
Networking Driver Performance and Measurement -
e1000 A Case Study

John A. Ronciak
Intel Corporation

john.ronciak@intel.com

Jesse Brandeburg
Intel Corporation

jesse.brandeburg@intel.com

Ganesh Venkatesan
Intel Corporation

ganesh.venkatesan@intel.com

Mitch Williams
Intel Corporation

mitch.a.williams@intel.com

Abstract

Networking performance is a popular topic in
Linux and is becoming more critical for achiev-
ing good overall system performance. This pa-
per takes a look at what was done in the e1000
driver to improve performance by (a) increas-
ing throughput and (b) reducing of CPU utiliza-
tion. A lot of work has gone into the e1000 Eth-
ernet driver as well into the PRO/1000 Giga-
bit Ethernet hardware in regard to both of these
performance attributes. This paper covers the
major things that were done to both the driver
and to the hardware to improve many of the as-
pects of Ethernet network performance. The
paper covers performance improvements due to
the contribution from the Linux community and
from the Intel group responsible for both the
driver and hardware. The paper describes opti-
mizations to improve small packet performance
for applications like packet routers, VoIP, etc.
and those for standard and jumbo packets and
how those modifications differs from the small
packet optimizations. A discussion on the tools
and utilities used to measure performance and
ideas for other tools that could help to measure
performance are presented. Some of the ideas

may require help from the community for re-
finement and implementation.

Introduction

This paper will recount the history of e1000
Ethernet device driver regarding performance.
The e1000 driver has a long history which
includes numerous performance enhancements
which occurred over the years. It also shows
how the Linux community has been involved
with trying to enhance the drivers’ perfor-
mance. The notable ones will be called out
along with when new hardware features be-
came available. The paper will also point out
where more work is needed in regard to perfor-
mance testing. There are lots of views on how
to measure network performance. For various
reasons we have had to use an expensive, closed
source test tool to measure the network perfor-
mance for the driver. We would like to engage
with the Linux community to try to address this
and come up with a strategy of having an open
source measurement tool along with consistant
testing methods.

• 133 •



134 • Networking Driver Performance and Measurement - e1000 A Case Study

This paper also identifies issues with the system
and the stack that hinder performance. The per-
formance data also indicates that there is room
for improvement.

A brief history of the e1000 driver

The first generation of the IntelR© PRO/1000
controllers demonstrated the limitation of the
32-bit 33MHz PCI bus. The controllers were
able to saturate the bus causing slow response
times for other devices in the system (like slow
video updates). To work with this PCI bus
bandwidth limitation, the driver team worked
on identifying and eliminating inefficiencies.
One of the first improvements we made was
to try to reduce the number of DMA transac-
tions across the PCI bus. This was done using
some creative buffer coalescing of smaller frag-
ments into larger ones. In some cases this was
a dramatic change in the behavior of the con-
troller on the system. This of course was a long
time ago and the systems, both hardware and
OS have changed considerably since then.

The next generation of the controller was a 64-
bit 66MHz controller which definitely helped
the overall performance. The throughput in-
creased and the CPU utilization decreased just
due to the bus restrictions being lifted. This was
also when new offload features were being in-
troduced into the OS. It was the first time that
interrupt moderation was implemented. This
implementation was fairly crude, based on a
timer mechanism with a hard time-out time set,
but it did work in different cases to decrease
CPU utilization.

Then a number of different features like de-
scriptor alignment to cache lines, a dynamic
inter-frame gap mechanism and jumbo frames
were introduced. The use of jumbo frames re-
ally helped transferring large amounts of data

but did nothing to help normal or small sized
frames. It also was a feature which required
network infrastructure changes to be able to
use, e.g. changes to switches and routers to sup-
port jumbo frames. Jumbo frames also required
the system stacks to change. This took some
time to get the issues all worked out but they
do work well for certain environments. When
used in single subnet LANs or clusters, jumbo
frames work well.

Next came the more interesting offload of
checksumming for TCP and IP. The IP offload
didn’t help much as it is only a checksum across
twenty bytes of IP header. However, the TCP
checksum offload really did show some perfor-
mance increases and is widely used today. This
came with little change to the stack to support
it. The stack interface was designed with the
flexibility for a feature like this. Kudos to the
developers that worked on the stack back then.

NAPI was introduced by Jamal Hadi, Robert
Olsson, et al at this time. The e1000 driver
was one of the first drivers to support NAPI.
It is still used as an example of how a driver
should support NAPI. At first the development
team was unconvinced that NAPI would give
us much of a benefit in the general test case.
The performance benefits were only expected
for some edge case situations. As NAPI and
our driver matured however, NAPI has shown
to be a great performance booster in almost all
cases. This will be shown in the performance
data presented later in this paper.

Some of the last features to be added were
TCP Segment Offload (TSO) and UDP frag-
ment checksums. TSO took work from the
stack maintainers as well as the e1000 develop-
ment team to get implemented. This work con-
tinues as all the issues around using this have
not yet been resolved. There was even a rewrite
of the implementation which is currently un-
der test (Dave Miller’s TSO rewrite). The UDP



2005 Linux Symposium • 135

fragment checksum feature is another that re-
quired no change in the stack. It is however
little used due to the lack of use of UDP check-
summing.

The use of PCI Express has also helped to
reduce the bottleneck seen with the PCI bus.
The significantly larger data bandwidth of
PCIe helps overcome limitations due to laten-
cies/overheads compared to PCI/PCI-X buses.
This will continue to get better as devices sup-
port more lanes on the PCI Express bus further
reducing bandwidth bottlenecks.

There is a new initiative called IntelR© I/O Ac-
celeration Technology (I/OAT) which achieves
the benefits of TCP Offload Engines (TOE)
without any of the associated disadvantages.
Analysis of where the packet processing cycles
are spent was performed and features designed
to help accelerate the packet processing. These
features will be showing up over the next six to
nine months. The features include Receive Side
Scaling (RSS), Packet Split and Chipset DMA.
Please see the [Leech/Grover] paper “Acceler-
ating Network Receive Processing: IntelR© I/O
Acceleration Technolgy” presented here at the
symposium. RSS is a feature which identifies
TCP flows and passes this information to the
driver via a hash value. This allows packets
associated with a particular flow to be placed
onto a certain queue for processing. The feature
also includes multiple receive queues which are
used to distribute the packet processing onto
multiple CPUs. The packet split feature splits
the protocol header in a packet from the pay-
load data and places each into different buffers.
This allows for the payload data buffers to be
page-aligned and for the protocol headers to be
placed into small buffers which can easily be
cached to prevent cache thrash. All of these
features are designed to reduce or eliminate the
need for TOE. The main reason for this is that
all of the I/OAT features will scale with proces-
sors and chipset technologies.

Performance

As stated above the definition of performance
varies depending on the user. There are a lot of
different ways and methods to test and measure
network driver performance. There are basi-
cally two elements of performance that need to
be looked at, throughput and CPU utilization.
Also, in the case of small packet performance,
where packet latency is important, the packet
rate measured in packets per second is used as
a third type of measurement. Throughput does
a poor job of quantifying performance in this
case.

One of the problems that exists regarding per-
formance measurements is which tools should
be used to measure the performance. Since
there is no consistent open source tool, we use
a closed source expensive tool. This is mostly
a demand from our customers who want to be
able to measure and compare the performance
of the Intel hardware against other vendors on
different Operating Systems. This tool, IxChar-
iot by IXIA 1, is used for this reason. It does
a good job of measuring throughput with lots
of different types of traffic and loads but still
does not do a good job of measuring CPU uti-
lization. It also has the advantage that there are
endpoints for a lot of different OSes. This gives
you the ability to compare performance of dif-
ferent OSes using the same system and hard-
ware. It would be nice to have and Open Source
tool which could do the same thing. This is
discussed in Section , “Where do we go from
here.”

There is an open source tool which can be used
to test small packet performance. The tool is
the packet generator or ‘pktgen’ and is a ker-
nel module which is part of the Linux kernel.
The tool is very useful for sending lots of pack-
ets with set timings. It is the tool of choice for

1Other brands and names may be claimed as the prop-
erty of others.



136 • Networking Driver Performance and Measurement - e1000 A Case Study

anyone testing routing performance and routing
configurations.

All of the data for this section was collected us-
ing Chariot on the same platform to reduce the
number of variables to control except as noted.

The test platform specifications are:

• Blade Server

• Dual 2.8GHz PentiumR© 4 XeonTM CPUs,
512KB cache 1GB RAM

• Hyperthreading disabled

• Intel R© 80546EB LAN-on-motherboard
(PCI-X bus)

• Competition Network Interface Card in a
PCI-X slot

The client platform specifications are:

• Dell2 PowerEdgeR© 1550/1266

• Dual 1266MHz PentiumR© III CPUs,
512KB cache, 1GB RAM,

• Red Hat2 Enterprise Linux 3 with 2.4.20-
8smp kernel,

• Intel R© PRO/1000 adapters

Comparison of Different Driver Versions

The driver performance is compared for a num-
ber of different e1000 driver versions on the
same OS version and the same hardware. The
difference in performance seen in Figure 1 was
due to the NAPI bug that Linux community
found. It turns out that the bug was there for a

2Other brands and names may be claimed as the prop-
erty of others.

long time and nobody noticed it. The bug was
causing the driver to exit NAPI mode back into
interrupt mode fairly often instead of staying in
NAPI mode. Once corrected the number of in-
terrupts taken was greatly reduced as it should
be when using NAPI.

Comparison of Different Frames Sizes
verses the Competition

Frame size has a lot to do with performance.
Figure 2 shows the performance based on frame
size against the competition. As the chart
shows, frame size has a lot to do with the to-
tal throughput that can be reached as well as
the needed CPU utilization. The frame sizes
used were normal 1500 byte frames, 256 bytes
frames and 9Kbyte jumbo frames.

NOTE: The competition could not accept a 256
byte MTU so 512 bytes were used for perfor-
mance numbers for small packets.

Comparison of OS Versions

Figure 3 shows the performance comparison
between OS versions including some different
options for a specific kernel version. There was
no reason why that version was picked other
than it was the latest at the time of the tests.
As can be seen from the chart in Figure 3, the
2.4 kernels performed better overall for pure
throughput. This means that there is more im-
provement to be had with the 2.6 kernel for net-
work performance. There is already new work
on the TSO code within the stack which may
have improved the performance already as the
TSO code has been known to hurt the overall
network throughput. The 2.4 kernels do not
have TSO which could be accounting for at
least some of the performance differences.



2005 Linux Symposium • 137

Driver Version Performance

1310

1320

1330

1340

1350

1360

1370

1380

5.6.11 5.7.6.1 6.0.58 6.1.4
Driver Version

Th
ro

ug
hp

ut
 (M

bp
s)

91

91.2

91.4

91.6

91.8

92

92.2

92.4

92.6

CP
U 

Us
ag

e 
(%

)

Throughput (Mbps)
CPU Utilization

Figure 1: Different Driver Version Comparison

Frame Size Performance

0

200

400

600

800

1000

1200

1400

1600

1800

1500 256/512 9000
Frame Size (bytes)

To
ta

l T
hr

ou
gh

pu
t (

M
bp

s)

0

10

20

30

40

50

60

70

80

90

100

CP
U 

Us
ag

e 
(%

)
e1000 Throughput
Comp. Throughput
e1000 CPU Usage
Comp. CPU Usage

Figure 2: Frame Size Performance Against the Competition

Results of Tuning NAPI Parameters

Initial testing showed that with default NAPI
settings, many packets were being dropped on
receive due to lack of buffers. It also showed
that TSO was being used only rarely (TSO was
not being used by the stack to transmit).

It was also discovered that reducing the driver’s
weight setting from the default of 64 would

eliminate the problem of dropped packets. Fur-
ther reduction of the weight value, even to
very small values, would continue to increase
throughput. This is shown in Figure 4.

The explanation for these dropped packets is
simple, because the weight is smaller, the driver
iterates through its packet receive loop (in
e1000_clean_rx_irq ) fewer times, and
hence writes the Receive Descriptor Tail regis-



138 • Networking Driver Performance and Measurement - e1000 A Case Study

OS Version Performance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2.6.5 2.6.9 2.6.10 2.6.11 2.6.12 2.6.12-
no-napi

2.6.12-
up

2.6.12-
up-no-
napi

2.4.30 2.4.30-
no-napi

2.4.30
UP 

OS Version

To
ta

l T
hr

ou
gh

pu
t (

M
bp

s)

82

84

86

88

90

92

94

96

98

100

102

CP
U 

Us
ag

e 
(%

)

Throughput (Mbps)
CPU Utilization

Figure 3: OS Version Performance

ter more often. This notifies the hardware that
descriptors are available more often and elimi-
nates the dropped packets.

It would be obvious to conclude that the in-
crease in throughput can be explained by the
dropped packets, but this turns out to not be the
case. Indeed, one can eliminate dropped pack-
ets by reducing the weight down to 32, but the
real increase in throughput doesn’t come until
you reduce it further to 16.

The answer appears to be latency. With the
higher weights, the NAPI polling loop runs
longer, which prevents the stack from running
its own timers. With lower weights, the stack
runs more often, and processes packets more
often.

We also found two situations where NAPI
doesn’t do very well compared to normal in-
terrupt mode. These are 1) when the NAPI poll
time is too fast (less than time it takes to get
a packet off the wire) and 2) when the proces-
sor is very fast and I/O bus is relatively slow.
In both of these cases the driver keeps enter-
ing NAPI mode, then dropping back to inter-
rupt mode since it looks like there is no work

to do. This is a bad situation to get into as the
driver has to take a very high number of inter-
rupts to get the work done. Both of these situ-
ations need to be avoided and possibly have a
different NAPI tuning parameter to set a mini-
mum poll time. It could even be calculated and
used dynamically over time.

Where the Community Helped

The Linux community has been very helpful
over the years with getting fixes back to cor-
rect errors or to enhance performance. Most re-
cently, Robert Olsson discovered the NAPI bug
discussed earlier. This is just one of countless
fixes that have come in over the years to make
the driver faster and more stable. Thanks to all
to have helped this effort.

Another area of performance that was helped
by the Linux community was the e1000 small
packet performance. There were a lot of com-
ments/discussions in netdev that helped to get
the driver to perform better with small packets.
Again, some of the key ideas came from Robert



2005 Linux Symposium • 139

Throughput vs Weight

1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

4 5 6 7 8 12 16 20 24 32 48 64
Weight

Th
ro

ug
hp

ut
 (M

bp
s)

Dropped packets seen 
at weights 48 and 64.

Figure 4: NAPI Tuning Performance Results

Olsson with the work he has done on packet
routing. We also added different hardware fea-
tures over the years to improve small packet
performance. Our new RSS feature should help
this as well since the hardware will be better
able to scale with the number of processor in
the system. It is important to note that e1000
benefitted a lot from interaction with the Open
Source Community.

Where do we go from here

There are a number of different things that the
community could help with. A test tool which
can be used to measure performance across OS
versions is needed. This will help in compar-
ing performance under different OSes, different
network controllers and even different versions
of the same driver. The tool needs to be able to
use all packet sizes and OS or driver features.

Another issue that should be addressed is the
NAPI tuning as pointed out above. There are
cases where NAPI actually hurts performance
but with the correct tuning works much better.

Support the new I/OAT features which give
most if not all the same benefits as TOE with-
out the limitations and drawbacks. There are
some kernel changes that need to be imple-
mented to be able to support features like this
and we would like for the Linux community to
be involved in that work.

Conclusions

More work needs to be done to help the net-
work performance get better on the 2.6 kernel.
This won’t happen overnight but will be a con-
tinuing process. It will get better with work
from all of us. Also, work should continue to
make NAPI work better in all cases. If it’s in
your business or personal interest to have better
network performance, then it’s up to you help
make it better.

Thanks to all who have helped make everything
perform better. Let us keep up the good work.



140 • Networking Driver Performance and Measurement - e1000 A Case Study

References

[Leech/Grover] Accelerating Network Receive
Processing: IntelR© I/O Acceleration Tech-
nolgy; Ottawa Linux Symposium 2005



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


