behavior as
well as workload request characteristics. We
hypothesize that these efforts will lead to a
methodology that can be used to dynamically
select I/O schedulers and, thus improve perfor-
mance.
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