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Abstract

Our project is a stabilization effort on the
GNU libc thread library NPTL—Native POSIX
Threading Library. To achieve this, we focused
our work on extending the pool of open-source
tests and on providing a tool for tracing the in-
ternal mechanisms of the library.

This paper introduces our work with a short sta-
tus on test coverage of NPTL at the beginning
of the project (February 2004). It explains how
we built the prioritized list of NPTL routines
to be tested. It then describes our methodology
for designing tests in the following areas: con-
formance to POSIX standard, scalability, and
stress. It also explains how we have simplified
the use of the tests and the analysis of the re-
sults. Finally, it provides figures about our re-
sults, and it shows how NPTL has evolved dur-
ing year 2004.

The paper goes on to explain how this NPTL
Trace Tool can help NPTL users, and hackers,
to understand and fix problems. It describes
the features of the tool and presents our cho-
sen architecture. Finally, it shows the current
status of the project and the possible future ex-
tensions.

1 Introduction

NPTL library was first released on September
2002 and merged with the glibc about sixteen
months later. It was meant from the begin-
ning to replace the LinuxThreads implementa-
tion, and therefore become the standard thread
library in GNU systems. The new library pro-
vides full conformance to the POSIX1 require-
ments, including signal support, very good per-
formance and scalability.

Porting from LinuxThreads to NPTL was in-
tended to be transparent; however, there are
several cases where software using NPTL must
be modified. There are some documented
changes, such as signal handling orgetpid()
behavior. There are also changes in the applica-
tion dynamics, such as those caused by threads
being created more quickly. A user applica-
tion coded with incorrect assumptions about
multi-threaded programming can fail because
of some of the semantic changes; such prob-
lems are very difficult to debug. We had the
opportunity to work with IBM on some of their
internalBugZillareports, and in many cases the
problem appeared because of changes in appli-

1The POSIX® standard refers to the IEEE Std 1003.1,
a.k.a. Single UNIX Specification [1] v3. The current
version is the 2004 Edition and includes Technical Cor-
rigendum 1 and 2. POSIX is a registered trademark of
the IEEE, Inc.
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cation dynamics. Last but not least, NPTL is
still under development. New features are be-
ing added from time to time. Fixes and op-
timizations are also frequent. All these code
modifications have the potential to introduce
new bugs.

Before NPTL could be used reliably in complex
applications on production systems, it needed
more substantial testing and validation. Any
production system providing reliable applica-
tions should not crash or hang simply because
the threading library is not stable. On the other
hand, the new library provides very good per-
formance and therefore is of great interest for
these same systems.

To continuously improve the stability and qual-
ity of NPTL as it evolves, as well as to shorten
the stabilization period after each change, we
developed a robust set of regression and stress
tests. Ideally, these tests would be run fre-
quently during NPTL development to look for
regressions and the tests can be augmented as
new features are added. These tests should
cover as many APIs, arguments to the APIs,
and threading semantics as possible. The tests
must remain independent of the implementa-
tion of the threading library so that the tests
will not need to be changed each time the im-
plementation changes. We will see in the next
chapter how were specified and developed a list
of tests, how we tried to make these tests runs
as simple and user-friendly as possible, and fi-
nally we will show NPTL evolution, from the
test results point of view, through year 2004.

As we have seen previously, many of the prob-
lems developers have to face when they port
an application from LinuxThreads to NPTL are
due to bugs located in their application, not in
NPTL. Bugs dealing with multi-threading are
particularly difficult to isolate and reproduce
most of the time. As an example, when you
run the program step-by-step in a debugger,
the thread creation time is totally different than

when it runs outside the debugger. These bugs
can also depend on the machine load, on a de-
vice access slowing only one of the threads, or
a multitude of factors, resulting in weeks of re-
search and testing for an application developer.
Moreover, many POSIX standard interfaces are
quite intricate, and many programmers do not
test all return codes from NPTL routines. At
best, an application which receives an unex-
pected error code may crash; at worst, the ap-
plication may corrupt data silently.

To solve these issues, we have developed a
trace tool for NPTL, called POSIX Threads
Trace Tool (PTT). This tool keeps track of all
NPTL related events, such as thread creation,
lock acquisition, with little impact on the appli-
cation. By tracing the library internals, we can
understand the chain of events which lead to a
hang or strange behavior in the application. We
can also understand how the application is re-
ally using NPTL functions, measure lock con-
tention, and optimize both the NPTL imple-
mentation and the application’s use of NPTL.
Finally, these traces can prove that a bug is in
NPTL or in the kernel, rather than in the appli-
cation. The third chapter of this paper is dedi-
cated to this trace tool. It attempts to show the
limitations of existing tools, then describes the
features of our tool and how these features can
be used efficiently to solve real situations. It
also shows the tool internals and its current lim-
itations and future directions.

The paper concludes with an overview of the
remaining work to do on NPTL, NPTL tests,
and NPTL trace tool, in order to obtain a pro-
duction quality level in this open-source prod-
uct. It shows the current use of the tests in the
library and kernel development process. It also
shows that this testing effort is necessarily not a
"one-shot" project, and that more people should
be involved in projects like this one. As for
the trace, it shows how the trace tool can be
extended into a dynamic code checker, or into
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a profiling tool, with a minimal effort. It also
deals with how this modified NPTL can be set
up in a production environment, and why peo-
ple should use this tool.

2 NPTL Tests

The first part of our project consisted of im-
proving the test coverage for the NPTL library.
Our goal was to be as exhaustive as possible,
at least as far as POSIX requirements are con-
cerned. We focused on the POSIX standard
[1] among all standards the NPTL is supposed
to conform to, because it is largely used on
other platforms, and so is important for ensur-
ing portability of an application, and because
reference is made in the library name—Native
POSIXThread Library—which means it is the
first standard one would expect NPTL to con-
form to.

2.1 Situation on March 2004

When we started our project in early 2004, we
isolated three open-source projects which pro-
vided test cases for NPTL.

The first one is theGNU lib C project [glibc]
itself. NPTL source tree contains test cases that
can be run against the freshly compiled glibc
by issuing themake check command. These
tests—about 160 files at that time—are not doc-
umented at all and hardly commented. Their
naming convention is the only hint to guess
what each test is supposed to do. We had a hard
time reading each test case and writing a short
abstract on what the test is really doing. As a
synthesis, these tests are mostly regression tests
which test for very specific features, and test
coverage for each library routine is far from ad-
equate or complete. Moreover, the tests are of-
ten very close to NPTL internals, which means

more maintenance when the library implemen-
tation changes. These tests are useful for the
glibc developers, but are by design too closely
linked to testing implementation specifics to be
usable as a proof of reliability or indicator of
conformance.

The second project we focused on is theOpen
POSIX Test Suite[OPTS]. This is a pure test
project, with a lite harness—the only constraint
on a test case is its return value—and a simple
structure, at least for the regression tests. For
each library routine, an XML file contains a set
of assertions that describe the POSIX standard
requirements for this routine, and then the test
cases are named according to the assertion they
are testing. Extracting the coverage informa-
tion is quite straightforward from this structure.
The test cases are also often well documented,
with few exceptions where the comments do
not match the content.

The third project we considered is theLinux
Test Project[LTP]. This is the most used open-
source test project for Linux, but it appeared
that it provides very few test cases for NPTL,
aside from those of the OPTS which is in-
cluded. Moreover, the structure is more com-
plex and the format for test cases is more rigid
than in the OPTS.

After this analysis, we decided to release our
test cases to the OPTS, as they would later be
included in LTP with the complete OPTS new
release. In situations where we would have
to write implementation-dependent test cases,
they would be submitted to the glibc project
directly, but we did our best to avoid NPTL-
internals dependent code, as it would require
more maintenance.

2.2 Prioritized list

Our next step was to find what to test. NPTL
contains more than 150 routines, so we had to
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establish our priority list based on the following
criteria:

1. functions which are used the most fre-
quently;

2. functions which are complex enough to
possibly contain bugs, based on their al-
gorithm; and

3. functions which are not just a wrapper to
the kernel—as we are not testing the ker-
nel.

To find out which functions are the most
used, we chose seven multi-threaded applica-
tions representative of several computer science
domains where multi-threading is frequently
used. The selected software were: two different
Java Virtual Machines;JOnAS, an open-source
Java application server, compiled withgcj; the
Apacheweb server; thesquid web cache and
proxy; theMySQLdatabase server; andGLu-
cas, a scientific software described in the next
chapter. Each application was analyzed with
thenmutility to find out which NPTL routines
were used. We also included a personal opinion
based on our past experience with each routine,
to establish the list.

This work has resulted in a complete list of
functions split into 4 groups, from the most
important to test to the less important. The
first group (most important) contains 15 func-
tions, dealing withthreads, mutexesandcond-
vars. The second group contains 27 functions,
dealing withthreads, signals, cancellationand
semaphores. The complete list is available on
our website [2]. The remaining functions be-
long to groups three and four. Even if NPTL
contains 150+ functions, many of those func-
tions are only used to change a value in a struc-
ture (attribute), so the bug probability is re-
ally small. With groups 1, 2 and 3 we cover
almost all the functions which can encounter

problems. At this time, only groups 1 and 2
have been completely tested. There is still a
great amount of work remaining to complete
the test coverage—this will be detailed later in
this paper.

2.3 Methodology

We had to design a method for test writing. We
based it on the OPTS method.

For each library routine to test, the first step was
to analyze the POSIX standard and extract each
assertion that the function has to verify to be
compliant. For some functions the standard ap-
peared to be unclear or contradictory. In these
cases, we opened requests for clarification in
the Austin Revision Group [3], so that the next
Technical Corrigendum for the standard would
clarify the obscure parts.

In the next step, these assertions were com-
pared to those already present in the OPTS, and
the assertions.xmlfile was updated according
to the differences we found. Most of the dif-
ferences we encountered so far were due to the
POSIX standard evolution since the OPTS was
first released.

The third step in the design was to check each
existing test case for a given assertion, find out
possible errors, try to check that all situations
were tested, and list the missing cases which
had to be written. For some assertions, we also
had to specify stress tests to be written in order
to be exhaustive, or when we could not figure
another way to test a particular feature. We also
specified scalability tests to be written for some
functions where scalability is important, even if
this is more a quality of implementation issue
than part of the POSIX standard.

At each step of this process, for each function,
we posted an article in our project forum, pub-
licly available and accessible from our website
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[2]. This allowed other people to check how
they could help or see the rationale for a partic-
ular test.

Once our design was complete, we had to write
the test cases and submit them to the OPTS
project. We wrote three kinds of test cases:
conformance, stressandscalability.

A conformance test runs for a short period of
time and returns a value representing its result:
PASSED, FAILED, UNRESOLVED, etc. See
the OPTS documentation for a detailed expla-
nation of return codes.

A stress test runs forever until it is interrupted
with SIGUSR1 (means success) or a problem
occurs (means failure). Most of the stress tests
are very resource-consuming and are meant to
be run alone in the system. In this way, it is
possible to identify the cause of a failure, when
any occurs.

A scalability test loops on a given operation un-
til the number of iterations is reached or un-
til failure, and saves the duration of each iter-
ation. Then, measures are parsed with a math-
ematical algorithm which tells if the function
is scalable (constant duration) or not (duration
depends on the changing parameter). The al-
gorithm is based on the least squares method
to model the results. The table of measures
can also be output and used to generate a graph
of the results with thegnuplot tool. Figure 1
gives an example of such a graphical output.
It shows the duration ofsem_open() and
sem_close() operations with an increasing
number of opened semaphores in the system.
Other examples can be found in our forum.

2.4 TSLogParser tool

To be useful, the tests must be run frequently,
and the results must be easy to analyze and
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Figure 1: Graphical output sample

compare with other runs (references). Whereas
running the tests is quite straightforward with
OPTS (just set up the flags and runmake), the
analysis can be a real pain. As an example, af-
ter we completed the test writing for our first
group of functions, we ran a complete test cam-
paign on several Linux distributions with sev-
eral hardware architectures—i686, PowerPC,
ia64. We got a total of nine different con-
figurations, and three runs on each configura-
tion, which resulted in a total of about 50,000
test case results to digest. Needless to say, we
needed automated tools to extract the useful in-
formation!

In many cases, comparing several runs and
finding quickly what the differences are in de-
tail is all we need. That supposes we have an ar-
bitrary reference, to compare new code results
to. But comparing huge log files is far from be-
ing easy. Using thediff tool is not a solution,
as there are expected differences between the
runs—order of test case execution, timestamps,
random values— and a long time can be spent
doing the analysis.

Another approach is to first make a synthesis of
each run, and then only compare the synthesis.
This is quite easy to achieve with tools such as
grepandwc. The Scalable Test Platform (dis-
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cussed in the next section), for example, uses
this kind of summary tool. Anyway, this ap-
proach has some drawbacks. When a new fail-
ure appears, it is not possible to find out which
test is failing. Also, if the success/failure dis-
tribution remains constant, while not involving
the same individual tests, you won’t see any-
thing with your tool.

To address all these issues, we have designed a
new tool: TSLogParser[4]. The main idea is
to parse the log file of a test suite run and save
the results and detailed information about each
test into a database; and then be able to access
all this information through a web interface. It
allows filtering of results, to show only partial
information or to access all details in just a few
clicks. It also makes comparing several runs
quite easy.

The structure of this tool has been designed to
allow several kinds of test suites to be parsed
and displayed the same way. The parser mod-
ule which saves the log file into the database
is written as a plug-in. The visualization and
administration interfaces are not dependent on
the test suite format. The current implementa-
tion is written in PHP and has been used with
Apache and MySQL. It is able to compare up
to 10 OPTS runs at once on a standard work-
station. It also extracts statistical information
from each run and allows filtering according to
test status—for example one may want to hide
all the successful tests or show only tests that
end with a segmentation fault.

This tool has made the analysis of OPTS run
results a fast and easy operation. It is a must-
have—in our opinion—for anyone who is using
the OPTS.

2.5 Scalable Test Platform

Another frequent issue in testing is that the ac-
tive developers often lack the resources—time,

hardware—to run complete test campaigns fre-
quently. This can be solved, thanks to theScal-
able Test Platform[STP] andPatch Lifecycle
Manager [PLM] projects from Open Source
Development Labs(OSDL).

PLM tracks the official kernel patches and al-
lows uploading of new patches (either manu-
ally or automatically). STP allows people to re-
quest runs against tests, against any PLM patch,
with a choice of Linux distributions and ma-
chine hardware. Our project contributed to STP
by making the OPTS runnable through its inter-
face. There is also a work in progress to bring
the same patch feature that PLM provides for
the glibc of the test system.

Once the requested test run completes, an email
is sent to the requester with a summary of the
results, and the complete log file is available for
download. There is another work in progress to
make the results available through the TSLog-
Parser interface, because as we already dis-
cussed a summary can sometimes not contain
enough information.

A very interesting feature of the PLM project
is the ability to automatically pull new ker-
nel patches and run a bunch of tests in STP—
including the OPTS—against the new patched
kernel. This allows very quick detection when
new problems appear.

2.6 Situation on March 2005

After sixteen months of active work on this
project, we are reaching the end of our credits.
During this period, we were able to analyze and
write test cases for all our 42 most important
NPTL functions. A total of 246 conformance
tests, 9 scalability tests and 16 stress tests have
been written. These 42 functions correspond
to 283 distinct assertions in POSIX, of which
246 (90%) are now covered by the OPTS and
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135 (55% of OPTS) were contributed within
our project. Figure 2 shows the evolution of
the number of test cases (upper plot) and func-
tions tested (lower plot) during our project. It
only refers to our contribution, not to the com-
plete OPTS project. The horizontal step dur-
ing November 2004 corresponds to our first
test campaign. The vertical step on February
2005 is due to semi-automated test generation
for some signal-related functions. It is interest-
ing to note that both plots are almost identical.
This means that the amount of work required
for each function to complete the OPTS work is
almost the same for all functions. This needed
work can be due to POSIX evolutions, as well
as incomplete or invalid OPTS test cases.

Figure 2: Project progression

Thanks to these test cases, a total of 22 de-
fect reports have been issued—21 in the glibc
and 1 in the kernel—most of which have been
fixed in recent releases. The kernel defect
deals with the scheduler and theSCHED_RR
policy behavior on SMP machines. The glibc
defects are either conformance bugs (wrong
error code returned, bad#include files or
symbol requirements), or functional bugs (flags
role in sigaction() , behavior of timeouts
with condvars), or else just bugs (segmentation
faults, hangs, unexpected behaviors). We’ve
also found a scalability issue with the func-

tion sem_close() , the duration of which de-
pends on the number of opened semaphores.

In the meantime, 5 enhancement requests
have been issued to the Austin Revision
Group, about obscure or incomplete points
in the POSIX standard. These requests ad-
dressed issues inpthread_mutex_lock() ,
pthread_cond_wait() , pthread_cond_

timedwait() , sigaction() , and sem_

open() . All have been accepted or are still
pending.

The most important part of our project is not the
number of bugs we have found, but the num-
ber of assertions which are now tested. For
42 functions we analyzed, almostall of what
can be testedis now tested in OPTS. The test
cases for these 42 functions cover all the cur-
rent POSIX requirements.

2.7 NPTL Evolution over year 2004

As an example, we have run the current OPTS
release withFedora Core 1(FC1),Fedora Core
2 (FC2) andFedora Core 3(FC3) distributions,
as well as an ’unstable’ Fedora Core 3 update.
After analyzing the results with the TSLog-
Parser tool, we have come to find some inter-
esting conclusions, detailed in the next para-
graphs. This kind of analysis is very easy to
achieve and can help tracking new bugs very
quickly. Anyway, as the TSLogParser tool is
interactive, we cannot reproduce its output in
this document, and encourage the reader to
check the tool web site [4] for examples, in-
cluding the data discussed here.

AIO operations. Some test cases related to
Asynchronous I/O operations, such asaio_
read() or aio_write() , returned PASS
with FC1 and FC2 and return FAIL or hang
with the more recent distributions. This may
indicate a bug in the new kernels or in the glibc.
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Clock routines. Some tests related to the clock
routines (clock_settime() , nanosleep() )
did not pass in FC1, but things have been fixed
since FC3.

Message queues. The message queues routines
were not implemented in FC1, so the related
tests reported a ’build failure’ status. Every-
thing is fine since FC2.

Sched routines. A few test cases related
to the sched routines (sched_setparam() ,
sched_setscheduler() ) won’t compile
in the latest FC3 update, whereas they passed
in the previous releases.

There are some other test cases which would
be worth a deeper investigation, but we won’t
enter into the details here. Reproducing these
results is quite easy, and it would be valuable
for Linux and the glibc that more people carry
on this kind of work.

3 NPTL Trace

The second part of our work was dedicated to
tracing NPTL.

3.1 Why Tracing?

Since more and more HyperThreaded or Multi-
Core processors are available, it is expected
that the design of many new applications will
use multi-threading for running several tasks si-
multaneously and concurrently, in order to take
profit of nearly all the available power of the
machine.

Writing a portable multi-threaded application is
a complex task: the POSIX Thread standard is
not easy to understand. It provides ten kinds
of objects: Thread, Mutex, Barrier, Conditional

Variable, Semaphore, Spinlock, Timer, Read-
Write lock, Message queues, and TLD (Thread
Local Data). These objects are available under
eighteen options:BAR, CS, MSG, PS, RWL ,
SEM, SPI, SS,TCT , THR , TMO , TPI, TPP,
TPS,TSA, TSH, TSP,TSS2 that may be sup-
ported or not by Operating Systems. (See [1]
for the meaning of each option). NPTL pro-
vides about 150 different routines to manage
the POSIX objects.

Also, “anything can occur at any time”: a
program must not assume that an Event A al-
ways occurs before—or after—Event B. That
may be true on a small machine; but it will cer-
tainly be untrue some day on a bigger and faster
machine at a customer site. That makes writ-
ing a multi-threaded application more complex
than initially expected.

On Linux, NPTL is quite perfectly compliant
with the POSIX Threads standard. Since sev-
eral parts of the POSIX Threads standard are
unspecified, they can be provided differently
by two POSIX Threads libraries. So porting
an application from another Operating System
(though providing the same POSIX Threads
objects and routines) to Linux may lead to bad
surprises. Being able to quickly understand
why an application behaves badly (hang, unex-
pected behavior, etc.) is critical for customers.
Often, reproducing the problem in support labs
is not possible since it may appear after days of
computation. This may require sending a Linux
guru to the customer site. Also, understanding
quickly if the problem is in the application, in
NPTL, or in the Linux Kernel is critical.

Analyzing a multi-threaded application show-
ing a race condition or a hang with a debug-
ger is not the right approach because it will
certainly modify the way threads are sched-
uled, possibly causing the problem to disap-

2The options provided by recent GNU libc are high-
lighted inbold.
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pear. The right approach is by using a less in-
trusive method, such as a trace tool. A NPTL
trace tool enables recording of the most impor-
tant multi-threading operations of an applica-
tion or the main steps of NPTL with a min-
imal impact to the application (performances
and flow of execution of threads). The trace can
be analyzed once the problem has appeared and
the application has stopped: it isPost-Mortem
Analysis. If the impact on a critical application
is acceptable, one can even continuously record
the last few thousand traces so that analyzing a
failure can be done when it occurs for the first
time: it is First Failure Data Capture .

Why not use Linux Trace Toolkit [LTT]? First,
LTT is designed to trace events in the kernel
and not to trace programs in the user space.
Second, LTT uses functions (likewrite() )
that cannot be used when tracing NPTL. (See
section 3.3.1 on page 120).

Why not simply use somewrapper enabling
trace of only the calls of the application to
NPTL routines? Because such a tool does not
enable to analyze both the behavior of NPTL
and that of the application. And, since it also
requires to put in place a complex mechanism
for collecting and storing traces, it is worth
also tracing the behavior of NPTL routines, by
adding traces inside its code.

So, as explained hereafter, we finally decided
to design our own NPTL tracing tool.

3.2 Goals

At the beginning of 2004, when we started to
add new tests for NPTL, we also started to
study a NPTL trace tool. After discussing the
design of such a tool with people involved in
thread technology and in the glibc (IBM: F.
Levine, E. Farchi; HP: J. Harrow; Intel: I.
Perez-Gonzalez; etc.), we decided to propose

to students from French Universities to study
the architecture of the tool and to build it.

The POSIX Threads NPTL Trace Tool[PTT]
has been designed to provide a solution to the
requirements discussed previously. It addresses
the three kinds of users described hereafter.

3.2.1 Users

We have studied the needs of three different
kinds of users:

A developer in charge of writing, porting or
maintaining a multi-threaded application. He
mainly needs to see when his program calls
NPTL routines and when it exits from them,
with details about the parameters. He wants
to be able to easily and quickly switch from
a fast untraced NPTL to a traced NPTL, and
vice-versa, without recompiling his applica-
tion. When using the traced NPTL, the maxi-
mum acceptable decrease in the performances
of his application is 10%.

A member of asupport team that provides
Linux skills to other people who write, test or
use applications. This kind of user has skills
about the Linux kernel and the GNU libc and
he needs to see what is happening inside NPTL.
Also he is very interested in generating traces at
customer sites and to analyze them in his own
offices.

A hacker of NPTL. Since analyzing why
NPTL does not perform as expected is not an
easy task, it is crucial to provide help. This
way, more people could contribute to analyzing
the behavior of NPTL and fix problems.

3.2.2 Features

Using PTT is a four step process:



120 • NPTL Stabilization Project

1. build or get a traced NPTL library;

2. trace the application and build a binary
trace;

3. translate the binary file into a text file that
will be parsed by another program or that
will be read manually;

4. analyze the trace, possibly with a tool
helping to handle many objects and traces.

Several features are required:

• do not break the POSIX conformance
rules (mainly cancellation).

• enable several people to trace different ap-
plications at the same time.

• handle large volumes of traces due to an
application running days and weeks before
the problem occurs: keep only last traces
or manage very large trace files.

• give meaningful names to NPTL objects
rather than hexadecimal addresses, since
the application may create hundreds or
thousands of objects of each kind.

• dynamically switch from a light trace to a
richer or full trace.

• filter the decoded trace based on various
criteria (name or kind of object, etc).

• start/stop the trace while the application
is running, and provide solutions for han-
dling incomplete traces.

• handle applications that fork new pro-
cesses that must be traced.

• handle bad situations (hang, crash, kill).

3.3 Architecture

The main idea is to handle a buffer in shared
memory: the threads of the application write
the traces in the buffer, while a daemon
(launched as a separate process) concurrently
and periodically reads the traces in the buffer
and writes them into the binary file. Traces
are concurrently added by the threads into the
buffer at the time the events occur. Figure 3
provides a simplified description of the archi-
tecture of PTT.

Figure 3: Architecture

3.3.1 POSIX Constraints

The architecture must take into account the fol-
lowing constraints.

• First, thePOSIX Threads standard de-
fines which routines can be aCancella-
tion Point(CP)3. POSIX defines three cat-
egories: the routines that shall be a CP,

3A Cancellation Point is a place where a thread can
be canceled by means ofpthread_cancel() . Such
places appear when the cancellationstate is set toen-
abled, andtypeis deferred.
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those that cannot, and those that are un-
defined (free). It means that adding a CP
into a routine that cannot have a CP is
forbidden: routines likeprintf() can-
not be called by trace code from inside
NPTL routines. In few words, a NPTL
trace mechanism can almost only write
into memory !

• Second, tracing an application must have
a minimumimpact. It means that the ap-
plication must not run significantly slower
and must not behave very differently than
without the trace: the application must
produce the same results and its threads
should continue executing in the same or-
der so that problems do not disappear.

3.3.2 Components

Events are written into a buffer. Then a daemon
copies them to a binary file.

The basic component of the trace is anevent.
An event shows either a change in an attribute
(state, owner, value, . . . ) of a NPTL object,
or the calls (in / out) to any NPTL routine
by the application. Sixty events have been
defined for the four objects: Threads, Mutex,
Barrier, CondVar. About 200 different events
are expected to be defined when all routines
are traced. As an example, eleven events
have been defined for the Thread object:
THREAD_JOIN, _DETACH, _STATE_DEAD,

_STATE_WAIT, _STATE_WAKE, _INIT,

_CREATE_IN, _CREATE_OUT, _JOIN_IN,

_JOIN_OUT, _SET_PD. Each event is
recorded in the buffer with useful data:
time-stamp (for computing the elapsed time
between two events), process Id, thread Id, and
parameters. Events contain various amounts
and kinds of data.

Adjacent events are grouped as atrace point in
order to reduce the impact of the trace mecha-

nism: only one call is done instead of two or
more.

A circular buffer allocated in shared memory
is used for storing the traces. If the buffer is not
appropriately sized (too small for a given num-
ber of threads and processors), there is a risk of
overflow: new traces are written over the oldest
traces that the daemon is attempting to copy to
the binary file. Buffer overflow is managed and
produces a clear message. But its probability is
nearly null, as explained hereafter.

A daemon is in charge of continuously mon-
itoring the filling rate of the buffer. When
a threshold is crossed, the daemon copies the
traces to the binary file. One instance of the
daemon is launched per application and be-
haves as the parent process of the application
process.

One binary file is filled with traces for each
traced application. It can be converted to text
by means of a decoding tool. And its size can
be greater than 2 Gigabytes.

3.3.3 Managing the Buffer

Correctly and efficiently managing the trace
buffer was a quite complex task. Since using
NPTL objects and routines (mutex) is forbid-
den, we used the atomic macros provided by
the glibc.

We considered several solutions for managing
the trace buffer:

• use two buffers: when one is full the
buffers are switched and the threads write
traces in the other one, enabling the dae-
mon to save the traces to file without
blocking the application threads, but with
the risk of loosing traces.
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• the same, but with blocking the threads
and with no risk of loosing traces.

• use one buffer per processor in order to re-
duce the contention between traces.

• use one buffer per thread, suppressing all
contention.

• use one buffer per process launched by the
command to be traced.

• use one buffer for all processors, all pro-
cesses and all threads launched by the
command to be traced.

Each of these solutions has drawbacks and ben-
efits about complexity, reliability and perfor-
mance. We started looking in detail at the last
solution. It appeared to be reliable, efficient,
and not too complex, based on experiments we
made on bi- and quad-processor machines.

The solution is based on the following two
mechanisms:

1) When a thread needs to store trace data
into the buffer, it firstreservesthe appropri-
ate amount of space by increasing thereserved
pointer in oneatomic operation. Then it writes
the trace data in the reserved space. And finally
it increases thewrittenpointer with the amount
of written bytes by means of anotheratomic
operation. With this approach, the buffer is
never locked when threads reserve space and
write traces.

2) The daemon continuously monitors the per-
centage of buffer already filled with traces.
When the daemon decides that it is time to save
the filled and reserved parts of the buffer, the
daemon blocks all threads attempting to reserve
more space in the buffer. Once all threads have
completed writing events in the buffer (when
written has reachedreserved), the daemon re-
leases the threads which restart reserving space

in the buffer. Then the daemon writes the filled
part of the buffer into the binary file. The goal
is not to lose traces.

The figure 4 explains the main steps:

Figure 4: Buffer management

1) Start: No space has been reserved.

2) Threads 1, 2 and 3 have successively re-
served the space they need for writing their
trace. The reserved space has crossed the High-
Water mark: the daemon now blocks the other
threads attempting to reserve space. Threads
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1 and 3 have started writing the trace data
whereas thread 2 has not started yet.

3) Threads 1 and 3 have finished writing: an
amount ofa+c bytes of data has already been
written. Thread 2 has started writing. Thread 4
is blocked.

4) Thread 2 has finished writing. Now the
written space (a+c+b) is equal to the reserved
space. The daemon knows which area must be
saved to disk: Thread 4 is released.

5) The daemon is writing the trace data to the
binary file. Thread 4 has reserved the needed
space.

6) The daemon has finished writing the trace
data. Thread 4 is writing its trace data.

An overflow may occur when threads write data
in the buffer faster than the daemon empties
it. Experiments have shown that it may appear
only if the buffer is very small (let’s say: 1 MB
for one fast processor) and if the application is
continuously writing traces due to many com-
peting threads. Using a larger buffer is a good
solution. By default, the threshold (indicating
when it is time to empty the buffer) is set to
half the size of the buffer. The size of the buffer
for small and medium machines is computed
as: (MemSize∗NberO f Processors)/K where
K = 128 by default. Thus, with a 1GB machine
with 2 processors, the size of the buffer is 16
MB. We monitored the maximum usage of the
buffer with various applications and the con-
clusion is that even an unrealistic application
designed for writing PTT traces as fast as pos-
sible cannot overflow the buffer when K is 64.
The applications we used never fill the buffer
more than 60% before the daemon empties it.
If needed, the user is able to use a more ade-
quate buffer size, as a parameter given to the
PTT launcherptt-view .

If an overflow occurs, the threads of the appli-
cation hang. After a time-out, the application is

stopped by the daemon.

Other problems may also occur when a thread
is canceled, hangs or dies.

• A thread can be canceled by means of
the pthread_cancel() routine. The
POSIX standard defines that an applica-
tion can switch from and to two differ-
ent cancellation modes: asynchronous or
deferred (synchronous). In asynchronous
mode, the thread can be canceled any-
where (if the cancellation state isenabled).
In deferred mode, the thread can only be
canceled in Cancellation Points.

In order to guarantee that the trace data
written in the buffer are always complete,
the execution of the PTT trace mechanism
is done in deferred mode (the previous
cancellationmode is stored and then re-
stored).

• A hang of the application can lead to 2
different cases. If an application thread
hangs after it has reserved space in the
trace buffer and before it has written its
trace data, the daemon saves the last traces
after waiting a time-out. If a thread hangs
elsewhere, one must kill the application.

• When a thread runs into a Segmentation
Fault or receives a kill signal, the dae-
mon is warned and saves the last unsaved
traces.

Moreover—as expected—once the application
has completed its task and has returned, the
daemon saves the last unsaved traces.

In order to simplify the design and to speed up
the writing of traces into the buffer, all informa-
tion to be stored within each event are a multi-
ple of 32 bits.
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Using syscalls likegettimeofday() to
time-stamp the event introduces too much over-
head. We must directly read a register of the
machine whenever it is possible. This has been
done on IA32 by using the TSC register. This
will need to be studied for other architectures
(PPC, IA64, . . . ) and for NUMA4 machines
where each node may have its own counter.

3.3.4 Using the patched NPTL

PTT is made of three parts:

• A patch that adds the PTT trace points into
the NPTL routines.

• A patch that adds into NPTL the PTT code
that writes the traces into the buffer.

• The code of the daemon and the four PTT
commands.

PTT is delivered with instructions explaining
how a version of NPTL can be patched and
compiled. As explained above, no modification
or recompilation of the application is required.

There are two cases for using the patched
NPTL:

• For simple programs, it is easy to force the
library loader to use the appropriate NPTL
library. A script is delivered with PTT.

• For complex programs like JVMs, it is
a bit more complex. Thejava com-
mand acts as a library loader: it looks
at /proc/self/exe in order to find
its path and name, then it loads li-
braries (libjava.so , . . . ) based on
its path, and finally it reloads itself with

4Non-Uniform Memory Access

execve() . So one cannot simply use
ld.so .

There are 3 solutions:

1. If your system glibc is the same ver-
sion as the patched one, then you can
useLD_PRELOAD.

2. You can edit the ELF header in
order to change the library loader
name/path. Not so easy. . .

3. Or you can build achroot environ-
ment with the patched library as de-
fault glibc.

If the patched NPTL is delivered with a
distribution, then theLD_PRELOADsolu-
tion seems appropriate.

3.3.5 Measures and Performances

We have measured the impact of PTT on sev-
eral applications: GLucas, Volano™Mark5 and
SPECjbb20006 for Java, and an unrealistic pro-
gram performing only calls to the tracing mech-
anism. We have also compared the impact of
PTT with that of thestrace command. All
results are done with the subset of traced NPTL
routines that were available in April: Threads,
Mutexes, Barriers and CondVars. This means
that the following results are preliminary and
will probably be different once PTT is final-
ized.

On average, one call to the PTT trace mecha-
nism leads to 30 bytes of trace data.

• GLucas [5] is an HPC7 program dedicated
to proving the primality of Mersenne num-
bers (2q − 1). It is an open-source C pro-
gram that implements a specific FFT8 by means

5Volano™ is a trademark of Volano LLC. [6]
6SPECjbb® is a registered trademark of the Standard

Performance Evaluation Corporation (SPEC®). [7]
7High Performance Computing
8Fast Fourier Transform
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of threads. This is a perfect tool for mea-
suring the impact of PTT: its consumption of
multi-threading is much higher than a simple
producer-consumermodel, it can be configured
to use as many threads as wanted and it can be
launched for a variable amount of time,

• Volano™Mark [6] was designed for com-
paring JVMs when used by the Volano™ chat
product. It is a pure Java server benchmark
characterized by long-lasting network connec-
tions and high thread counts. It is an unofficial
Java benchmark that can be configured to use
many (thousands) threads for exchanging data
between one client and one server by means of
sockets. It creates client connections in groups
of 20 (aroom). It is a stress Java program which
often makes a JVM crash or hang and which
has been used by several studies of Linux per-
formances in the past [9].

• SPECjbb®2000[7] is an official SPEC Java
benchmark simulating a 3-tier system, mainly
the middle tier (business logic and object ma-
nipulation). It uses a small number of threads
(2 to 3 times the number of processors).

We have made measures on a 2x IA32 machine
with 2.8 GHz processors. We observed that
the maximum throughput before buffer over-
flow was obtained with the unrealistic applica-
tion running one thread: ~1,800,000 traces per
second. Due to contention, using more threads
led to a lower throughput.

When runningGLucas with 1000 iterations
and with small (2×106) to medium (16×106)
values for the exponentq , we measured that
the system and user CPU cost of the daemon
was negligible, less than 10/00 of the CPU time
consumed by GLucas. The throughput of traces
ranged between 5,000 and 50,000 traces per
second: 40 times lower than the maximum.

When runningVolano™Mark with 10 rooms,
the results depended greatly on the JVM. It ap-

peared that the three main JVMs available on
ia32 do not use NPTL in the same way (this
may also be due to the fact that only a subset of
NPTL routines were traced at that time), lead-
ing to quite different results. First, the impact
of using the patched NPTL with tracing dis-
abled compared to using the original NPTL is
nearly negligible: less than 2% with the fastest
JVM, and less than∼ 5% with the slowest one.
Second, the impact of running the bench with
the patched NPTL with full tracing compared
to the original NPTL was about 16% with the
fastest JVM and about 47% with the slowest
one. Leading to a volume of traces (client +
server) that depends on the JVM: from 215 MB
to 1,000 MB.

When runningSPECjbb®200065 times with
10 warehouses on a bi-processors machine, the
impact of PTT could not be measured since it
was lower than the precision of the measure.

We used the strace tool for tracing
Volano™Mark in two ways. First, when
tracing all system calls and only the Volano™

server, the performances were divided by 14.6.
Second, when tracing only the calls to the
futex system call and only the client, the
performances were divided by 3.2. Although
strace and PTT trace different things, this
clearly shows that PTT is much lighter than
strace.

3.3.6 Testing

PTT is delivered with a set of tests.

First, there are tests verifying that the features
provided by PTT work fine. Examples: a pro-
gram checks that thefork() is correctly han-
dled; another one checks in detail concurrent
accesses to the buffer; and a program checks
that overloading the buffer and the daemon
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leads to a nice message warning the end-user
that he may loose traces.

Second, there are tests verifying in detail that
the traces generated by each patched NPTL
routine are correct.

Third, two versions of aproducer-consumer
model have been written, using condvars or
semaphores.

GLucas and Java (Volano™Mark) are used for
verifying that PTT does not modify the behav-
ior of a large and complex application.

Also theOPTS is run in order to check that the
PTT-patched NPTL is still compliant with the
POSIX Threads standard.

3.4 User Interface

3.4.1 Commands

Several commands are delivered:

ptt-trace for launching the application and
generating a binary trace file

ptt-view for translating the binary trace file
into a human or machine readable text format—
see Figure 5. (It will enable the end-user to fil-
ter the trace. Filters can be applied on: Process
Id, Thread Id, name of POSIX Thread Objects,
name of Events.)

ptt-stat for providing statistics about the
use of POSIX Threads objects, etc

ptt-paje for translating the binary trace file
into a Pajé trace file.

3.4.2 GUI

The analysis of the trace may be very difficult
without the help of a graphical tool. Such a tool

may simply help the user to navigate through
the traces (filter information, find interacting
objects, follow the status and the activity of
objects, etc.); or it may also display traces in
an easier-to-understand graphical way. Both
directions are useful, but we decided to focus
only on the second one, because we found a
sophisticated open-source tool named Pajé that
provides nearly all required features without
the pain of designing and coding a tool dedi-
cated to PTT.

Pajé [8] was designed for visualizing the traces
of a parallel and distributed language (Athapas-
can) and was developed in a laboratory of the
French Research Center IMAG in Grenoble.
Pajé is flexible and scalable and can be used
quite easily for visualizing the traces of any par-
allel or distributed system. It can provide views
at different scales with different levels of de-
tails and one can navigate back and forth in a
large file of traces. It is built on the GNUstep
[11] platform: an object-oriented framework
for desktop application development, based on
the OpenStep specification originally created
by NeXT—now Apple. Several important com-
panies (France Telecom, . . . ) have already used
Pajé for visualizing complex traces. Pajé is now
available in thesid (unstable) Debian distribu-
tion and soon in thesarge(stable) Debian dis-
tribution.

We have done preliminary studies and exper-
iments with Pajé, showing that it seems quite
easy to produce traces in the format expected
by Pajé.

The figure 6 is an example of how a trace could
be visualized: the objects (threads, barriers,
. . . ) appear as horizontal bars, with different
colors according to their status; and the inter-
actions between objects (when a thread creates
or cancels other threads, etc.) are displayed as
vertical arrows. The scenario of the example is:
the main thread initializes a barrier (count=2)
and creates a thread. Then the two threads call
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Raw machine format:
0.001724:START_USER_FUNC : 29336 : 0xb7ecb6b0
0.001908:BARRIER_INIT_IN : 29336 : 0xb7ecb6b0 : 0x8049d28 : (nil) : 2
0.001909:BARRIER_INIT : 29336 : 0xb7ecb6b0 : 0x8049d28 : 2
0.001909:BARRIER_INIT_OUT : 29336 : 0xb7ecb6b0 : 0

Text human format:
0.001724 : Pid 29336, Thread 0xb7ecb6b0 starts user function
0.001908 : Pid 29336, Thread 0xb7ecb6b0 enters function pthread_barrier_init.
0.001909 : Pid 29336, Thread 0xb7ecb6b0 initializes barrier 0x8049d28, left=2
0.001909 : Pid 29336, Thread 0xb7ecb6b0 leaves function pthread_barrier_init.

Figure 5: An example of a trace written in human or machine readable text formats.

Figure 6: An example of visualizing a PTT trace with Pajé.
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pthread_barrier_wait : the two threads
are freed by the barrier. Finally, the main thread
calls pthread_thread_join on the sec-
ond thread and destroys the barrier.

The Pajé tool will enable the user of PTT to
clearly see the interactions between the objects
involved in his program. Pajé will help the de-
veloper of a multi-threaded application to see
how his code executes in reality. He will be
able to find possible dead-locks, understand
which lock is blocking threads thus reducing
the performances, and analyze bugs. For ana-
lyzing large traces, specific tools (naming, fil-
tering, . . . ) must be designed and added in or-
der to manage hundreds of objects and millions
of events.

3.5 Status & Future work

Two students work on PTT up to mid July this
year. Hereafter, we describe: the status of their
work end of April; what they plan to provide in
mid July; known limitations; and future poten-
tial tasks.

3.5.1 Status in April

At the end of April, PTT already provides the
following:

• User and Internal documentations are
available.

• PTT is quite reliable and efficient.

• A patch is available for the glibc 2.3.4 (and
soon for 2.3.5).

The patch and the sources under CVS are avail-
able on SourceForge.net [10].

3.5.2 Expected Status in July

At the end of July, PTT should provide the fol-
lowing:

• Be reliable, efficient, and scalable;

• be available on 3 architectures: IA32,
PPC, IA64; handle the most important
NPTL objects and routines; provide basic
filtering;

• and enable use of Pajé for visualizing
small and medium volumes of traces.

3.5.3 Known Limitations

In order to know how much time has elapsed
between two events, a time-stamp is recorded
within each event. Since this time-stamp is ob-
tained before the event space is reserved in the
buffer, it may occur that an event appears in the
buffer before older events. Although this could
be fixed at the time of decoding the binary trace
file, we consider that the error is negligible.

Time-stamping the events on NUMA ma-
chines: the actual solution does not take into
account the time difference that may appear on
such machines.

3.5.4 Next Steps

The main concern when tracing multi-threaded
applications is to be able to link the informa-
tion shown by the trace tool with the traced
program. Even with only a dozen threads and
mutexes, it is not easy for the user to link the
traced thread he is looking at through PTT with
the thread managed by his code. Being able to
give a name to each instance of NPTL objects
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is very important. Several ways should be stud-
ied and provided in order to replace the internal
names (like:0x401598c0 ) by easily under-
standable names (like:SocketThread_1 ):

• automatically give the thread the name
of the routine that was started when the
thread was created,

• enable the user to iteratively give names to
objects as the user recognizes the objects,

• enable reuse of some existing name table
(JVMs).

PTT should be ported on other popular archi-
tectures. On machines using several time coun-
ters, like NUMA machines, the current version
would deliver dates that sometimes could lead
to mistakes. This needs to be solved.

Optimizations should be studied: manage the
buffer differently; reduce the amount of data
stored with each event. More work must be
done in order to check the usability and scala-
bility of PTT when used with big and complex
applications on large machines with many and
fast processors.

We expect people facing complex problems
with multi-threaded applications to experiment
with PTT, in order to find and fix remaining
bugs, and to provide requirements for new fea-
tures making PTT easier to use and more pro-
ductive.

PTT could also be a basis for dynamically
checking if the application is compliant with
the POSIX Thread standard. It is so easy not
to fulfill all the constraints of the standard.

The next step of the project is to prove that
PTT is really a useful tool: it shortens the
time needed for understanding a multi-threaded
problem, it speeds up the work of Linux or Java

support teams, and it simplifies the analysis of
the behavior of NPTL when a misfunction is
suspected.

Then PTT could be integrated into Linux Dis-
tros. The final goal is to have PTT accepted
by the community and then integrated into the
GNU libc.

3.5.5 Contributors

PTT has been designed by Sébastien Decugis,
Mayeul Marguet, Tony Reix and the devel-
opers. The developers are: Nadège Griesser
(ENSIMAG-Telecom, Grenoble), Laetitia
Kameni-Djinou (UTC, Paris) and Matthieu
Castet (ENSIMAG, Grenoble).

4 Conclusion

As we demonstrated in this document, our
project has completed some of its objectives,
but more work remains pending.

Our testing effort is not complete yet. We
have tested only 42 functions of the 150 NPTL
contains. Some of the remaining functions
may contain bugs or at least are worth testing
deeply. The remaining domains areread-write
locks, barriers, spinlocks, thread-specific data,
timers, andmessage queues.

Anticipating future problems by writing test
cases before someone runs into a bug usually
saves a lot of money for everybody. For this
reason, we’re calling for volunteers to continue
our work and complete the testing. This work
shall be a continued effort, because the POSIX
Standard is changing regularly, therefore if the
test suite is not updated regularly it will be dep-
recated sooner or later. To avoid this situation
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for the OPTS, the best bet is to have many peo-
ple use it.

The targeted users are mostly developers of
POSIX-compliant implementations. Automat-
ing the use of OPTS is easy and, thanks to the
TSLogParser tool, collecting and analyzing the
results is also quite simple. The next step to-
wards quality for NPTL is to have a real testing
process integrated into its development cycle.

The glibc addition to the STP project may be a
good solution to solve this, as it is already used
for the kernel development and has proved to
be useful by detecting new bugs very early in
the process.

As we’ve already told about our Trace Tool, we
need more beta testers to try it and give us their
comments. This way, we should be able to de-
velop smart tools to use the traces, for example
by parsing them in order to find possible prob-
lems in threads synchronization or locks con-
tention.

We will also be able to propose our tool to dis-
tribution makers, the final goal being that this
trace tool be present on all systems. This way,
debugging and profiling multi-threaded soft-
ware will be much easier than it is currently.
Is it a utopia? We don’t think so. . .
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