
nfsim: Untested code is buggy code

Rusty Russell
IBM Australia, OzLabs

rusty@rustcorp.com.au

Jeremy Kerr
IBM Australia, OzLabs

jk@ozlabs.org

Abstract

The netfilter simulation environment (nfsim)
allows netfilter developers to build, run, and
test their code without having to touch a real
network, or having superuser privileges. On top
of this, we have built a regression testsuite for
netfilter and iptables.

Nfsim provides an emulated kernel environ-
ment in userspace, with a simulated IPv4 stack,
as well as enhanced versions of standard kernel
primitives such as locking and a proc filesys-
tem. The kernel code is imported into the
nfsim environment, and run as a userspace
application with a scriptable command-line in-
terface which can load and unload modules,
add a route, inject packets, run iptables, control
time, inspect/proc , and so forth.

More importantly we can test every single per-
mutation of external failures automatically—
for example, packet drops, kmalloc failures and
timer deletion races. This makes it possible to
check error paths that very rarely happen in real
life.

This paper will discuss some of our experiences
with nfsim and the progression of the netfil-
ter testsuite as new features became available
in the simulator, and the amazing effect on de-
velopment. We will also show the techniques
we used for exhaustive testing, and why these
should be a part of every project.

1 Testing Netfilter Code

The netfilter code is complicated. Technically,
netfilter is just the packet-interception and man-
gling framework implemented in each network
protocol (IPv4, IPv6, ARP, Decnet and bridg-
ing code)[3]. IPv4 is the most complete im-
plementation, with packet filtering, connection
tracking and full dynamic Network Address
Translation (NAT). Each of these, in turn, is
extensible: dozens of modules exist within the
tree to filter on different packet features, track
different protocols, and perform NAT.

There were several occasions where code
changes unintentionally broke extensions, and
other times where large changes in the network-
ing layer (such as non-linearskb s1) caused
subtle bugs. Network testing which relies on
users is generally poor, because no single user
makes use of all the extensions, and intermit-
tent network problems are never reported be-
cause users simply hit “Reload” to work around
any problem. As an example, the Linux 2.2
masquerade code would fail on one in a thou-
sand FTP connections, due to a control message
being split over two packets. This was never re-
ported.

1skb s are the kernel representation of network pack-
ets, and do not need to be in contiguous virtual memory.

• 141 •

142 • nfsim: Untested code is buggy code

2 The Existing Netfilter Testsuite

Netfilter had a testsuite from its early develop-
ment. This testsuite used the ethertap2 devices
along with a set of helper programs; the tests
themselves consisted of a series of shell scripts
as shown in Figure 1.

Unfortunately, this kind of testing requires root
privileges, a quiescent machine (nossh -ing in
to run the testsuite!) and a knowledge of shell
slightly beyond cut-and-paste of other tests.
The result was that the testsuite bit-rotted, and
was no longer maintained after 2000.

2.1 Lack of Testing

The lack of thorough testing had pervasive ef-
fects on the netfilter project which only became
clear as the lack was remedied. Most obviously,
the quality of the code was not all that it could
have been—the core functionality was solid,
but the fringes contained longstanding and sub-
tle bugs.

The less-noticed effect is the fear this knowl-
edge induces in the developers: rewrites such
as TCP window tracking take years to enter
the kernel as the developers seek to slowly add
users to test functionality. The result is a cy-
cle of stagnation and patch backlog, followed
by resignation and a lurch forward in function-
ality. It’s also difficult to assess test coverage:
whether users are actually running the changed
code at all.

Various hairy parts of the NAT code had not
been significantly altered since the initial im-
plementation five years ago, and there are few
developers who actually understand it: one of

2ethertap devices are virtual network interfaces that
allow userspace programs to inject packets into the net-
work stack.

these, Krisztian Kovacs, found a nasty, previ-
ously unnoticed bug in 2004. This discovery
caused Rusty to revisit this code, which in turn
prompted the development ofnfsim .

3 Testsuite Requirements

There are several requirements for a good test-
suite here:

• It must be trivial to run, to encourage de-
velopers and others to run it regularly;

• It must be easy to write new tests, so non-
core developers can contribute to testing
efforts;

• It must be written in a language the devel-
opers understand, so they can extend it as
necessary;

• It must have reasonable and measurable
coverage;

• It should encourage use of modern debug-
ging tools such as valgrind; and

• It must make developerswantto use it.

4 The New Testsuite—nfsim

It was a long time before the authors had the
opportunity to write a new testsuite. The aim
of nfsim was to provide a userspace environ-
ment to import netfilter code (from a standard
kernel tree) into, which can then be built and
run as a standalone application. A command-
line interface is given to allow events to be sim-
ulated in the kernel environment. For example:

• generate a packet (either from a device or
the local network stack); or

2005 Linux Symposium • 143

tools/intercept PRE_ROUTING DROP 2 1 > $TMPFILE &
sleep 1

tools/gen_ip $TAP0NET.2 $TAP1NET.2 100 1 8 0 55 57 > /dev/tap0

if wait %tools/intercept; then :
else

echo Intercept failed:
tools/rcv_ip 1 1 < $TMPFILE
exit 1

fi

Figure 1: Shell-script style test for old netfilter testsuite

• advance the system time; or

• inspect the kernel state (e.g., through the
/proc/ file system).

Upon this we can build a simple testsuite.

Figure 2 shows a simple configure-build-
execute session ofnfsim .

Help text is automatically generated from doc-
book XML comments in the source, which also
form the man page and printable documenta-
tion. There is a “trivial” XML stripper which
allows building if the required XML tools are
not installed.

When the simulator is started, it has a default
network setup consisting of a loopback inter-
face and two ethernet interfaces on separate
networks. This basic setup allows for the ma-
jority of testing scenarios, but can be easily re-
configured. Figure 3 shows the default network
setup as shown by theifconfig command.

The presence of this default network configu-
ration was a decision of convenience over ab-
straction. It would be possible to have no inter-
faces configured at startup, but this would re-
quire each test to initialise the required network
environment manually before running. From

further experience, we have found that the sig-
nificant majority of tests do not need to alter the
default network setup.

Although the simulator can be used interac-
tively, running predefinednfsim test scripts
allows us to automate the testing process. At
present, a netfilter regression testsuite is be-
ing developed in the main netfilter subversion
repository.

To assist in automated testing, the builtin
expect command allows us to expect a string
to be matched in the output of a specific com-
mand that is to be executed. For example, the
command:

expect gen_ip rcv:eth0

will expect the string “rcv:eth0 ” to be
present in the output the next time that the
gen_ip command (used to generate IPv4
packets) is invoked. If the expectation fails,
the simulator will exit with a non-zero exit sta-
tus. Figure 4 shows a simplenfsim test which
generates a packet destined for an interface on
the simulated machine, and fails if the packet
is not seen entering and leaving the network
stack.

144 • nfsim: Untested code is buggy code

$./configure --kerneldir=/home/rusty/devel/kernel/linux-2.6.12-rc4/
...
$ make
...
$./simulator --no-modules
core_init() completed
nfsim 0.2, Copyright (C) 2004 Jeremy Kerr, Rusty Russell
Nfsim comes with ABSOLUTELY NO WARRANTY; see COPYING.
This is free software, and you are welcome to redistribute
it under certain conditions; see COPYING for details.
initialisation done
> quit
$

Figure 2: Building and runningnfsim

Note that there’s a helpful
test-kernel-source script in the
nfsim-testsuite/ directory. Given
the source directory of a Linux kernel, builds
nfsim for that kernel and runs all the tests. It
has a simple caching system to avoid rebuilding
nfsim unnecessarily.

During early development, a few benefits of
nfsim appeared.

Firstly, compared to a complete kernel, build
time was very short. Aside from the code under
test, the only additional compilation involved
the (relatively small) simulation environment.

Secondly, ‘boot time’ is great:

$ time ./simulator < /dev/null
real 0m0.006s
user 0m0.003s
sys 0m0.002s

4.1 The Simulation Environment

As more (simulated) functionality is required
by netfilter modules, we needed to “bring in”
more code from the kernel, which in turn

depends on further code, leading to a large
amount of dependencies. We needed to decide
which code was simulated (reimplemented in
nfsim), and which was imported from the ker-
nel tree.

Reimplementing functionality in the simulator
gives us more control over the “kernel.” For ex-
ample, by using simulated notifier lists, we are
able to account for each register and deregister
on all notifier chains, and detect mismatches.
The drawback of reimplementation is that more
nfsim code needs to be maintained; if the ker-
nel’s API changes, we need to update our local
copy too. We also need to ensure that any be-
havioural differences between the real and sim-
ulated code do not cause incorrect test results.

Importing code allows us to bring in func-
tionality ‘for free,’ and ensures that the im-
ported functionality will mirror that of the ker-
nel. However, the imported code will often re-
quire support in another area, meaning that fur-
ther functionality will need to be imported or
reimplemented.

For example, we were faced with the decision
to either import or reimplement the IPv4 rout-
ing code. Importing would guarantee that we
would deal with the ‘real thing’ when it came

2005 Linux Symposium • 145

> ifconfig
lo

addr: 127.0.0.1 mask: 255.0.0.0 bcast: 127.255.255.255
RX packets: 0 bytes: 0
TX packets: 0 bytes: 0

eth0
addr: 192.168.0.1 mask: 255.255.255.0 bcast: 192.168.0.255
RX packets: 0 bytes: 0
TX packets: 0 bytes: 0

eth1
addr: 192.168.1.1 mask: 255.255.255.0 bcast: 192.168.1.255
RX packets: 0 bytes: 0
TX packets: 0 bytes: 0

Figure 3: Default network configuration ofnfsim

packet to local interface
expect gen_ip rcv:eth0
expect gen_ip send:LOCAL {IPv4 192.168.0.2 192.168.0.1 0 17 3 4}
gen_ip IF=eth0 192.168.0.2 192.168.0.1 0 udp 3 4

Figure 4: A simplenfsim test

time to test, but required a myriad of other com-
ponents to be able to import. We decided to
reimplement a (very simple) routing system,
having the additional benefit of increased con-
trol over the routing tables and cache.

Generic functions, or functions strongly tied
to kernel code were reimplemented. We have
a single kernelenv/kernelenv.c file,
which defines primitives such askmalloc() ,
locking functions and lists. The kernel environ-
ment contains around 1100 lines of code.

IPv4 code is implemented in a separate module,
with the intention of making a ‘pluggable pro-
tocol’ structure, with an IPv6 implementation
following. The IPv4 module contains around
1700 lines of code, the majority being in rout-
ing and checksum functions.

Ideally, the simulation environment should be

as clean and simple as possible; adding com-
plexity here may cause problems when the code
under test fails.

4.2 Interaction with Userspace Utilities

The most often-used method of interacting with
netfilter code is through theiptables com-
mand, run from userspace. We needed some
way of providing this interface, without either
modifying iptables, or reimplementing it in the
simulator.

To allow iptables to interface with netfilter code
under test, we’ve developed a shared library, to
beLD_PRELOAD-ed when running an unmod-
ified iptables binary. The shared library
intercepts calls to{set,get}sockopt() ,
and diverts these calls to the simulator.

146 • nfsim: Untested code is buggy code

4.3 Exhaustive Error Testing

During netfilter testing with an early version
of nfsim , it became apparent that almost all
of the error-handling code was not being exer-
cised. A trivial example fromip_tables.c :

counters = vmalloc(countersize);
if (counters == NULL)

return -ENOMEM;

Because we do not usually see out-of-memory
problems in the simulator (nor while running in
the kernel), the error path (wherecounters
is NULL) will almost certainly never be tested.

In order to test this error, we need the
vmalloc() to fail; other possible failures
may be due to any number of possible exter-
nal conditions when calling these ‘risky’ func-
tions (such ascopy_{to,from}_user() ,
semaphores or skb helpers).

Ideally, we would be able to simulate the fail-
ure of these risky functions in every possible
combination.

One approach we considered is to save the state
of the simulation when we reach a point of fail-
ure, test one case (perhaps the failure), restore
to the previous state, then test the other case
(success). This left us with the task of having
to implement checkpointing to save the simu-
lator state; while not impossible, it would have
been a large amount of work.

The method we implemented is based on
fork() . When we reach a risky function, we
fork() the simulator, test the error case in the
child process, and the normal case in the parent.
This produces a binary tree of processes, with
each node representing a risky function. To pre-
vent an explosion in the number of processes,

the parent blocks (inwait()) while the child
executes3.

The failure decision points are handled by a
function namedshould_i_fail() . This
handles the process creation, error testing and
failure-path replay; the return value indicates
whether or not the calling function should fail.
Figure 5 shows thenfsim implementation of
vmalloc , an example of a function that is
prone to failure. The single (string) argument
to should_i_fail() is unique per call site,
and allowsnfsim to track and replay failure
patterns.

The placement ofshould_i_fail() calls
needs to be carefully considered—while each
failure test will increase test coverage, it can
potentially double the test execution time. To
prevent combinatorial increase in simulation
time, nfsim also has ashould_i_fail_
once() function, which will test the failure
case once only. We have used this for functions
whose failure does not necessarily indicate an
error, for exampletry_module_get() .

When performing this exhaustive error testing,
we cannot expect a successful result from the
test script; if we are deliberately failing a mem-
ory allocation, it is unreasonable to expect that
the code will handle this without problems.
Therefore, when running these failure tests, we
don’t require a successful test result, only that
the code will handle the failure gracefully (and
not cause a segmentation fault, for example).
Running the simulator under valgrind[1] can be
useful in this situation.

If a certain failure pattern causes unexpected
problems, the sequence of failures is printed
to allow the developer to trace the pattern,
and can be replayed using the--failpath

3Although it would be possible to implement parallel
failure testing on SMP machines by allowing a bounded
number of concurrent processes.

2005 Linux Symposium • 147

struct sk_buff *alloc_skb(unsigned int size, int priority)
{

if (should_i_fail(__func__))
return NULL;

return nfsim_skb(size);
}

Figure 5: Example of a risky function innfsim

command-line option, running under valgrind
or a debugger.

One problem that we encountered was the use
of iptables while in exhaustive failure testing
mode: we need to be able tofork() while in-
teracting with iptables, but can not allow both
resulting processes to continue to use the sin-
gle iptables process. We have solved this by
recording all interactions with iptables up un-
til the fork() . When it comes time to ex-
ecute the second case, a new iptables process
is invoked, and we replay the recorded session.
However, we intend to replace this with a sys-
tem that causes the iptables process to fork with
the simulator.

Additionally, the failure testing is very time-
consuming. A full failure test of the 2.6.11 net-
filter code takes 44 minutes on a 1.7GHz x86
machine, as opposed to 5 seconds when run-
ning without failure testing.

At present, the netfilter testsuite exercises 61%
of the netfilter code, and 65% when running
with exhaustive error checking. Although the
increase in coverage is not large, we are now
able to test small parts of code which are very
difficult to reliably test in a running kernel.
This found a number of long-standing failure-
path bugs.

4.4 Benefits of Testing in Userspace

Becausenfsim allows us to execute kernel
code in userspace, we have access to a number
of tools that aren’t generally available for ker-
nel development. We have been able to expose
a few bugs by runningnfsim under valgrind.

The GNU Coverage tool,gcov [2], has allowed
us to find untested areas of netfilter code; this
has been helpful to find which areas need atten-
tion when writing new tests.

Andrew Trigell’s talloc library[4] gives us
clean memory allocation routines, and allows
for leak-checking in kernel allocations. The
‘contexts’ thattalloc uses allows developers
to identify the source of a memory leak.

5 Wider Kernel Testing:
kernsim ?

The nfsim technique could be usefully ap-
plied to other parts of the kernel to allow a
Linux kernel testsuite to be developed, and
speed quality kernel development. The Linux
kernel is quite modular, and so this approach
which worked so well for netfilter could work
well for other sections of the kernel.

Currentlynfsim is divided intokernelenv ,
ipv4 and thenetfilter (IPv4) code. The

148 • nfsim: Untested code is buggy code

first two are nfsim-specific testing implemen-
tations of the kernel equivalents, such as
kmalloc and spin_lock . The latter is
transplanted directly from the kernel source.

The design of a more completekernsim
would begin with dividing the kernel into other
subsystems. Some divisions are obvious, such
as the SCSI layer and VFS layer. Others are
less obvious: the slab allocator, the IPv4 rout-
ing code, and the IPv4 socket layer are all
potential subsystems. Subsystems can require
other subsystems, for example the IPv4 socket
layer requires the slab allocator and the IPv4
routing code.

For most of these subsystems, a simulated ver-
sion of the subsystem needs to be written,
which is a simplified canonical implementa-
tion, and contains additional sanity checks. A
good example innfsim is the packet gener-
ator which always generates maximally non-
linear skb s. A configuration language simi-
lar to the Linux kernel ‘Kconfig’ configuration
system would then be used to select whether
each subsystem should be the simulator version
or imported from the kernel source. This al-
lows testing of both the independent pieces and
the combinations of pieces. The latter is re-
quired because the simulator implementations
will necessarily be simplified.

The current nfsim commands are very
network-oriented: they will require signifi-
cant expansion, and probably introduction of a
namespace of some kind to prevent overload.

5.1 Benefits of akernsim

It is obvious to the nfsim authors that
wider automated testing would help speed and
smooth the continual redevelopment which oc-
curs in the Linux kernel. It is not clear that the
Linux developers’ antipathy to testing can be

overcome, however, so the burden of maintain-
ing akernsim would fall on a small external
group of developers, rather than being included
in the kernel source in a series oftest/ sub-
directories.

There are other possibilities, including the sug-
gestion by Andrew Tridgell that a host kernel
helper could allow development of simple de-
vice drivers withinkernsim . The potential
for near-exhaustive testing of device drivers, in-
cluding failure paths, against real devices is sig-
nificant; including a simulator subsystem inside
kernsim would make it even more attractive,
allowing everyone to test the code.

6 Lessons Learnt fromnfsim

Nfsim has proven to be a valuable tool for easy
testing of the complex netfilter system. By pro-
viding an easy-to-run testsuite, we have been
able to speed up development of new compo-
nents, and increase developer confidence when
making changes to existing functionality. Net-
filter developers can now be more certain of any
bugfixes, and avoid inadvertent regressions in
related areas.

Unfortunately, persuading some developers to
use a new tool has been more difficult than ex-
pected; we sometimes see testsuite failures with
new versions of the Linux kernel. However, we
are confident thatnfsim will be adopted by a
wider community to improve the quality of net-
filter code. Ideally we will see almost all of the
netfilter code covered by a nfsim test some time
in the near future.

Adopting the simulation approach to testing is
something that we hope other Linux kernel de-
velopers will take interest in, and use in their
own projects.

2005 Linux Symposium • 149

Downloadingnfsim

nfsim is available from:

http://ozlabs.org/~jk/projects/nfsim/

Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States,
other countries, or both. Linux is a trademark of
Linus Torvalds in the United States, other countries,
or both. Other company, product, and service names
may be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM op-
erates. This document is provided as is, with no
express or implied warranties. Use the information
in this document at your own risk.

References

[1] Valgrind Developers. Valgrind website.
http://valgrind.org/ .

[2] Free Software Foundation. GCOV — a
Test Coverage Program.
http://gcc.gnu.org/
onlinedocs/gcc/Gcov.html .

[3] Netfilter Core Team. Netfilter/iptables
website.http://netfilter.org .

[4] Andrew Tridgell. talloc website.
http://talloc.samba.org/ .

150 • nfsim: Untested code is buggy code

Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

