
Hotplug Memory Redux

Joel Schopp, Dave Hansen, & Mike Kravetz
IBM Linux Technology Center

jschopp@austin.ibm.com, haveblue@us.ibm.com, kravetz@us.ibm.com

Hirokazu Takahashi & IWAMOTO Toshihiro
VA Linux Systems Japan

taka@valinux.co.jp, iwamoto@valinux.co.jp

Yasunori Goto & KAMEZAWA Hiroyuki
Fujitsu

y-goto@jp.fujitsu.com, kamezawa.hiroyu@jp.fujitsu.com

Matt Tolentino
Intel

matthew.e.tolentino@intel.com

Bob Picco
HP

bob.picco@hp.com

Abstract

Memory Hotplug is one of the most antici-
pated features in the Linux Kernel. The pur-
poses of memory hotplug are memory replace-
ment, dynamic workload management, or Ca-
pacity on Demand of Partitioned/Virtual ma-
chines. In this paper we discuss the history
of Memory Hotplug and the LinuxVM includ-
ing mistakes made along the way and technolo-
gies which have already been replaced. We
also discuss the current state of the art in Mem-
ory Hotplug including user interfaces, CON-
FIG_SPARSEMEM, the no bitmap buddy al-
locator, free area splitting within zones, and
memory migration on PPC64, x86-64, and
IA64. Additionally, we give a brief discussion
on the overlap between Memory Hotplug and
other areas including memory defragmentation
and NUMA memory management. Finally, we
gaze into the crystal ball to the future of Mem-

ory Hotplug.

1 Introduction

At the 2004 Ottawa Linux Symposium Andrew
Morton had this to say in the keynote:

“Some features do tend to encapsulate poorly
and they have their little sticky fingers into lots
of different places in the code base. An exam-
ple which comes to mind is CPU hot plug, and
memory hot unplug. We may not, we may end
up not being able to accept such features at all,
even if they’re perfectly well written and per-
fectly well tested due to their long-term impact
on the maintainability of those parts of the soft-
ware which they touch, and also to the fact that
very few developers are likely to even be able
to regression test them.” [1]

152 • Hotplug Memory Redux

It has been one year since that statement. An-
drew Morton is a clever man who knows that
the way to get developers to do something is to
tell them it can’t be done. CPU hot plug has
been accepted[15]. The goal of this paper is to
lay out how developers have been planning and
coding to prove the memory half of that state-
ment wrong.

2 Motivation

Memory hotplug was named for the ability
to literally plug and unplug physical memory
from a machine and have the Operating System
keep running.

In the case of plugging in new physical mem-
ory the motivation is being able to expand sys-
tem resources while avoiding downtime. The
proverbial example of the usefulness is the
slashdot effect. In this example a sysadmin
runs a machine which just got slashdotted. The
sysadmin runs to the parts closet, grabs some
RAM, opens the case, and puts the RAM into
the computer. Linux then recognizes the RAM
and starts using it. Suddenly, Apache runs
much faster and keeps up with the increased
traffic. No downtime is needed to shutdown,
insert RAM, and reboot.

Conversely, unplugging physical memory is
usually motivated by physical memory failing.
Modern machines often have the ability to re-
cover from certain physical memory errors and
to use those errors to predict that the physical
memory is likely to have an unrecoverable error
in the future. With memory hotplug the mem-
ory can be automatically disabled. The disabled
memory can then be removed and/or replaced
at the system administrator’s convenience with-
out downtime to the machine [31].

However, the ability to plug and unplug phys-
ical memory has been around awhile and no-

body has previously taken it upon themselves
to write memory hotplug for the Linux kernel.
Fast forward to today and we have most major
hardware vendors paying developers to write
memory hotplug. Some things have changed;
capacity upgrade on demand, partitioning, and
virtualization all have made the resources as-
signed to an operating system much more fluid.

Capacity Upgrade On Demand came on the
leading edge of this new wave. Manufactur-
ers of hardware thought of a very clever and
useful way to sell more hardware. The manu-
facturer would give users more hardware than
they paid for. This extra unpaid for hardware
would be disabled, and could be enabled if the
customer later decided to pay for it. If the cus-
tomer never decided to pay for it then the hard-
ware would sit unused. Users got an afford-
able seamless upgrade path for their machines.
Hardware manufacturers sold enough of the ex-
tra hardware they had already shipped they still
made a profit on it. In business terms it was a
win-win.

Without hotplug, capacity upgrades still require
a reboot. This is bad for users who have to de-
lay upgrades for scheduled downtime. The de-
layed upgrades are bad for hardware manufac-
turers who don’t get paid for unupgraded sys-
tems. With hotplug the upgrades can be done
without delay or downtime. It is so convenient
that the manufacturers can even entice users
with free trials of the upgrades and the ability
to upgrade temporarily for a fraction of the per-
manent upgrade price.

The idea of taking a large machine and divid-
ing up its resources into smaller machines is
known as partitioning. Linux looks at a parti-
tion like it is a dedicated machine. This brings
us back to our slashdotting example from phys-
ical hotplug. The reason that example didn’t
drive users to want hotplug was that it was only
useful if there was extra memory in a closet
somewhere and the system administrator could

2005 Linux Symposium • 153

open the machine while it was running. With
partitioning the physical memory is already in
the machine, it’s just probably being used by
another partition. So now hotplug is needed
twice. Once to remove the memory from a par-
tition that isn’t being slashdotted and again to
add it to a partition that is. The system admin-
istrator could even do this “hotplug” remotely
from a laptop in a coffee house. Better yet
management software could automatically de-
cide and move memory around where it was
needed. Because memory would be allocated
more efficiently users would need less of it,
saving them some money. Hardware vendors
might even encourage selling less hardware be-
cause they could sell the management software
cheaper than they sold the extra hardware it re-
places and still make more money.

Virtualization then takes partitioning to the next
level by removing the strict dependency on
physical resources [10][17]. At first glance it
would seem that virtualization ends the need for
hotplug because the resources aren’t real any-
way. This turns out not to be the case because
of performance. For example, if a virtual par-
tition is created with 4GB of virtual RAM the
only way to increase that to 256GB and have
Linux be able to use that RAM is to hotplug add
252GB of virtual RAM to Linux. On the other
side of the coin, if a partition is using 256GB of
virtual RAM and whatever is doing the virtual-
izing only has 4GB of real honest-to-goodness
physical RAM to use, performance will make it
unusable. In this case the virtualization engine
would want to hotplug remove much of that vir-
tual RAM.

So there are a variety of forces demanding
memory hotplug from hardware vendors to
software vendors. Some want it for reliability
and uptime. Others want it for workload bal-
ancing and virtualization.

Thankfully for developers it is also an interest-
ing problem technically. There are lots of diffi-

cult problems to be overcome to make memory
hotplug a success, and if there is one thing a
developer loves it is solving difficult problems.

3 CONFIG_SPARSEMEM

3.1 Nonlinear vs Sparsemem

Previous papers[6] have discussed the concept
of nonlinear memory maps: handling systems
which have non-trivial relationships between
the kernel’s virtual and physical address spaces.

In 2004, Dave McCracken from IBM created
a quite complete implementation of nonlin-
ear memory handling for the hotplug mem-
ory project. As presented in[6], this imple-
mentation solved two problems: separating the
mem_map[] into smaller pieces, and the non-
linear layout.

The nonlinear layout component turned out
to be quite an undertaking. Its implemen-
tation required changing the types of some
core VM macros: virt_to_page() and
page_to_virt() . It also required changing
many core assumptions, especially in boot-time
memory setup code, which impaired other de-
velopment. However, the component that sep-
arated themem_map[]s turned out to be rela-
tively problem-free.

The decision was made to separate the two
components. Nonlinear layouts are not re-
quired by simple memory addition. However,
the split-outmem_map[]s are. The memory
hotplug plan has always been to merge hot-add
alone, before hot-remove, to minimize code im-
pact at one time. Themem_map[] splitting
feature was named sparsemem, short for sparse
memory handling, and the nonlinear portion
will not be implemented until hot-remove is
needed.

154 • Hotplug Memory Redux

3.2 What Does Sparsemem Do?

Sparsemem has several of the same design
goals as DISCONTIGMEM, which is currently
in use in the kernel for similar purposes. Both
of them allow the kernel to efficiently han-
dle gaps in its address space. The normal
method for machines without memory gaps is
to have astruct page for each physical
page of RAM in memory. If there are gaps from
things like PCI config space, there arestruct
page ’s, but they are effectively unused.

Although a simple solution, simply not using
structures like this can be an extreme waste
of memory. Consider a system with 100 1GB
DIMM slots that support hotplug. When the
system is first booted, only 1 of these DIMM
slots is populated. Later on, the owner decides
to hotplug another DIMM, but puts it in slot
100 instead of slot 2. This creates a 98GB gap.
On a 64-bit system, eachstruct page is 64
bytes.

(98GB
4096bytes

page

)∗ (64 bytes
struct page)≈ 1.5GB

The owner of the system might be slightly dis-
pleased at having anet lossof 500MB of mem-
ory once they plug in a new 1GB DIMM. Both
sparsemem and discontigmem offer an alterna-
tive.

3.3 How Does Sparsemem Work?

Sparsemem uses an array to provide different
pfn_to_page() translations for each "sec-
tion" of physical memory. The sections are ar-
bitrarily sized and determined at compile-time
by each specific architecture. Each one of these
sections effectively gets its own, tiny version of
themem_map[] .

However, one must also consider the storage
cost of such an array which must represent ev-
ery possible physical address. Let’s take PPC64

as an example. Its sections are 16MB in size
and there are, today, systems with 1TB of mem-
ory in a single system. To keep future expan-
sion in mind (and for easy math), assume that
the limit is 16TB. This means 220 possible sec-
tions and, with 1 64-bitmem_map[] pointer
per section, that’s 8MB of memory used. Even
on the smallest (256MB) configurations, this
amount is a manageable price to pay for ex-
pandability all the way to 16TB.

In order to do quickpfn_to_page() opera-
tions, the index into the large array of the page’s
parent section is encoded inpage->flags .
Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at
compile-time) between thepage_zone()
and sparsemem operations.

However, on 32-bit architectures, the number
of bits is quite limited, and may require grow-
ing the size of thepage->flags type in cer-
tain conditions. Several things might force this
to occur: a decrease in the size of each section
(if you want to hotplug smaller, more granu-
lar, areas of memory), an increase in the physi-
cal address space (very unlikely on 32-bit plat-
forms), or an increase in the number of con-
sumedpage->flags .

One thing to note is that, once sparsemem is
present, the NUMA node information no longer
needs to be stored in thepage->flags . It
might provide speed increases on certain plat-
forms and will be stored there if there are un-
used bits. But, if there are inadaquate unused
bits, an alternate (theoretically slower) mech-
anism is used;page_zone(page)->zone_

pgdat->node_id .

3.4 What happens to Discontig?

As was noted earlier sparsemem and discontig-
mem have quite similar goals, although quite

2005 Linux Symposium • 155

different implementations. As implemented
today, sparsemem replaces DISCONTIGMEM
when enabled. It is hoped that SPARSEMEM
can eventually become a complete replacement
as it becomes more widely tested and graduates
from experimental status.

A significant advantage sparsemem has over
DISCONTIGMEM is that it’s completely sepa-
rated from CONFIG_NUMA. When producing
this implementation, it became apparent that
NUMA and DISCONTIG are often confused.

Another advantage is that sparse doesn’t re-
quire each NUMA node’s ranges to be contigu-
ous. It can handle overlapping ranges between
nodes with no problems, where DISCONTIG-
MEM currently throws away that memory.

Surprisingly, sparsemem also shows some
marginal performance benefits over DISCON-
TIGMEM. The base causes need to be investi-
gated more, but there is certainly potential here.

As of this writing there are ports for sparsemem
on i386, PPC64, IA64, and x86_64.

4 No Bitmap Buddy Allocator

4.1 Why Remove the Bitmap?

When memory is hotplug added or removed,
memory management structures have to be re-
allocated. The buddy allocator bitmap was one
of these structures.

Reallocation of bitmaps for Memory Hotplug
has the following problems:

• Bitmaps were one of the things which
assumed that memory is linear. This
assumption didn’t fit SPARSEMEM and
Memory Hotplug.

• For resizing, physically contiguous pages
for new bitmaps were needed. This in-
creased possibility of failure of Memory
Hotplug because of difficulty of large size
page allocation.

• Reallocation of bitmaps is complicated
and computationally expensive

For Memory Hotplug, bitmaps presented a
large obstacle to overcome. One proposed
solution was dividing and moving bitmaps
from zones to sections as was done with
memmaps. The other proposed solution, elimi-
nating bitmaps altogether, proved simpler than
moving them.

4.2 Description of the Buddy Allocator

The buddy allocator is an memory allocator
which coalesces pages into groups of 2X length.
X is usually 0-10 in Linux. Pages are coalesced
into a group of length of 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, 1024. X is called an ”or-
der”. Only a head page of a buddy is linked to
free_area[order] .

This grouping is called a buddy. A pair of
buddies in order X, which are length of 2X,
can be coalesced into a buddy of 2(X+1) length.
When a pair of buddies can be coalesced in or-
der X, offset of 2 buddies are 2(X+1) ∗Y and
2(X+1) ∗Y + 2X. Hence, another buddy of a
buddy in order X can be calculated as (Offset
of a buddy) XOR(1 << (X)).

For example, page 4 (0x0100) can be coa-
lesced with page 5 (0x0101) in order 0, page
6 (0x0110) in order 1, page 0 (0x0000) in order
2.

4.3 Bitmap Buddy Allocator

The role of bitmaps was to record whether a
page’s buddy in a particular order was free or

156 • Hotplug Memory Redux

not. Consider a pair of buddies at 2(X+1) ∗Y
and 2(X+1) ∗Y +2X.

When free_area[X].bitmap[Y] was 1,
one of the buddies was free. Sofree_
pages() can determine whether a buddy can
be coalesced or not from bitmaps. When both
buddies were freed, they were coalesced and
free_area[X].bitmap[Y] set to 0.

4.4 No Bitmap Buddy Allocator

When it comes to the no bitmap buddy alloca-
tor, instead of recording whether a page has its
buddy or not in a bitmap, the free buddy’s order
is recorded inmemmap. The following expres-
sion is used to check a buddy page’s status:

page_count(page) == 0 &&
PG_private is set &&
page->private == X

The three elements that make up this expression
are:

• When page_count(page) == 0 ,
page is not used.

• Even if page_count(page) == 0 ,
it’s not sure that the page is linked to the
free area. When a page is linked to the
free area,PG_private is set.

• When page_count(page)==0 &&
PG_private is set,page->private
indicates its order.

Here, offset of an another buddy of a buddy in
order X can be calculated as (Offset of page)
XOR 2X. The following code is the core of no
bitmap buddy allocator’s coalescing routine:

struct page *base = zone->zone_mem_map;
int page_idx = page - base;
while (order < MAX_ORDER) {

int buddy_idx = page_idx ^ (1 << order);
struct page *buddy = base + buddy_idx;
if (!(page_count(buddy) == 0 &&

PagePrivate(buddy) &&
buddy->private == order))

break;
remove buddy from zone->free_area[order]
ClearPagePrivate(buddy);
if (buddy_idx < page_idx)

page_idx = buddy_idx;
order++;

}
page = page_idx + base;
SetPagePrivate(page);
page->private = order;
link page to zone->free_area[order]

There is no significant performance difference
either way between bitmap and no bitmap coa-
lescing.

With SPARSEMEM,base in the above code
is removed and following the relative offset cal-
culation is used. Thus, the buddy allocator can
manage sparse memory very well.1

page_idx = pfn_to_page(page);
buddy_idx = page_idx ^ (1 << order);
buddy = page + (buddy_idx - page_idx);

5 Free Area Splitting Within Zones

The buddy system provides an efficient algo-
rithm for managing a set of pages within each
zone [7][16][18][11]. Despite the proven effec-
tiveness of the algorithm in its current form as
used in the kernel, it is not possible to aggre-
gate a subset of pages within a zone accord-
ing to specific allocation types. As a result,
two physically contiguous page frames (or sets
of page frames) may satisfy allocation requests
that are drastically different. For example, one
page frame may contain data that is only tem-
porarily used by an application while the other

1SPARSEMEM guarantees that memmap is contigu-
ous at least up to MAX_ORDER.

2005 Linux Symposium • 157

is in use for a kernel device driver. While this
is perfectly acceptable on most systems, this
scenario presents a unique challenge on mem-
ory hotplug systems due to the variances in re-
claiming pages that satisfy each allocation type.

One solution to this problem is to explicitly
manage pages according to allocation request
type. This approach avoids the need to radi-
cally alter existing page allocation and recla-
mation algorithms, but does require additional
structure within each zone as well as modifica-
tion of the existing algorithms.

5.1 Origin of Page Allocation Requests

Memory allocations originate from two dis-
tinct sources—user and kernel requests. User
page allocations typically result from a write
into a virtual page in the address space of a
process that is not currently backed by physi-
cal memory. The kernel responds to the fault
by allocating a physical page and mapping the
virtual page to the physical page frame via
page tables. However, when the system is
under memory pressure, user pages may be
paged out to disk in order to reclaim physical
page frames for other higher priority requests
or tasks. The algorithms and techniques used
to accomplish this function constitute much
of the virtual memory research conducted to
date[22][23][24][25][26][27].

In Linux, user level allocations may be sat-
isfied from pages contained in any zone, al-
though they are preferably allocated from the
HIGHMEM zone if that zone is employed by
the architecture. This is reasonable consider-
ing these pages are not permanently mapped by
the kernel. Architectures that do not employ
the HIGHMEM zone direct user level alloca-
tions to one of the other two zone types, NOR-
MAL or DMA. Unlike user allocations, kernel
allocations must be satisfied from memory that

is permanently mapped in the virtual address
space. Once a suitable zone is chosen, an ap-
propriately sized region is plucked from the re-
spective free area list via the buddy algorithm
without regard for whether it satisfies a kernel
allocation or a user allocation.

5.2 Distinguishing Page Usage

During a page allocation, attributes are pro-
vided to the memory allocation interface func-
tions. Each attribute provides a hint to the al-
location algorithm in order to determine a suit-
able zone from which to extract pages; how-
ever, these hints are not necessarily provided
to the buddy system. In other words, the re-
gion from which the allocation is satisified is
only determined at a zone granularity. On sys-
tems such as PPC64 this may include the en-
tirety of system memory! In order to enable the
distinction of user allocation from kernel allo-
cations within a zone, additional flags that spec-
ify whether the region must be provided to the
buddy algorithm. These flags include:

• User Reclaimable

• Kernel Reclaimable

• Kernel Non-Reclaimable

Using these flags, the buddy allocation algo-
rithm may further differentiate between page
allocations and attempt to maintain regions that
satisfy similar allocations and more signifi-
cantly, have similar presence requirements.

5.3 Multiple Free Area Lists

Existing kernels employ one set of free area
lists per zone as shown in figure1. In order

158 • Hotplug Memory Redux

Figure 1: Existing free area list structure

to explicitly manage the user versus kernel dis-
tinction of memory with zones, multiple sets of
free area lists are used within each zone, specif-
ically one set of free area lists per allocation
type. The basic strategy of the buddy algo-
rithm remains unchanged despite this modifi-
cation. Each set of free area lists employs the
exact same splitting and coalescing steps dur-
ing page allocation and reclamation operations.
Therefore the functional integrity of the overall
algorithm is maintained. The novelty of the ap-
proach involves the decision logic and account-
ing involved in directing allocations and free
operations to the appropriate set of free area
lists.

Mel Gorman posted a patch that imple-
ments exactly this approach in an attempt
to minimize external memory fragmentation,
a consistent issue with the buddy algorithm
[19][8][7][11][16]. This approach introduces a
new global free area list with MAX_ORDER
sized memory regions and three new free area
lists of size MAX_ORDER-1 as depicted in fig-
ure 2 below.

Figure 2: New free area list structure for frag-
mentation

Although Mel’s approach provides the basic
infrastructure needed by memory hotplug, ad-
ditional structure is required. In addition to
the set of free area lists for each allocation
type, an additional global free area list for con-
tiguous regions of MAX_ORDER size is also
maintained as depicted in figure three. The
addition of this global list enables account-
ing for MAX_ORDER sized memory regions
according to the capability to hotplug the re-
gion. Thus, during initialization, memory re-
gions within each zone are directed to the ap-
propriate global free area list based on the po-
tential to hotplug the region at a later time. This
translates directly to the type of allocation a
page satisfies. For example, many kernel pages
are pinned in memory and will never be freed.
Hence, these pages will be obtained from the
globalpinnedlist. On the other hand nearly ev-
ery user page may be reclaimed, so these pages
will be obtained from the globalhotpluglist.

2005 Linux Symposium • 159

Figure 3: New free area list structure for mem-
ory hotplug

5.4 Memory Removal

The changes detailed in this section enable the
isolation of sets of pages according to the type
of allocation they may satisfy. Because user
pages are relatively easy to reclaim, those page
allocations will be directed to the regions that
are maintained in the globalhotplug free area
list. During boot time or during a memory
hot-add operation, the system firmware details
which regions may be removed at runtime. This
information provides the context for initializing
the globalhotplug list. As pages are allocated
thus depleting the user and kernel reclaimable
free area lists, additional MAX_ORDER re-
gions may be derived from the globalhotplug
list. Similarly, the globalpinned list provides
pages to the kernel non-reclaimable lists upon
depletion of available pages of sufficient size.

Because pages that may be hot-removed at run-
time are isolated such that they satisfy user

or kernel reclaimable allocations, memory re-
moval is possible. This was not previously
possible with the existing buddy algorithm due
to the likelihood that a pinned kernel non-
reclaimable page could be located within the
range to be removed. Thus, kernels that only
employ a subset of the potential zones may sup-
port hot-remove transparently.

5.5 Configurability

While satisfying allocation requests from dis-
crete memory regions according to allocation
type does enable removal of memory within
zones, there is still the potential for one type of
allocation to run out of pages due to the assign-
ment of pages to each global free list. Mel dealt
with this issue for the fragmentation problem
by allowing allocations tofallback to another
free area list should one become depleted[19].

While this is reasonable for most systems, it
compromises the capability to remove mem-
ory should a non-reclaimable kernel allocation
be satisfied by some set of pages in a hotplug
region. As this type of fallback policy deci-
sion largely depends on the intended use of
the system, one approach is to allow for the
fallback decision logic to be configured by the
system administrator. Therefore, systems that
aren’t likely to need to remove memory, even
though the functionality is available, may allow
the fallback to occur as the workload demands.
Other systems in which memory removal is
more critical may disable the fallback mecha-
nism, thus preserving the integrity of hotplug
memory regions.

160 • Hotplug Memory Redux

6 Memory migration

6.1 Overview

In memory hotplug removal events, all the
pages in some memory region must be freed in
a timely fashion, while processes are running
as usual. Memory migration achieves this by
blocking page accesses and moves page con-
tents to new locations.

Although usingshrink_list() function—
which is the core ofkswapd —sounds sim-
pler, it cannot reliably free pages and causes
many disk I/Os. Additionally, the function
cannot handle pages which aren’t associated
with any backing stores. Pages on a ramdisk
are an example of this. The memory migra-
tion is designed to solve these issues. Page
accesses aren’t a problem because they are
blocked, whileshrink_list() cannot pro-
cess pages that are being accessed. Unlike
shrink_list() , most dirty pages can be
processed without writing them back to disk.

6.2 Interface to Migrate Page

To migrate pages, create a list of pages to
migrate and call the following function:
int try_to_migrate_pages(struct

list_head *page_list)

It returns zero on success, otherwise sets
page_list to a list of pages that cannot migrate
and returns a non-zero value. Callers must
check return values and retry failed pages if
necessary.

This function is primarily for memory hotplug
remove, but also can be used for memory de-
fragmentation (see Section 8.1) or process mi-
gration (see Section 8.2.3).

6.3 How does the memory migration
work?

A memory migration operation consists of the
following steps. The operation of anonymous
pages is slightly different.

1. lockoldpage , which is the target page

2. allocate and locknewpage

3. modify oldpage entry in page_

mapping(oldpage)->page_tree

with newpage

4. invoke try_to_unmap(oldpage,

virtual_address_list) to unmap
oldpage from the process address
spaces.

5. wait until !PageWriteback(oldpage)

6. write backoldpage if oldpage is dirty
andPagePrivate(oldpage) and no
file system specific method is available

7. wait until page_count(oldpage)
drops to 2

8. memcpy(newpage, oldpage,
PAGE_SIZE)

9. makenewpage up to date

10. unlocknewpage to wakeup the waiters

11. freeoldpage

The key is to block accesses to the page un-
der operation by modifying thepage_tree .
After the page_tree has been modified, no
new access goes tooldpage . The accesses
are redirected tonewpage and blocked until
the data is ready because it is locked and isn’t
up to date (Figure 4).

2005 Linux Symposium • 161

page_tree

address_space

oldpage

newpage

PG_uptodate

PG_locked
blocked

page faults

system calls

PTE

Figure 4: page_tree rewrite and page ac-
cesses

To handle mlock() ed pages, try_to_
unmap() now takes two arguments. If the sec-
ond argument is non-NULL, the function un-
mapsmlock()ed pages also and records un-
mapped virtual addresses, which are used to
reestablish the PTEs when the migration com-
pletes.

Because the direct I/O code protects target
pages with incrementedpage_count , mem-
ory migration doesn’t interfere with the I/O.

In some cases, a memory migration operation
needs to be rolled back and retried later. This
is a bit tricky because it is likely that some pro-
cesses have already looked up thepage_tree
and are waiting for its lock. Such processes
need to discardnewpage and look up the
page_tree again, asnewpage is now in-
valid.

6.3.1 Anonymous Memory Migration

The memory migration depends on
page_tree lists of inodes, while anony-
mous pages may not correspond to any of
them. This structure is strictly required
to block all accesses to pages on it during
migration.

Therefore, anonymous pages should be moved
into the swap-cache prior to migrating them.

After that these pages are placed in the
page_tree of swapper_space , which
manages all pages in the swap-cache. These
pages can be migrated just like pages in the
page-cache without any disk I/Os.

The important issue of systems without swap
devices remains. To solve it, Marcelo Tosatti
has proposed the idea of “migration cache”[2]
and he’s working on its implementation. The
migration cache is very similar to the swap-
cache except it doesn’t require any swap de-
vices.

6.4 Keeping Memory Management Aware
of Memory Migration

The memory migration functionality is de-
signed to fit the existing memory management
semantics and most of the code works without
a modification. However, the memory manage-
ment code should satisfy the following rules:

• Multiple lookups of a page from its
page_tree should be avoided. If a ker-
nel function looks up apage_tree loca-
tion multiple times, a memory migration
operation can rewrite thepage_tree
in the meanwhile. When such a
page_tree rewrite happens, it usually
results in a deadlock between the kernel
function and the memory migration opera-
tion. The memory migration implements a
timeout mechanism to resolve such dead-
locks, but it is preferable to remove the
possibility of deadlocks by avoiding mul-
tiple page_tree lookups of the same
page. Another option is to use non-
hotremovable memory for such pages.

• The pages which may be grabbed for
an unpredictably long time must be al-
located from non-hotremovable memory,

162 • Hotplug Memory Redux

even though it may be in the page-cache or
anonymous memory. For instance, pages
used as ring buffers for asynchronous in-
put/output (AIO) events are pinned not to
be freed.

• For a swap-cache page, its PG_swapcache
flag bit needs checking after obtaining the
page lock. This is due to how the mem-
ory migration is implemented for swap-
cache pages and not directly related to un-
winding. Such a check code is added in
do_swap_page() .

• Functions that calllock_page() must
be aware of the unwinding of memory
migration. Basically, a page must be
checked if it is still valid after every
lock_page() call. If it isn’t, one has to
restart the operation from looking up the
page_tree again. A good example of
such restart is infind_lock_page() .

6.5 Tuning

6.5.1 Implementing File System Specific
Methods for Memory Migration

Memory migration works regardless of file sys-
tems in use. However, it is desirable that file
systems which are intensively used implement
the helper functions which are described in this
subsection.

There are various things that refer to pages,
and some of these references need time con-
suming operations such as disk I/Os to com-
plete in order for the reference to be dropped.
This subsection focuses on one of these—the
handling of dirty buffer structures pointed by
page->private .

When a dirty page is associated with a buffer,
the page must be made clean by issuing a write-

back operation and the buffer must be freed un-
less there is an available file system specific op-
eration defined.

The above operation can be too slow to be prac-
tical because it has to wait a writeback I/O
completion. A file system specific operation
can be defined to avoid this problem by im-
plementing themigrate_page() method in
the address_space_operations struc-
ture.

For example, thebuffer_head structures
that belong to ext2 file systems are handled by
themigrate_page_buffer function. This
function enables page migration without write-
back operations by havingnewpage to take
over thebuffer_head structure pointed by
page->private . It is implemented as fol-
lows:

• Wait until the page_count drops
to the prescribed value (3 when the
PG_private page flag is set, 2 oth-
erwise). While waiting, issue the
try_to_unmap() function calls.

• If the PG_private flag is set, process
the buffer_head structure by calling
the generic_move_buffer() func-
tion. The function waits until the
buffer_count drops and the buffer
lock is released. Then, it hasnewpage
to take over the buffer_head struc-
ture by modifying page->private ,
newpage->private and theb_page
member in thebuffer_head struc-
ture. To adjustpage_count due to the
buffer_head structure, increment the
page_count of newpage by one and
decrement the one ofpage by one.

• At this point, thepage_count of page
is 2 regardless of the original state of the
PG_private flag.

2005 Linux Symposium • 163

6.5.2 Combination With
shrink_list()

Memory pressure caused by memory migra-
tion can be reduced. This memory pressure
can cause reclaim of pages as replacements.
Inactive pages are not worth migrating when
the resultant migration causes other valid pages
be reclaimed. This undesirable effect perturbs
the LRUness of pages reclaimed. It would be
preferable to just release these pages without
migrating them.

The current implementation[3] invokes
shrink_list() to release inactive pages
and moves only active pages to new locations
in case of memory hotplug removal.

6.6 Hugetlb Page Migration.

Due to certain workloads like databases and
high performance computing (HPC) large page
capability is critical for good performance. Be-
cause these pages are so critical to these work-
loads it follows that page migration must sup-
port migration of large pages to be widely used.

6.6.1 Interface to Migrate Hugetlb Pages

The prototype[5] interface for hugetlb migra-
tion seperates normal page migration from
huge page migration.

When a caller notices the page needing to be
migrated is a hugetlb page, it has to pass the
page totry_to_migrate_hugepage() ,
migrating it without any system freeze or any
process suspension.

6.6.2 Design of hugetlb page migration

The migration can be done in the same way for
normal pages, using the same memory migra-

tion infrastructure. Luckily, it’s not so hard
to implement because Linux kernel manages
large pages—often called hugetlb pages—via
the pseudo file system known as hugetlbfs.

Linux kernel handles them in a similar manner
as it handles normal pages in the page-cache.
It inserts each of them into thepage_tree
of the associated inode in hugetlbfs and
maps them into process address spaces using
mmap() system call.

There is one additional requirement for migra-
tion of large pages. Demand paging against
hugetlb pages must be blocked, with all ac-
cesses via process address spaces to pages un-
der migration blocked in a pagefault handler
until the migration is completed.

Therefore, the hugetlb page management re-
lated to demand paging feature has to be en-
hanced as follows:

• A pagefault handler for hugetlb
pages must be implemented. The
implementation[4] Chen, Kenneth W and
Christoph Lameter are working on can be
used with some modification, making the
processes block in the pagefault handler if
the page is locked. This is similar to what
the pagefault handler for normal pages
does.

• The function try_to_unmap() must
be able to handle hugetlb pages to un-
map them from process address spaces.
This meansobjrmap —the object-based
reverse mapping VM—also has to be in-
troduced so that page table entries associ-
ated with any pages can be found easily.

Another interesting topic is hugetlb page allo-
cation, which is almost impossible to do dy-
namically. Physically contiguous memory allo-

164 • Hotplug Memory Redux

target hugetlb page

migrate

page

page

migrate

migrate

memory
defragmentation

page

Figure 5:hugetlb page migration

cation is one of the well known issues remain-
ing to be solved. The current hugetlb page man-
agement chooses the approach that all pages
should be reserved at system start-up time.

Despite its current state, hugetlb page migra-
tion can not continue to use this approach. On
demand allocation is strictly required. Fortu-
nately, this is going to be solved with “Memory
defragmentation” (see Section 8.1). Marcelo
Tosatti is working on “Free area splitting within
zones” effort (see section 5).

6.6.3 How hugetlb Page Migration
Works

There really isn’t much difference between
hugetlb page migration and normal page migra-
tion. The following is the algorithm flow for
this migration.

1. Allocate a new hugetlb page from the page
allocator also known as the buddy allo-
cator. This may require memory defrag-
mentation to make a sufficient contiguous
range (figure 5).

2. Lock the newly allocated page and
keep it non-uptodate, without the
PG_uptodate flag on it.

3. Replace a target hugetlb page with the new
page onpage_tree of the correspond-
ing inode in hugetlbfs.

4. Unmap the target page from the process
address spaces, clearing all page table en-
tries mapping it.

5. Wait until all references on the target page
are gone.

6. Copy from the target page to the new page.

7. Make the new page uptodate, setting the
PG_uptodate flag on it.

8. Release the target page into the page allo-
cator directly.

9. Unlock the new page to wake up all wait-
ers.

6.7 Restriction

Under some rare situations, pages cannot mi-
grate, and making those migrations functional
would require too much code to be practical.

• NFS page-cache may have a non-
responding NFS server. NFS I/O requests
cannot complete if the server isn’t
responding. The pages with such out-
standing NFS I/O requests cannot migrate.
It is technically possible to handle this
situation by updating all the references to
an oldpage with ones to a newpage, but
the code modification would be very large
and probably not maintainable.

• Page-cache of which the file is used
by sendfile() are also problematic.
When a page-cache page is used by
sendfile() , its page_count is kept
raised until corresponding TCP packets
are ACKed. This becomes a problem
when a connection peer doesn’t read data
from the TCP connection.

2005 Linux Symposium • 165

• RDMA client/server memory use may
also be an issue but further investigation
is required.

6.8 Future Work

Currently, nonlinear mmaped pages2 cannot
migrate astry_to_unmap() doesn’t unmap
such pages. This must be addressed.

All file systems should have their own
migrate_page() method. This will help
performance considerably as the filesystems
can make more intelligent decisions about their
own data.

Kernel memory should be migratable too. A
first approach would be migrating page ta-
ble pages which consume significant memory.
This migration should be reasonably straight-
forward.

7 Architecture Implementation
Specifics

Memory hotplug has been implemented on
many different architectures. Each of these ar-
chitectures have unique hardware and conse-
quently do memory management in different
ways. They each present unique challenges and
solutions that should be of interest to future im-
plementators on the other architectures that cur-
rently don’t support memory hotplug. Addi-
tionally, those whose architectures are already
covered can better understand their own archi-
tectures by comparing them side by side with
others.

2With remap_file_pages() system call, sev-
eral pieces of a file can be mapped into one contiguous
virtual memory.

7.1 PPC64 Implementation

The PPC64 architecture is perhaps the most
mature with respect to the support of memory
hotplug. This is because there are other operat-
ing systems that currently support memory hot-
plug on this architecture.

7.1.1 Logical Partition Environment

Operating Systems running on PPC64 oper-
ate in a Logical Partition (LPAR) of the ma-
chine. These LPARs are managed by a under-
lying level of firmware known as the hypervi-
sor. The hypervisor manages access to the ac-
tual underlying hardware resources. It is possi-
ble to dynamically modify the resources asso-
ciated with an LPAR. Such dynamically mod-
ifiable LPARS are known as Dynamic LPARS
(DLPARs)[29].

Memory is one of the resources that can be
dynamically added to or removed from a DL-
PAR on PPC64. In a PPC64 system, physical
memory is divided into memory blocks that are
then assigned to LPARs. The hypervisor per-
forms remapping of real physical addresses to
addresses that are given to the LPAR3 These
memory blocks with remapped addresses ap-
pear as physical memory to the Operating Sys-
tems in the LPAR. When an OS is started on
an LPAR, the LPAR will have a set of mem-
ory blocks assigned to it. In addition, mem-
ory blocks can be added or removed to the
LPAR while the OS is active. The size of mem-
ory blocks managed by the hypervisor is scaled
based on the total amount of physical mem-
ory in the machine. The minimum size block

3To Linux the addresses given to it are considered
physical addresses, but they are not in actuality physical
addresses. This causes no end of confusion in developers
conversations because developers get confused over what
is a virtual address, physical address, remapped address,
etc.

166 • Hotplug Memory Redux

is 16MB4. As a result, the default SPARSE-
MEM section size for PPC64 is a relatively
small 16MB.

7.1.2 Add/Remove Operations

On PPC64, the most common case of mem-
ory hotplug is not expected to be the actual ad-
dition or removal of DIMMs. Rather, mem-
ory blocks will be added to or removed from
a DLPAR by the hypervisor. These add or re-
move operations are initiated on the Hardware
Management Console (HMC). When memory
is added to an LPAR, the HMC will notify a
daemon running in the OS of the desire to add
memory blocks. The daemon in turn makes
a special system call that results in calls be-
ing made to the hypervisor. The hypervisor
then makes additional memory blocks available
to the OS. As part of the special system call
processing, the physical address5 of these new
blocks is obtained. With the physical address
known, scripts called via the daemon use the
sysfs memory hotplug interface to create new
memory sections associated with the memory
blocks.

For memory remove operations, the HMC once
again contacts the daemon running in the OS.
The OS then executes a script that uses the sysfs
interfaces to offline a memory section. Once a
section is offlined, a special system call is made
that results in calls to the hypervisor to isolate
the memory from the DLPAR.

4256MB is a more typical minimum block size. On
some machines the user can actually change the mini-
mum block size the machine will use

5This is not the real physical address, but the
remapped address that Linux thinks is a real physical ad-
dress

7.1.3 Single Zone and Defragmentation

PPC64 makes minimal use of memory zones.
This is because DMA operations can be per-
formed to any memory address. As a result,
only a single DMA zone is created on PPC64
and no HIGHMEM or NORMAL zones. Of
course, there may be multiple DMA zones (one
per node) on a NUMA architecture. Having
a single zone makes things simpler but it does
nothing to segregate memory allocations of dif-
ferent types. For example, on architectures that
support HIGHMEM, allocations for user pages
mostly come from this zone. Having multiple
zones provides a very basic level of segrega-
tion of different allocation types. Since we have
no such luxury on PPC64, we must employ
other methods to segregate allocation types.
The memory defragmentation work done by
Mel Gorman is a good starting point for this
effort[19]. Mel’s work segregates memory al-
locations on the natural MAX_ORDER PAGE
size blocks managed by the page allocator. Be-
cause PPC64 has a relatively small default sec-
tion size of 16 MB, it should be possible to ex-
tend this concept in an effort to segregate allo-
cations to segment size blocks.

7.1.4 PPC64 Hypervisor Functionality

The PPC64 hypervisor provides functionality
to aid in the removal of memory sections. The
H_MIGRATE_DMA call aids in the remapping
of DMA mapped pages. This call will selec-
tively suspend bus traffic while migrating the
contents of DMA mapped pages. It also mod-
ifies the Translation Control Entries (TCEs)
used for DMA accesses. Such functionality
will allow for the removal ofdifficult memory
sections on PPC64.

2005 Linux Symposium • 167

7.2 x86-64 Implementation

Although much of the memory hot-plug infras-
tructure discussed in this paper, such as the
sparsememimplementation, is generic across
all platforms, architecture specific support is
still required due to the variance in memory
management requirements for specific proces-
sor architectures. Fortunately, the changes to
the x86-64 Linux kernel beyondsparsememto
support memory hotplug have been minimized
to the following:

• Kernel Page Table Initialization (capacity
addition)

• ZONE_NORMAL selection

• Kernel Page Table Tear Down (capacity
reduction)

The x86-64 kernel doesn’t require the HIGH-
MEM zone due to the large virtual address
space provided by the architecture [28][12].
Thus, new memory regions discovered during
memory hot-add operations result in expan-
sion of the NORMAL zone. Conversely, be-
cause the x86-64 kernel only uses the DMA and
NORMAL zones, removal of memory within
each zone as discussed in 5 is required.

Much of the development of the kernel sup-
port for memory hotplug has relied onlogi-
cal memory add and remove operations, which
has enabled the use of existing platforms for
prototyping. However, the x86-64 kernel has
been tested and used on real hardware that sup-
ports memory hotplug. Specifically, the x86-64
memory hotplug kernels have been tested on a
recently released Intel XeonR©6 platform that
supports physical memory hotplug operations.

6Xeon is a registered trademark of the Intel Corpora-
tion

One of the key pieces of supporting physi-
cal memory hotplug is notification of memory
capacity changes from the hardware/firmware.
The ACPI specification outlines basic informa-
tion on memory devices that is used to con-
vey these changes to the kernel. Accordingly,
in order to fully support physical memory hot-
plug in the kernel the x86-64 kernel uses the
ACPI memory hotplug driver to field notifica-
tions from firmware and notify the VM of the
addition or reduction at runtime using the same
interface employed by the logical operations.
Further information on the ACPI memory hot-
plug driver support in the kernel may be found
in [21].

7.3 IA64 Implementation

IA64 is one of architectures where Memory
Hotplug is eagerly desired. From the view
of Memory Hotplug, IA64 linux has following
characteristics:

• The memory layout of IA64 is very sparse
with lots of holes.

• For managing holes,VIRTUAL_MEM_
MAPis used in some configurations.

• MAX_ORDER is not 11 but 18.

• IA64 supports a physical address bits of 50

Early lmbench2 data has shown that SPARSE-
MEM performs equivalently to DISCONTIG-
MEM+VIRTUAL_MEM_MAP. The data was
taken on a non-NUMA machine. Further work
should be done with other benchmarks and
NUMA hardware.

168 • Hotplug Memory Redux

7.3.1 SPARSEMEM and VIRTUAL MEM
MAP

The VM uses amemmap[], a linear ar-
ray of page structures. With DISCONTIG-
MEM, memmap[] is divided into several
node_mem_maps. In general,memmap[] is
allocated in physically contiguous pages at boot
time.

The memory layout of IA64 is very sparse
with lots of holes. Sometimes there are GBs
of memory holes, even for a non-NUMA
machine. In IA64 DISCONTIGMEM, a
vmemmapis used to avoid wasting memory. A
vmemmapis amemmapwhich uses contiguous
region of virtual address instead of contiguous
physical memory.7

It is useful to hide holes and to create sparse
memmap[]s. It resides in region 5 of the vir-
tual address space, which uses virtual page ta-
ble 8 like vmalloc.

Unfortunately, VIRTUAL_MEM_MAP is
quite complicated. Because of the compli-
cations VIRTUAL_MEM_MAP presents,
early designs for MEMORY_HOTPLUG
were too complicated to be successfully
implemented. SPARSEMEM cleanly re-
moves VIRTUAL_MEM_MAP and thus
avoids the associated complexity altogether.
Because SPARSEMEM is simpler than
VIRTUAL_MEM_MAP it is a logical re-
placement for VIRTUAL_MEM_MAP for
situations other than just hotplug. SPARSE-
MEM divides the whole memmap into
the section’s section_memmap s. All
section_memmap s reside in region 7 of the
virtual address space. Region 7 is an identity
mapped segment and handled by the fast TLB

7VIRTUAL_MEM_MAP is configurable indepen-
dent of DISCONTIGMEM

8VHPT, Virtual Hash Page Table, is a hardware sup-
ported function to fill TLB

miss handler with big page size. If a hole
covers the whole section, section_memmap is
not allocated. Holes in a section are treated as
reserved pages. For example, an HP rx2600
with 4GB of memory has the available physical
memory at two locations with sizes of 1Gb and
3Gb. For VIRTUAL_MEM_MAP the holes
would be represented by empty virtual space
with vmemmap. SPARSEMEM handles a hole
which covers an entire section with an invalid
section.

7.3.2 SPARSEMEM NUMA

The mem_section[] array is on the BP’s
node. Becausepfn_to_page() accesses it,
a non BP nodepfn_to_page() is slightly
more expensive. Besides boot time the section
array is modified only during a hotplug event.
These events should happen infrequently. This
frequently accessed but rarely changing data
suggests replicating the array into all nodes in
order to eliminate the non BP node penalty.
Hotplug memory updates would have to notify
each node of modifications to the array.

7.3.3 Size of Section and MAX_ORDER

One feature which is very aggresive
on IA64 is the configuration parameter
FORCE_MAX_ZONEORDER. This over-
writes MAX_ORDER to 18. For a 16kb page
size the resultant MAX_ORDER region is
4Gb(18+14). This is done for supporting
4Gb HugetlbFS. SPARSEMEM constrains
PAGE_SIZE ∗ 2(MAX_ORDER−1) to be less
than or equal to section size. For HugetlbFS
we have: (1)the smallest size of section
is 4GB and (2)holes smaller than 4GB
consume reserved page structures. 18 of
MAX_ORDER seems to be rather optimistic

2005 Linux Symposium • 169

value for Memory Hotplug. Currently, con-
figuation of FORCE_MAX_ZONEORDER
is modified at compile time. At configu-
ration time, if HUGETLB isn’t selected,
FORCE_MAX_ZONEORDER can be con-
figured to 11−20. If HUGETLB is selected,
MAX_ORDER and SECTION_SIZE are
adjusted to support 4Gb HUGETLB Page.

7.3.4 Vast 50 Bits Address Space of IA64

The IA64 architecture supports a physical ad-
dress bit limit of 50, which can addresss up to
1 petabyte of memory. A section array with a
256Mb section size requires 32Mb of data to
cover the whole address range. The Linux ker-
nel by default is configured to only use 44 bits
maximum, which can address 16 terabytes of
memory. This only requires 512Kb of data to
cover the whole address range. The number of
bits used is configurable at compile time.

8 Overlap with other efforts

During the development of memory hotplug the
developers discovered two surprising things.

• Parts of the memory hotplug code were
very useful to those who don’t care at all
about memory hotplug.

• Code others were developing without so
much as a thought of memory hotplug
proved useful for memory hotplug.

This section attempts to briefly mention these
surprising overlaps with other independent de-
velopment without straying too far from the
topic of memory hotplug.

8.1 Memory Defragmentation

The primary concern for memory defragmen-
tation within the VM subsystem is at the page
level. At the heart of this concern is the page al-
locator and management of contiguous groups
of pages. Memory requests can be made for
for sizes in the range of a single page up to
2(MAX_ORDER−1) contiguous pages. As time
goes by, various size allocations are obtained
and freed. The page allocator attempts to in-
telligently group adjacent pages via the use of
buddy allocator as previously described. How-
ever, it still may become difficult to satisfy re-
quests for large size allocations. When a suit-
able size block is not found on the free lists,
an attempt is made to reclaim pages so that a
sufficiently large block can assembled. Unfor-
tunately, not all pages can be reclaimed. For
example, those in use for kernel data. The free
area splitting concepts previously discussed ad-
dress this issue. By grouping pages based on
usage characteristics, the likelihood that a large
block of pages can be reclaimed and ultimately
allocated is greatly increased.

With memory hotplug, removing a memory
section is somewhat analogous to allocating all
the pages within the memory section. This is
because all pages within the section must be
free (not in use) before the section can be re-
moved. Therefore, the concept of free list split-
ting can also be applied to memory sections
for memory removal operations. Unfortunately
however, memory sections do not map directly
to memory blocks managed by the page allo-
cator. Rather, a memory section consists of
multiple contiguous 2(MAX_ORDER−1) page size
blocks. The number of blocks is dependent
on architecture specific SECTION_SIZE and
MAX_ORDER definitions. Future work within
the memory hotplug project is to extend the
concepts used to avoid fragmentation to that of
memory section size blocks. This will increase

170 • Hotplug Memory Redux

the likelihood that memory sections can be re-
moved.

8.2 NUMA Memory Management

In a NUMA system, memory hotplug must con-
sider the case where all of the memory on a
node might be added/removed. Structures to
manage the node must be updated.

In addition, a user can specify nodes which are
used by a user’s tasks by usingmbind() or
set_mempolicy() in order to support load
balancing among cpusets/dynamic partitioning.
Memory hotplug has to not only update mem-
policy information, but also make interfaces for
load balancing scripts to move memory con-
tents from nodes to other appropriate nodes.

8.2.1 Hotplug of Management Structures
for a Node.

Structures which manage memory of a node
must be updated in order to hotplug the node
This section describes some of the structures.

pgdat To reduce expensive cross node mem-
ory accesses, Linux usespgdat struc-
tures which include zone and zonelists.
These structures are allocated on each
node’s local memory in order to reduce ac-
cess costs. If a new node is hotplug added,
its pgdat structure should be allocated on
its own node. Normally, there are no mm
structures for the node until the pgdat is
initialized, so pgdat has to be allocated by
special routine early in the boot process.
This allocation (getting a virtual address
and mapping physical address to it) is like
a ioremap() , but it should be mapped
on cached area unlikeioremap() .

zonelist The zonelist is an array of zone ad-
dresses, and it is ordered by which zone
should be used for its node. Its order is
determined by access cost from a cpu to
memory and the zone’s attributes. This
implies when a node with memory is hot-
plugged, all the node’s zonelists which are
being accessed must be updated. For up-
dating, the options are:

• getting locks

• giving up reordering

• stop other cpus while updating

Stopping other cpus while updating may
be the best way, because there is no im-
pact on performance of page allocation un-
less a hotplug event is in progress. In ad-
dition, more structures than just zonelists
need updating. For example, mempoli-
cies of each process have to be updated to
avoid using a removed node. To update
them, the system has to remember all of
the processes’ mempolicies. Linux does
not currently do this, so further develop-
ment is necessary.

8.2.2 Scattered Clone Structures Among
Nodes

Pgdat, which includes zone and zonelist, is
used to manage its own node, but some of data
structures’ clones are allocated on each of the
nodes for light weight accesses. One current
example isNODE_DATA() on IA64 imple-
mentation. NODE_DATA(node_id) macro
points to eachnode_id ’s pgdat. In the IA64
implementation,NODE_DATA(node_id) is
not just an array like it is in the IA32 imple-
mentation. This data is localized on each node
and it can be obtained fromper_cpu data.
In this case, all of the nodes have clones of
pg_data_ptrs[] array.

2005 Linux Symposium • 171

#define local_node_data \
local_cpu_data->node_data

#define NODE_DATA(nid) \
local_node_data->pg_data_ptrs[nid]

Besides NODE_DATA(), many other data
structures which are often accessed are local-
ized to each node. This implies that all of
the node copies must also be updated when
a hotplug event occurs. To update them,
stop_machine_run may prove to be the
best method of serializing access.

8.2.3 Process Migration on NUMA

It is important to determine what the best des-
tination node is for migration of memory con-
tents. This applies not only automatic migra-
tion, but also “manual page migration” as pro-
posed by Ray Bryant at SGI. With manual page
migration a load balancer script can specify the
destination node for migrating existing mem-
ory. A potential interface would be a simple
system call likesys_migrate_pages(pid,

oldnode, newnode) .

However, if there are too many nodes (ex, 128
nodes) and tasks (ex, 256 processes) in the sys-
tem, this system call will be called too fre-
quently. Therefore, Ray Bryant is proposing
an array interface to specify each node to avoid
too many calls:sys_migrate_pages(pid,

count, old_nodes, new_nodes) .

The arguments tosys_migrate_pages()
old_nodes andnew_nodes are the sets of
source and destination nodes and count is the
number of elements in each array. Therefore, a
user can just callsys_migrate_pages()
once for each task. If each task uses shared
message blocks, there will be a large reduction
in the number of system calls.

9 Conclusion

Hotplug Memory is real and achievable due to
the dedication of its developers. This paper
has shown that the issues with memory hotplug
have been well thought out. Most of memory
hotplug has already been implemented and is
maintained in the-mhp tree[3]—broken down
into the smallest possible independent pieces
for continued development. These small pieces
are released early and often. As individual
pieces of this code become ready for consump-
tion by the general public they are merged up-
stream. By maintaining this separate tree which
is updated at least once per -rc release, hotplug
developers have been able to test and stabilize
an increasing amount of memory hotplug code.
Thus, the pieces that get merged upstream are
small, non-disruptive, and well tested.

Memory hotplug is a model of how a large, dis-
ruptive feature can be developed and merged
into a continuously stable kernel. In fact, hav-
ing a stable kernel has made development much
more disciplined, debugging easier, conflicts
with other developers easier to identify, feed-
back more thorough, and generally has been a
blessing in disguise.

If in a parallel universe somewhere Andrew
Morton gave his keynote today instead of a
year ago I suspect he would say something dif-
ferent. The parallel universe Andrew Morton
might say:

“Some features tend to be pervasive and have
their little sticky fingers into lots of different
places in the code base. An example of which
comes to mind is CPU hot plug, and memory
hot unplug. We may not be able to accept these
features into a 2.7 development kernel due to
their long-term impact on stabilizing that ker-
nel. To make it easier on the developers of fea-
tures like these we have decided to never have a

172 • Hotplug Memory Redux

2.7 development kernel. Because of this, I ex-
pect CPU hot plug and memory hot unplug to
be merged with relative ease as they reach the
level of stability of the rest of the kernel.”

10 Acknowledgments

Special thanks to Ray Bryant of SGI for his re-
view on NUMA migration, New Energy and
Industrial Technology Development Organiza-
tion for funding some of the contributions from
the authors who work at Fujitsu, Martin Bligh
for his NUMA work and his work on IBMs test
environment, Andy Whitcroft for his work on
SPARSEMEM, Andrew Morton and the quilt
developers for giving us something to manage
all of these patches, Sourceforge for hosting our
mailing list, OSDL for the work of the Hot-
plug SIG—especially their work on testing, and
Martine Silbermann for valuable feedback.

11 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM, In-
tel, Fujitsu, or HP.

IBM is a trademark or registered trademark of In-
ternational Business Machines Corporation in the
United Sates and/or other countries.

Intel is a trademark or registered trademark of Intel
Corporation in the United States, other countries, or
both.

Fujitsu is a trademark or registered trademark of Fu-
jitsu Limited in Japan and/or other countries.

Linux is a registered trademark of Linus Torvalds.

References

[1] http:
//www.groklaw.net/article.
php?story=20040802115731932

[2] M. Tosatti (marcelo.tosatti@
cyclades.com) (14 Oct 2004),Patch:
Migration Cache. Email to Dave Hansen,
Iwamoto Toshihiro, Hiroyuki Kamezawa,
linux-mm@kvack.org (http:
//lwn.net/Articles/106977/)

[3] http://sr71.net/patches/

[4] C. Lameter (clameter@sgi.com) (21 Oct
2004)Patch: Hugepages demand paging
V1[0/4]: Discussion and Overview.
Email to Kenneth Chen, William Lee
Irwin III, Ray Bryant,
linux-kernel@vger.kernel.
org (http:
//lwn.net/Articles/107719/)

[5] H. Takahashi, 2004 [online]. Linux
memory hotplug for Hugepages.
Available from:
http://people.valinux.co.
jp/~taka/hpageremap.html
[Accessed 2004].

[6] D. Hansen, M. Kravetz, B. Christiansen,
M. Tolentino. Hotplug Memory and the
Linux VM. In Proceedings of the Ottawa
Linux Symposium,Ottawa, Ontario,
Canada, pages 278–294, July 2004.

[7] K. Knowlton. A Fast Storage Allocator.
In Communications of the ACM,Vol. 8,
Issue 10, pages 623–624, October 1965.

[8] M. Gorman. Understanding the Linux
Virtual Memory Manager, Prentice Hall,
NJ, 2004.

[9] W. Bolosky, R. Fitzgerald, M. Scott.
Simple But Effective Techniques for

2005 Linux Symposium • 173

NUMA Memory Management. In
Proceedings of the 12th ACM Symposium
on Operating Systems Principles,pages
19–31, 1989.

[10] P. Barham, B. Dragovic, K. Fraser, S.
Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, A. Warfield. Xen and the Art of
Virtualization. InProceedings of the
Nineteenth ACM Symposium on
Operating System Principles,pages
164–177, October 2003.

[11] E. Demaine, J. Munro. Fast Allocation
and Deallocation with an Improved
Buddy System. InProceedings of the
19th Conference on Foundations of
Software Technology and Theoretical
Computer Science,pages 84–96, 1999.

[12] Intel Corporation. 64-Bit Extension
Technology Software Developer’s Guide.
2004.

[13] K. Li and K. Peterson. Evaluation of
Memory System Extensions. In
Proceedings of 18th Annual International
Symposium on Computer Architecture,
pages 84–93, 1991.

[14] D. Mosberger, S. Eranian. ia-64 Linux
Kernel Design and Implementation.
Prentice Hall, NJ, 2002.

[15] Z. Mwaikambo, A. Raj, R. Russell, J.
Schopp, S. Vaddagiri. Linux Kernel
Hotpug CPU Support. InProceedings of
the Ottawa Linux Symposium,pages
467–479, July 2004.

[16] J. Peterson, T. Norman. Buddy Systems.
In Communications of the ACM,Vol. 20,
Issue 6, pages 421–431, June 1977.

[17] C. Waldspurger. Memory Resource
Management in VMware ESX Server. In
Procedings of the 5th Symposium on

Operating System Design and
Implementation,pages 181–194, 2002.

[18] M.S. Johnstone, P.R. Wilson. The
Memory Fragmentation Problem:
Solved? InInternational Symposium on
Memory Management,pages 26–36,
Vancouver, British Columbia, Canada,
1998.

[19] Linux Weekly News, 2005 [online]. Yet
another approach to memory
fragmentation. Available from
http://lwn.net/121618/
[Accessed Feb. 2005]

[20] ACPI Specification Version 3.0http:
//www.acpi.info/spec.htm

[21] L. Brown,et al. The State of ACPI in the
Linux Kernel. InProceedings of the
Ottawa Linux Symposium, Ottawa,
Ontario, Canada, July 2005.

[22] B. Jacob, T. Mudge. Virtual Memory in
Contemporary Microprocessors, IEEE
Micro, pages 60–75, July 1998

[23] R. Rashid, A. Tevanian, M. Young, D.
Golub, R. Baron, D. Black, W. Bolosky,
J. Chew. Machine Independent Virtual
Memory Management for Paged
Uniprocessor and Multiprocessor
Architectures, InProceedings of Second
International Conference on
Architectural Support for Programming
Languages and Operating Systems,pages
31–39, 1987.

[24] S. Hand. Self-Paging in the Nemesis
Operating System, InProceedings of the
Third Symposium on Operating Systems
Design and Implementation,pages
73–86, February 1999.

[25] P. Denning. Virtual Memory, InACM
Computing Surveys (CSUR),Vol. 2, Issue
3, pages 153–189, September 1970.

174 • Hotplug Memory Redux

[26] A. Bensoussan, C. Clingen, R. Daley.
The Multics Virtual Memory, In
Communications of the ACM,Vol. 15,
Issue 5, pages 308–318, May 1972.

[27] V. Abrossimov, M. Rozier. Generic
Virtual Memory Management for
Operating System Kernels. In
Proceedings of the 12th ACM Symposium
on Operating System Principles,pages
123–136, November 1989.

[28] A. Kleen. Porting Linux to x86-64. In
Proceedings of the Ottawa Linux
Symposium,, Ottawa, Ontario, Canada,
July 2001.

[29] IBM. Dynamic Logical Partitioning in
IBM eserver pSeries. October 2002.

[30] D.H. Brown Associates, Inc. Capacity on
Demand A Requirement for the
e-Business Environment. IBM White
Paper. September 2003.

[31] L.D. Paulson. Computer System, Heal
Thyself. InIEEE Computer,Vol. 35,
Issue 8, August 2002.

Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

