
Linux Standard Base Development Kit for application
building/porting

Rajesh Banginwar
Intel Corporation

rajesh.banginwar@intel.com

Nilesh Jain
Intel Corporation

nilesh.jain@intel.com

Abstract

The Linux Standard Base (LSB) specifies the
binary interface between an application and a
runtime environment. This paper discusses the
LSB Development Kit (LDK) consisting of a
build environment and associated tools to assist
software developers in building/porting their
applications to the LSB interface. Developers
will be able to use the build environment on
their development machines, catching the LSB
porting issues early in the development cycle
and reducing overall LSB conformance testing
time and cost. Associated tools include appli-
cation and package checkers to test for LSB
conformance of application binaries and RPM
packages.

This paper starts with the discussion of ad-
vantages the build environment provides by
showing how it simplifies application develop-
ment/porting for LSB conformance. With the
availability of this additional build environment
from LSB working group, the application de-
velopers will find the task of porting applica-
tions to LSB much easier. We use the standard
Linux/Unix chroot utility to create a con-
trolled environment to keep check of the API
usage by the application during the build to en-
sure LSB conformance. After discussing the
build environment implementation details, the
paper briefly talks about the associated tools for

validating binaries and RPM packages for LSB
conformance. We conclude with a couple of
case studies that demonstrate usage of the build
environment as well as the associated tools de-
scribed in the paper.

1 Linux Standard Base Overview

The Linux* Standard Base (LSB)[1] specifies
the binary interface between an application and
a runtime environment. The LSB Specifica-
tion consists of a generic portion, gLSB, and
an architecture-specific portion, archLSB. As
the names suggest, gLSB contains everything
that is common across all architectures, and
archLSBs contain the things that are specific
to each processor architecture, such as the ma-
chine instruction set and C library symbol ver-
sions.

As much as possible, the LSB builds on ex-
isting standards, including the Single UNIX
Specification (SUS), which has evolved from
POSIX, the System V Interface Definition
(SVID), Itanium C++ ABI, and the System V
Application Binary Interface (ABI). LSB adds
the formal listing of what interfaces are avail-
able in which library as well as the data struc-
tures and constants associated with them.

• 1 •

2 • Linux Standard Base Development Kit for application building/porting

LSB Components

Libraries Commands and
Utilities

Core libraries
libc, libm, libpthread, libpam,

libutil, libdl, libcrypt, libz.
libncurses, librt, and libgcc_s

Modules

Graphics Module:
libX11, libXt, libXext,
libSM, libICE, libGL.

C++ module:
libstdc++ ...

Execution
Environment

File System
Hierarchy Localization

System Initialization Users and Groups

Figure 1: LSB Components

1.1 Components of LSB 3.0

Figure 1 shows the components of LSB 3.0 in-
cluding the set of libraries covered in the spec-
ification. For applications to be LSB compli-
ant, they are allowed to import only the speci-
fied symbols from these libraries. If application
needs additional libraries, they either need to be
statically linked or bundled as part of the appli-
cation.

As the LSB expands its scope, future specifica-
tion versions will include more libraries.

In addition to the Application Binary Interface
(ABI) portion, the LSB specification also spec-
ifies a set of commands that may be used in
scripts associated with the application. It also
requires that applications follow the filesystem
hierarchy standard (FHS)[7].

Another component of the LSB is the packag-
ing format specification. The LSB specifies the
package file format to be a subset of the RPM
file format. While LSB does not specify that
the operating system (OS) distribution has to
be based on RPM, it needs to have a way to
process a file in RPM format correctly.

All LSB compliant applications use a special
program interpreter: /lib/ld-lsb.so.3
for LSB version 3.0 instead of the traditional
/lib/ld-linux.so.2 for IA32 platforms.
This program interpreter is executed first when
an application is started, and is responsible for
loading the rest of the program and shared li-
braries into the process address space. This
provides the OS with a hook early in the
process execution in case something special
needs to be done for LSB to provide the cor-
rect runtime environment to the application.
Generally, /lib/ld- arch -lsb.so.3 or
/lib64/ld- arch -lsb.so.3 is used for
other 32– or 64–bit architectures.

The next section discusses issues involved in
porting/developing applications to LSB confor-
mance along with the basic requirements for
the same. The section ends with the overview
of LSB development kit to help with the task.
The subsequent sections discuss alternate stan-
dalone build environments and case studies
showing real applications ported to LSB.

2005 Linux Symposium • 3

LSB Development Kit

Build Environments Validation Tools

Wrapper tool - Lsbcc Standalone build
environment

Binary checker -
appchk

Package checker -
pkgchk

Figure 2: LSB Development Kit

2 Porting/Developing applications
to LSB

This section starts the discussion with require-
ments for porting or developing applications to
LSB. The application binaries will include ex-
ecutables and Dynamic Shared Object (DSO)
files.

• Limit usage of DSOs to only LSB-
specified libraries. Applications are also
limited to import only LSB-specified sym-
bols from those libraries.

• Use LSB-specific program interpreter
/lib/ld-lsb.so.3 for IA32 and
/lib/ld- arch -lsb.so.3 for other
LSB-supported architectures.

• Use ELF as specified by LSB for created
binaries.

• Use LSB-specified subset of RPM for ap-
plication package.

For many application developers it may be a
non-trivial task to port or develop applications
to LSB. The LSB WG provides a development
kit shown in Figure 2 to assist application de-
velopers in this task.

The LDK mainly consists of build environ-
ments to assist application developers with
porting/development of applications to LSB

and validation tools to verify for LSB con-
formance of application binaries and pack-
ages. LSB WG today haslsbcc/lsbc++ —
a gcc/g++ wrapper tool which serves as a
build environment as discussed in a subsection
below. The second build environment which
we are calling a standalone build environment
is the topic of discussion for this paper. Be-
fore we discuss that build environment in detail,
let’s talk about the validation tools and existing
build tools briefly.

2.1 Validation Tools in LDK

There are two validation tools delivered as part
of LDK. These tools are to be used as part of
LSB compliance testing for application bina-
ries and packages.

1. appchk : This tool is used to validate ELF
binaries (executables and DSOs) for their
LSB conformance. This tool will work
hand-in-hand with the build environment
as discussed in the later sections of this pa-
per. The LDK Case Studies section details
the usage of this tool.

2. pkgchk : This tool new for LSB 3.0 is
used for validating application packages.
The tool makes sure that the package uses
the LSB specified RPM file format. It
also validates the installation aspect of the
package for FHS conformance.

2.2 lsbcc/lsbc++ – Existing build tool

In the last few years, the LSB WG has been pro-
viding a compiler wrapper, calledlsbcc and
lsbc++ , as a build tool for application port-
ing. lsbcc or lsbc++ is used wherever build
scripts usegcc or g++ respectively. The wrap-
per tool parses all of the command line options

4 • Linux Standard Base Development Kit for application building/porting

passed to it and rearranges them, inserting a few
extra options to cause the LSB-supplied head-
ers and libraries to be used ahead of the normal
system libraries[6]. This tool also recognizes
non-LSB libraries and forces them to be linked
statically. Because the LSB-supplied headers
and libraries are inserted into the head of the
search paths, it is generally safe to use things
not in the LSB.

With these simple steps many of the applica-
tions can be ported to LSB by simply replac-
ing gcc with lsbcc andg++ with lsbc++ .
In this method, the host environment is used
for the build process; hence sometimes it may
be difficult to reproduce the results on multi-
ple platforms due to environment differences.
This issue is not specific to thelsbcc wrap-
per build environment, but a common prob-
lem for many build systems. The build envi-
ronment discussed in this paper addresses this
issue by creating a standalone environment.
Another shortcoming of thelsbcc approach
is that the wrapper tools rely on the usage
of gcc as compiler and configure-make pro-
cess for application building. If the applica-
tion relies on tools likelibtool which mod-
ify the compiler command lines,lsbcc may
not work correctly without additional configu-
ration changes to produce LSB-compliant re-
sults. Similarly, usage of other compilers may
not be possible as the wrapper tool relies on the
command line option format used bygcc . For
similar reasons, the tool may require additional
configuration in certain customized build pro-
cesses which may not rely on traditional config-
make like build scripts.

3 LDK Standalone build environ-
ment

The standalone build environment is created us-
ing the standard Linux utilitychroot . The

isolated directory hierarchy is built from source
packages and is completely independent of
its host environment. With the development
of this tool application developers will have
a choice between the wrapper tool discussed
above and the standalone build environment
discussed here. From now on we refer to
this standalone build environment as simply the
build environment unless otherwise explicitly
noted.

The concept of this build environment is de-
rived from the Automated Linux from Scratch
(ALFS)[2] project to create an isolated environ-
ment. The build environment comes with basic
build tools and packages required for common
application building. These tools are preconfig-
ured so that the applications built produce LSB-
conformant results. The application developer
may add more tools/packages to this build en-
vironment as discussed later.

Since the application build happens in an iso-
lated environment, except for some minor
changes to Makefiles, the application develop-
ers do not need to change the build process.
Since the whole mechanism is independent of
the compiler as well as build scripts used, this
build environment will work for most applica-
tion development situations.

The build environment provides a set of clean
headers and stub libraries for all the symbols
included in the LSB specification. Applica-
tions are restricted to use only these symbols
to achieve LSB conformance.

The build environment when used as docu-
mented will help produce the LSB-conformant
application binaries. We recommend using the
build environment from the beginning of appli-
cation development cycle which will help catch
any LSB porting issues early, reducing overall
cost of LSB conformance testing.

The remainder of this section discusses the

2005 Linux Symposium • 5

build environment implementation in details.
In addition to providing information on how it
is used and accessed, the section also describes
how the build tools are configured and/or up-
dated.

3.1 Build environment Structure

Like a typical Linux distribution, the build
environment has a directory hierarchy with
/bin , /lib , /usr , and other related direc-
tories. Some of the differences between this
build environment and a Linux distribution are
the lack of Linux Kernel, most daemons, and
an X server, etc. To start this build environ-
ment the developer will need root privileges on
the host machine. Thelsb-buildenv com-
mand used for starting the build environment
behaves as follows:

Usage: lsb-buildenv -m [lsb|

nonlsb] -p [port] start|stop|

status

By default when used with no options, the envi-
ronment will be configured for LSB-compliant
building. The optionnon-lsb will force it
to remain in normal build mode. This option
typically is used for updating the build environ-
ment itself with additional packages/tools. The
default sshd-port is set at 8989.

The lsb-buildenv command starts the
sshd daemon at the specified port number. To
access and use the build environment the user
will need to ssh into the started build envi-
ronment. By default, only theroot account is
created; the password is set tolsbbuild123 .
Once the user is logged into the build environ-
ment asroot , he/she can add/update the user
accounts needed for regular build processes.

$ ssh -p 8989 root@localhost

The build environment comes with the LSB
WG-provided headers and stub libraries for all
the LSB 3.0-specified libraries. These head-
ers and stub libraries are located in the/opt/
lsb/include and /opt/lsb/lib direc-
tories respectively. It is strongly recommended
against modifying these directories.

X11 and OpenGL headers are exceptions to this
and are located in/usr/X11R6/include
although they are soft-linked in/opt/lsb/
include/X11 . These headers are taken from
the Release 6 packages from X.org. The stub
libraries related to all X libraries specified in
LSB are located in/opt/lsb/lib .

3.1.1 Tools and Configuration updates

As discussed earlier the build environment is
equipped with all the standard C/C++ build
tools like gcc compiler suite, binutils
package, etc. The goal for this build environ-
ment is to minimize the changes the application
developer needs to make in the build scripts
for the build to produce LSB-compliant results.
The build tools are modified/configured to help
produce LSB-conformant results as discussed
below:

• Compile time changes: As discussed
above, LSB provides a clean set of header
files in the/opt/lsb/include direc-
tory. Thegcc specs file is updated so that
the compiler looks for this directory be-
fore continuing looking for other system
locations. The string-I /opt/lsb/
include is appended to the*cpp_
options and*cc1_options sections
in thegcc specs file.

• Link time changes:

– By default the link editor (ld on
most systems) is configured to look

6 • Linux Standard Base Development Kit for application building/porting

in /lib , /usr/lib , and some
other directories for DSO files. For
the build to produce LSB-compliant
results, we need to make sure the
linking happens only with the LSB-
provided stub libraries. For this, the
default search path link editor uses
to search for DSOs is changed to
/opt/lsb/lib by configuring the
ld build process at the time of creat-
ing/building this build environment.
The ld is built with the follow-
ing command: ./configure
-with-lib-path=/opt/lsb/
lib

– Add -L /opt/lsb/lib to
*link section of thegcc specs file
to restrict the first directory accessed
for libraries

– Remove%Dfrom *link_libgcc
section ofgcc specs file. This will
disallow gcc to add -L option for
startup files.

– Set dynamic linker told-lsb.
so.3 by updating thegcc specs
file by appending*link section
with %{!dynamic-linker:

-dynamic-linker /lib/

ld-lsb.so.3} .

3.2 Packaging structure

The build environment comes with the most
commonly needed packages pre-installed.
Commonly used development (devel) packages
are also pre-installed. As it is not possible to
guess exactly what each application developer
will need (since each build process is unique
in requirements), the build environment comes
with a populated RPM database to help the
user add new packages as needed. This RPM
database is built from scratch during the
building of all the packages installed in the

build environment. As no binary RPM is
used for creating the build environment, Linux
distribution-specific dependencies are avoided.

We use the CheckInstall [3] tool for populating
RPM database in the build environment. This
tool works by monitoring the steps taken by
make install process and creates an RPM
package which can then be installed. Please re-
fer to the relevant reference listed in the Refer-
ence section for further documentation regard-
ing this tool.

This RPM database may be used by the appli-
cation developer if he/she needs to add/update
a package required for a given build process.
If for some reason (like dependency issues) a
binary RPM cannot be installed, we suggest
building and installing the package from source
code by starting the build environment in non-
lsb mode. Although not recommended, the user
can always copy the relevant files manually into
the build environment from the host machine.

4 Typical LSB porting process

This section discusses the process involved in
porting the application to LSB. The subsection
below discusses how LDK can be used dur-
ing active development of application. Figure 3
shows the porting process in the form of a flow
diagram.

• The first step is to run the existing applica-
tion binaries throughappchk . This will
identify all the DSOs and symbols used by
the application binaries that are not speci-
fied by LSB.

• The next step is to remove any unnec-
essary library dependencies where possi-
ble. Review all the makefiles (or similar
scripts) to make sure the application is not

2005 Linux Symposium • 7

linking with any libraries that it does not
need.

• If appchk is reporting that the applica-
tion binary is dependent on a DSO not
specified in LSB, there are two options to
fix that:

– The first option is to use static ver-
sion of the library. This way the ap-
plication will not depend on the con-
cerned DSO.

– If for some reason (licensing is-
sues, etc.) that is not possible, the
required functions will need to be
implemented by the application de-
veloper avoiding the usage of that
library or creating an application-
specific DSO with those functions.
When an application-specific DSO is
created, it needs to be certified along
with the application binary.

• For changing the usage of DSO to static
library the Makefiles need to be updated
manually. Remove-l options used during
the linking phase for the concerned library.
Include the corresponding static library in
the linker command line.

• The next step is to performconfigure
and make (or similar scripts) as re-
quired by the application. Since the build
environment is configured to use LSB-
provided headers by default, the user may
see some compilation errors. Typically
these errors result due to usage of internal
(although exported) or deprecated sym-
bols. The developer will need to fix these
by using the appropriate symbols for the
given situation. The case study below
shows one such situation. Another type
of error occurs when a used symbol is not
part of LSB although the concerned library
is partially specified in LSB. The applica-
tion developer needs to find alternatives to

LSB Porting process

Validate existing
binaries with

Appchk

Appchk pass?

- Remove unnecessary
DSO usage
- Modify Makefiles to
replace usage non-lsb
DSOs by Static
libraries

No

Yes

Compile (run
configure before if

required)

Take required
action to fix these

errors (see
discussion below)

Compile
errors?

Perform link to
create final

binaries

Yes

No

Link Errors
Take required

action to fix these
errors (see

discussion below)

Yes

Run Appchk on all
new binaries

No

Appchk pass?

No

LSB Porting
complete

Figure 3: LSB porting process

8 • Linux Standard Base Development Kit for application building/porting

such symbols that are covered by LSB or
implement them as part of the application.

• The next step is linking to create final bi-
naries for the application. If the Make-
files are correctly modified as discussed
above, there should be minimal errors at
this stage. The common error about “Sym-
bol not defined” needs to be handled if cer-
tain deprecated or unspecified LSB sym-
bols are used by the application and not
caught in the compilation phase. Again
the case studies below show couple of
such examples.

4.1 LDK usage during application devel-
opment

Other than porting the existing Linux applica-
tions to LSB, the build environment and the
tools in LDK can be used by developers during
the application development cycle. Regular or
periodic usage of the build environment during
the development cycle will help catch the LSB
porting issues early in the development cycle,
reducing overall LSB conformance testing time
and cost. Such usage is highly recommended.

5 LDK Case Studies

This section discusses the real-life example
of how LSB porting will work using this
build environment. We consider two exam-
ples here to show different aspects of applica-
tion porting. Since these examples are from
the Open Source Software (OSS) projects they
follow the optionalconfigure , make, and
make install model of building and in-
stalling software.

5.1 Example 1: ghostview 1.5

Ghostview[4] usesxmkmf to create the Make-
file. When the application is built on a reg-
ular Linux machine, theldd output for the
ghostview binary is as follows:

$ ldd ghostview
libXaw.so.7 => /usr/X11R6/lib/libXaw.so.7
(0x00751000)
libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6
(0x00b68000)
libXt.so.6 => /usr/X11R6/lib/libXt.so.6
(0x00af6000)
libSM.so.6 => /usr/X11R6/lib/libSM.so.6
(0x00ade000)
libICE.so.6 => /usr/X11R6/lib/libICE.so.6
(0x0024f000)
libXpm.so.4 => /usr/X11R6/lib/libXpm.so.4
(0x03c80000)
libXext.so.6 => /usr/X11R6/lib/libXext.so.6
(0x00522000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6
(0x00459000)
libm.so.6 => /lib/tls/libm.so.6 (0x0042e000)
libc.so.6 => /lib/tls/libc.so.6 (0x00303000)
libdl.so.2 => /lib/libdl.so.2 (0x00453000)
/lib/ld-linux.so.2 (0x002ea000)

Several of these libraries are not part of LSB
yet and hence the application will not be LSB-
compliant. To confirm that, run theappchk
tool from LDK to find out exactly what is being
used that is outside LSB’s current specification:

$appchk -A ghostview
Incorrect program interpreter: /lib/ld-linux.so.2
Header[1] PT_INTERP Failed
Found wrong intepreter in .interp section: /lib/ld-linux.so.2

instead of: /lib/ld-lsb.so.3
DT_NEEDED: libXaw.so.7 is used, but not part of the LSB
DT_NEEDED: libXmu.so.6 is used, but not part of the LSB
DT_NEEDED: libXpm.so.4 is used, but not part of the LSB
section .got.plt is not in the LSB
appchk for LSB Specification
Checking symbols in all modules
Checking binary ghostview
Symbol XawTextSetInsertionPoint used, but not part of LSB
Symbol XawTextReplace used, but not part of LSB
Symbol XmuInternAtom used, but not part of LSB
Symbol XawTextUnsetSelection used, but not part of LSB
Symbol XawScrollbarSetThumb used, but not part of LSB
Symbol XmuCopyISOLatin1Lowered used, but not part of LSB
Symbol XawTextDisableRedisplay used, but not part of LSB
Symbol XawFormDoLayout used, but not part of LSB
Symbol XawTextEnableRedisplay used, but not part of LSB
Symbol XmuMakeAtom used, but not part of LSB
Symbol XawTextGetSelectionPos used, but not part of LSB
Symbol XawTextInvalidate used, but not part of LSB
Symbol XawTextGetInsertionPoint used, but not part of LSB

The first message indicates the usage of
ld-linux.so instead ofld-lsb.so.3 as

2005 Linux Symposium • 9

dynamic linker. DT_NEEDEDmessages indi-
cate the libraries which are not part of LSB
specification but used by the application. The
rest of the messages indicate symbols imported
by the application but not specified in LSB.

Let’s now look at how the build environment
will help with porting this application to LSB
and the steps users will need to go through in
this process.

Step 1: Modify Makefile so that it does not
use DSOs for the non-LSB libraries. Replace
them with the static version of the libraries.

Step 2: Fix the compilation errors. In this case
the errors included usage of symbolssys_
nerr andsys_errlist . These are depre-
cated symbols and hence not part of LSB head-
ers. The usage of these symbols is replaced by
functionstrerror .

Step 3: Fix the link-time errors. In this case
since the application uses three X libraries out-
side of LSB scope, we need to replace them
with the corresponding static libraries.

After compilation and linking, we useappchk
to check for LSB conformance for the created
binaryghostview :

$ appchk -A ghostview
appchk for LSB Specification
Checking symbols in all modules
Checking binary ghostview

If we run ldd on this binary we will see:

$ ldd ghostview
libXt.so.6 => /usr/X11R6/lib/libXt.so.6
(0x00af6000)
libSM.so.6 => /usr/X11R6/lib/libSM.so.6
(0x00ade000)
libICE.so.6 => /usr/X11R6/lib/libICE.so.6
(0x0024f000)
libXext.so.6 => /usr/X11R6/lib/libXext.so.6
(0x00522000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6
(0x00459000)
libm.so.6 => /lib/tls/libm.so.6 (0x0042e000)
libc.so.6 => /lib/tls/libc.so.6 (0x00303000)
libdl.so.2 => /lib/libdl.so.2 (0x00453000)
/lib/ld-lsb.so.3 (0x002ea000)

All these libraries are part of LSB and the
appchk confirms that the symbols imported
by the binary ghostview are specified in LSB.
This shows the successful porting of the appli-
cation to LSB.

5.2 Example 2: lesstif package

Lesstif[5] is an implementation of OSF/Motif
producing following binaries:

bin/mwm
bin/uil
bin/xmbind
lib/libDt.so*
lib/libDtPrint.so*
lib/libMrm.so*
lib/libUil.so*
lib/libXm.so*

By default none of these binaries is LSB-
compatible. On a regular Linux machine, we
get the following output when we runldd and
appchk onmwm.

$ ldd clients/Motif-2.1/mwm/.libs/mwm
libXm.so.2 => not found
libXp.so.6 => /usr/X11R6/lib/libXp.so.6
(0x0042e000)
libXt.so.6 => /usr/X11R6/lib/libXt.so.6
(0x00af6000)
libSM.so.6 => /usr/X11R6/lib/libSM.so.6
(0x00ade000)
libICE.so.6 => /usr/X11R6/lib/libICE.so.6
(0x0024f000)
libXext.so.6 => /usr/X11R6/lib/libXext.so.6
(0x00522000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6
(0x00459000)
libXft.so.2 => /usr/X11R6/lib/libXft.so.2
(0x00705000)
libXrender.so.1 =>
/usr/X11R6/lib/libXrender.so.1 (0x00747000)
libc.so.6 => /lib/tls/libc.so.6 (0x00303000)
libdl.so.2 => /lib/libdl.so.2 (0x00453000)
libfontconfig.so.1 =>
/usr/lib/libfontconfig.so.1 (0x006ad000)
libexpat.so.0 => /usr/lib/libexpat.so.0
(0x006e4000)
libfreetype.so.6 => /usr/lib/libfreetype.so.6
(0x0598c000)
/lib/ld-linux.so.2 (0x002ea000)
libz.so.1 => /usr/lib/libz.so.1 (0x00532000)

10 • Linux Standard Base Development Kit for application building/porting

$ appchk -A clients/Motif-2.1/mwm/.libs/mwm
Incorrect program interpreter: /lib/ld-linux.so.2
Header[1] PT_INTERP Failed
Found wrong intepreter in .interp section: /lib/ld-linux.so.2

instead of: /lib/ld-lsb.so.3
DT_NEEDED: libXm.so.2 is used, but not part of the LSB
DT_NEEDED: libXp.so.6 is used, but not part of the LSB
DT_NEEDED: libXft.so.2 is used, but not part of the LSB
DT_NEEDED: libXrender.so.1 is used, but not part of the LSB
section .got.plt is not in the LSB
appchk for LSB Specification
Checking symbols in all modules
Checking binary clients/Motif-2.1/mwm/.libs/mwm
Symbol XmGetXmDisplay used, but not part of LSB
Symbol XmGetPixmapByDepth used, but not part of LSB
Symbol _XmMicroSleep used, but not part of LSB
Symbol XpmReadFileToImage used, but not part of LSB
Symbol _XmFontListCreateDefault used, but not part of LSB
Symbol XmeWarning used, but not part of LSB
Symbol XmRegisterConverters used, but not part of LSB
Symbol XmStringCreateSimple used, but not part of LSB
Symbol _XmAddBackgroundToColorCache used, but not part of LSB
Symbol _XmGetColors used, but not part of LSB
Symbol _XmSleep used, but not part of LSB
Symbol _XmBackgroundColorDefault used, but not part of LSB
Symbol _XmFontListGetDefaultFont used, but not part of LSB
Symbol XmStringFree used, but not part of LSB
Symbol XmCreateQuestionDialog used, but not part of LSB
Symbol XmMessageBoxGetChild used, but not part of LSB
Symbol _XmAccessColorData used, but not part of LSB

As explained in the previous case study, these
messages indicate the usage of libraries and
symbols not specified in LSB.

This package follows the typical OSS
build process ofconfigure , make, and
make install . All the makefiles are
generated at the end of configure step. What
makes this package an interesting exercise is
the usage oflibtool . This tool is used for
portability in the usage and creation of DSO
and static libraries.

Let’s now walk through the process of building
this package for LSB conformance.

Step 1: Modify Makefile so that it does not
use DSOs for the non-LSB libraries. Replace
them with the static version of the libraries.

Step 2: There are no compilation errors ob-
served for this package.

Step 3: The first linktime error we see is
about the undefined reference to some of the
_Xt functions. These functions exported from
libXt.so are not part of the LSB specifi-
cation even though most of the other func-
tions coming from the same library are cov-

ered. In this case the reason for this exclu-
sion happens to be the nature of these func-
tions. Most of these are internal functions and
not really meant to be used by applications.
The workaround for this will be to use a static
version of the library instead of DSO. All the
makefiles usinglibXt.so are modified for
this.

The next error we see is the usage of func-
tion _XInitImageFuncPtrs . This func-
tion is deprecated and private (although ex-
ported). The suggested function in this case is
XImageInit . Make the required change in
file ImageCache.c .

After the compilation and linking we use
appchk to check for LSB conformance for the
created binaries. The output is shown below:

$ appchk -A -L lib/Xm-2.1/.libs/libXm.so.2 -L
lib/Mrm-2.1 /.libs/\ libMrm.so.2 ?L lib/Uil-2
.1/.libs/libUil.so.2 clients/Motif-2.1/mwm/\

.libs/mwm
appchk for LSB Specification
Checking symbols in all modules
Adding symbols for library lib/Xm-2.1/.libs/
libXm.so.2
Adding symbols for library lib/Mrm-2.1/.libs/
libMrm.so.2
Adding symbols for library lib/Uil-2.1/.libs/
libUil.so.2
Checking binary clients/Motif-2.1/mwm/.libs/mwm

This shows the successful porting of lesstif to
LSB.

6 Future Directions for LDK

For the LSB Development Kit, we will con-
tinue to make the tools better and easier to
use for application developers. As the LDK
is maintained actively through the LSB Work-
ing Group, ongoing feedback will be included
in the future development and active participa-
tion in the tools development is strongly en-
couraged.

2005 Linux Symposium • 11

One of the features we are actively consider-
ing is the integration of the LDK with Eclipse
or similar IDE. Another area under considera-
tion is a tool to help develop/create LSB con-
formance packages.

We would like to take this opportunity to en-
courage all application developers to use the
tools discussed in this paper and provide feed-
back and feature requests to the LSB mailing
lists. We strongly encourage ISV participation
in this process and solicit their feedback on the
available tools as well as LSB in general.

7 Acknowledgments

We sincerely thank Free Standards Group and
its members for providing support to LSB
project. We would also like to extend our
thanks to a core group of LSB developers in-
cluding Stuart Anderson, Marvin Heffler, Gor-
don McFadden, and especially Mats Wichmann
for their patience and support during the devel-
opment of the LDK project.

References

[1] Linux Standard Base at
http://www.linuxbase.org/

[2] Automated Linux From Scratch project
athttp://www.
linuxfromscratch.org/alfs/

[3] CheckInstall utility at
http://asic-linux.com.mx/
~izto/checkinstall

[4] ghostview athttp:
//www.gnu.org/software/
ghostview/ghostview.html

[5] lesstif at
http://www.lesstif.org/

[6] lsbcc usage and details at
http://www.linuxjournal.
com/article/7067

[7] File hierarchy standard athttp:
//www.pathname.com/fhs/

8 Legal

Copyright c© 2005, Intel Corporation.

*Other names and brands may be claimed as the
property of others.

12 • Linux Standard Base Development Kit for application building/porting

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

