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Abstract

Operating under memory pressure has been a
persistent problem for Linux customers. De-
spite significant work done in the 2.6 kernel to
improve its handling of memory, it is still easy
to make the Linux kernel slow to a crawl or lock
up completely under load.

One of the fundamental sources for mem-
ory pressure is the filesystem pagecache us-
age, along with thebuffer_head entries that
control them. Another problem area is in-
ode and dentry cache entries in the slab cache.
Linux struggles to keep either of these under
control. Userspace processes provide another
obvious source of memory usage, which are
partially handled by the OOM killer subsystem,
which has often been accused of making poor
decisions on which process to kill.

This paper takes a closer look at various scene-
rios causing of memory pressure and the way
VM handles it currently, what we have done
to keep the system for falling apart. This pa-
per also discusses the future work that needs to
be done to improve further, which may require
careful re-design of subsystems.

This paper will try to describe the basics of

memory reclaim in a way that is comprensi-
ble. In order to achieve that, some minor details
have been glossed over; for the full gore, see
the code. The intent is to give an overview first
to give the reader some hope of understanding
basic concepts and precepts.

As with any complex system, it is critical to
have a high-level broad overview of how the
system works before attempting to change any-
thing within. Hopefully this paper will pro-
vide that skeleton understanding, and allow the
reader to proceed to the code details them-
selves. This paper covers LinuxR© 2.6.11.

1 What is memory pressure?

The Linux VM code tries to use up spare mem-
ory for cache, thus there is normally little free
memory on a running system. The intent is
to use memory as efficiently as possible, and
that cache should be easily recoverable when
needed. We try to keep only a small num-
ber of pages free for each zone—usually be-
tween two watermarks:zone->pages_low
and zone->pages_high . In practice, the
interactions between zones make it a little more
complex, but that is the basic intent. When the
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system needs a page and there are insufficient
available the system will trigger reclaim, that is
it will start the process of identifying and re-
leasing currently in-use pages.

Memory reclaim falls into two basic types:

• per-zone general page reclaim:shrink_

zone()

• slab reclaim:shrink_slab()

both of which are invoked from each of 2
places:

• kswapd—background reclaim daemon;
tries to keep a small number of free pages
available at all times.

• direct reclaim—processes freeing memory
for their own use. Triggered when a pro-
cess is unable to allocate memory and is
willing to wait.

2 When do we try to free pages?

The normal steady state of a running system is
for most pages to be in-use, with just the min-
imum of pages actually free. The aim is to
maintain the maximum working set in memory
whilst maintaining sufficient truly empty pages
to ensure critical operations will not block. The
only thing that will cause us to have to reclaim
pages is if we need to allocate new ones. In the
diagram below are the watermarks that trigger
reclaim activities.

Caption: For highmem zones,pages_min
is normally 512KB. For lowmem, it is about
4*sqrt(low_kb) , but spread across all low
zones in the system. For an ia32 machine with
1GB or more of memory, that works out at
about 3.8MB.

The memory page allocator (__alloc_
pages ) iterates over all the allowable zones for
a given allocation (the zonelist) and tries to find
a zone with enough free memory to take from.
If we are belowpages_low , it will wake up
kswapd to try to reclaim more. If kswapd is
failing to keep up with demand, and we fall be-
low pages_min , each allocating process can
drop into direct reclaim viatry_to_free_
pages . . . searching for memory itself.

3 What pages do we try to free?

The basic plan is to target the least useful pages
on the system. In broad terms the least recently
used pages (LRU). However, in practice it is
rather more complex than this, as we want to
apply some bias over in which pages we keep,
and which we discard (e.g. keeping a balance of
anonymous (application) memory vs filebacked
(pagecache) memory).

Some pages (e.g. slabcache and other kernel
control structures) are not kept on the LRU lists
at all. Either they are not reclaimable, or re-
quire special handling before release (we will
cover these separately below).

3.1 The LRU lists

We keep memory on two lists (per zone)—the
active and inactive lists. The basic premise is
that pages on the active list are in active use,
and pages on the inactive lists are not. We mon-
itor the hardware pagetables (on most architec-
tures) to detect whether the the page is being
actively referenced or not, and copy that infor-
mation down into the struct page in the form of
thePG_referenced flag.

When attempting to reclaim pages, we scan the
LRU lists; pages that are found to be active will
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Figure 1: Memory Reclaimers
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Figure 2: Zone Reclaim Watermarks

be moved to the head of the active list, pages
that are found to be inactive will be demoted:

• If they were on the active list, they will be
moved to the inactive list.

• If they were on the inactive list, we will try
to discard them

3.2 Discarding pages

Reclaiming an in-use page from the system in-
volves 5 basic steps:

• free the pagetable mappings (try_to_
unmap() )

• clean the page if it is dirty (i.e. sync it to
disk)

• release anybuffer_heads associated
with the page (explained in section below)

• Remove it from the pagecache

• free the page

3.3 Freeing the pagetable mappings

Freeing the pagetable mappings uses the rmap
(reverse mapping) mechanism to go from a
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physical page to a list of the pagetable entries
mapping it. The mechanism for how this works
depends on whether the page is anonymous, or
filebacked

• Anonymous page (try_to_unmap_
anon() ) use theanon_vma structure to
retrieve the list ofvmas mapping the page

• Filebacked page (try_to_unmap_
file() ) Go via theaddress_space
structure (the file’s controlling object) to
retrieve a list ofvmas mapping the page.

From thevma, combined with the offset infor-
mation in the struct page, we can find the vir-
tual address within the process, and walk the
pagetables to the PTE entry.

4 Buffer heads

A buffer_head is a control structure for a
page in the pagecache, but are not required for
all pages. Their basic usage is to cache the disk
mapping information for that pagecache page.

4.1 Why are bufferheads used?

• to provide support for filesystem block-
sizes not matching system pagesize. If
the filesystem blocksize is smaller than the
system pagesize, each page may end up
belonging to multiple physical blocks on
the disk. Buffer heads provide a conve-
nient way to map multiple blocks to a sin-
gle page.

• To cache the page to disk block mapping
information. All the pages belong to a
file/inode are attached to that inode using
the logical offset in the file and they are

represented by a radix tree. This will sig-
nificantly reduce the search/traversal times
to map from a given file offset to the back-
ing pagecache page. However, the filesys-
tem can map these pages on the disk what-
ever way it wants. So every time, we need
disk block mapping, we need to ask the
filesystem to give us physical block num-
ber for the given page. Bufferheads pro-
vide a way to cache this information and
there by eliminates an extra call to filesys-
tem to figure out the disk block mapping.
Note that figuring out the disk block map-
ping could involve reading the disk, de-
pending on the filesystem.

• In order to provide ordering guarantees in
case of a transaction commit. Ext3 or-
dered mode guarantees that the file data
gets written to the disk before the meta-
data gets commited to the journal. In or-
der to provide this guarantee, bufferheads
are used as mechanism to link the pages
belong to a transaction. If the transac-
tion is getting commited to the journal, the
buffer_head makes sure that all the
pages attached to the transaction using the
bufferhead are written to the disk.

• as meta data cache. All the meta data
(superblock, directory, inode data, indirect
blocks) are read into the buffer cache for
a quick reference. Bufferheads provide a
way to access the data.

4.2 What is the problem with bufferheads?

• Lowmem consumption: All bufferheads
come from buffer_head slab cache
(see later section on slab cache). Since all
the slabs come fromZONE_NORMAL, they
all consume lowmem (in the case of ia32).
Since there is one or morebuffer_
head structures for each filesystem page-
cache page, thebuffer_head slab
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grows very quickly and consumes lots of
lowmem. In an attempt to address the
problem, there is a limit on how much
memory “bh” can occupy, which has been
set to 10% ofZONE_NORMAL.

• page reference handling: When buffer-
heads get attached to a page, they take a
reference on the page, which is held un-
til the VM tries to release the page. Typ-
ically, once the page gets flushed to disk
it is acceptable to release the bufferhead.
However, there is no clean way to drop
thebuffer_head , since the completion
of the page being flushed is done in in-
terrupt context. Thus we leave the buffer-
heads around attached to the page and re-
lease them as and when VM decides to re-
use the page. So, its normal to see lots
of bufferheads floating around in the sys-
tem. Thebuffer_head structures are
allocated viapage_cache_get() , and
freed intry_to_free_buffers() .

• TLB/SLB/cache efficiency: Everytime we
reference thebuffer_head ’s attached
to page, it might cause a TLB/SLB
miss. We have observed this prob-
lem with a large NFS workload, where
ext3kjournald() goes through all the
transactions, all the journal heads and
all the bufferheads looking for things to
flush/clean. Eliminating bufferheads com-
pletely would be the best solution.

5 Non-reclaimable pages

Memory allocated to user processes are gener-
ally reclaimable. A user process can almost al-
ways be stopped and its memory image pushed
out onto swap. Not all memory in the system
can be so easily reclaimed: for example, pages
allocated to the kernel text, pagetable pages, or

those allocated to non-cooperative slab caches
(as we will see later) may not be readily freed.
Such memory is termed non-reclaimable—the
ultimate owner of the allocation may not even
be traceable.

5.1 Kernel Pages

By far the largest source of non-reclaimable al-
locations come from the kernel itself. The ker-
nel text, and all pagetables are non-reclaimable.
Any allocation where the owner is not easily
determined will fall into this category. Often
this occurs because the cost of maintaining the
ownership information for each and every allo-
cation would dominate the cost of those alloca-
tions.

5.2 Locked User Pages

The mlock system call provides a mechanism
for a userspace process to request that a sec-
tion of memory be held in RAM. mlock op-
erates on the processes’ reference to the page
(e.g. thevma and pagetables), not the physical
page controlling structure (e.g. the struct page).
Thus the lock is indicated within the vma by the
VM_LOCKEDflag.

Whilst it would be useful to track this state
within the struct page, this would require an-
other reference count there, for something that
is not often used. ThePG_locked flag is
sometimes confused with mlock functionality,
but is not related to this at all;PG_LOCKEDis
held whilst the page is in use by the VM (e.g.
whilst being written out).

5.3 Why are locked pages such an issue?

Locked pages in and of themselves are not a
huge issue. There will always be information
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which must remain in memory and cannot be
allowed to be ‘moved’ out to secondary storage.
It is when we are in need of higher order allo-
cations (physically contiguous groups of pages)
or are attempting to hotplug a specific area of
physical memory that such ‘unmovable’ mem-
ory becomes an issue.

Taking a pathological example (on an ia32 sys-
tem), we have a process allocating large ar-
eas of anonymous memory. For each 1024
4k pages we will need to allocate a page ta-
ble page to map it, which is non-reclaimable.
As allocations proceed we end up with a non-
reclaimable page every 1025 pages, or one
per MAX_ORDERallocation. As those unre-
claimable pages are interspersed with the re-
claimable pages, if we now need to free a large
physically contiguous region we will find no
fully reclaimable area.

6 Slab reclaim

The slab poses special problems. The slab is
a typed memory allocator and as such takes
system pages and carves them up for alloca-
tion. Each system page in the slab is potentially
split into a number of separate allocations and
owned by different parts of the operating sys-
tem. In order to reclaim any slab page we have
to first reclaim each and every one of the con-
tained allocations.

In order to be reclaimable a slab must regis-
ter a reclaim method—each slab can register
a callback function to ask it to shrink itself,
known as a “shrinker” routine. These are reg-
istered withset_shrinker() and unregis-
tered with remove_shrinker() , held on
shrinker_list , and called fromshrink_
slab() . Note that most slabs do NOT regis-
ter a shrinker, and are thus non-reclaimable, the
only ones that currently do are:

• directory entry cache (dentry)

• disk quota subsystem (dquot)

• inode cache (icache)

• filesystem meta information block cache
(mbcache)

6.1 The Blunderbuss Effect

Taking the dentry cache as an example, we
walk an LRU-type list of dentries—but note
this isentries, not of pages. The problem with
this is that whilst it will get rid of the best
dcache entries it may not get rid of any whole
pages at all. Imagine the following situation,
for example:

Each row represents a page of dentrys, each
box represents in individual dentry. Whilst
many entries have been freed, no pages are re-
claimable as a result—I call this the blunder-
buss effect. We are suffering from internal frag-
mentation, which is made worse by the fact that
some of the dentries (e.g. directories) may be
locked. We actually have a fairly high likeli-
hood of blowing away a very significant por-
tion of the cache before freeing any pages at all.
So whilst the shrink routine is good for keep-
ing dcache size in check, it is not effective at
shrinking it.

Dentry holds a reference to the inode as well.
When we decrement the reference count to the
dentry, the inode entry count is decremented
as well. If the inode refcount is decremented
to 0, we will calltruncate_inode_pages()

which will write back the pages for that file to
disk. That could take avery long time to com-
plete. This means that slab reclaim can cause
very high latencies in order to allocate a page.
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Figure 5: dentry slab

7 Diagnosing OOM situations

When the system runs out of memory, you will
typically see messages either from the OOM
killer, or “page allocation failures.” These are
typically symptoms that either:

• Your workload is unreasonable for the ma-
chine

• Something is wrong

If the workload does not fit into RAM + SWAP,
then you aregoing to run out of memory. If
it does not fit into RAM, then it will probably
perform badly, but should still work.

7.1 Examining error messages

When__alloc_pages can not allocate you
the memory you asked for, it prints something
like this:
%s: page allocation failure.

order:%d, mode:0x%x

If the order was 0, the system could not
allocate you 1 single page of memory.
Examine the flags for the allocation care-
fully, and match them up to theGFP_ ones
in include/linux/gfp.h . Things like
GFP_HIGH, and not having GFP_WAIT
and/orGFP_IO set are brutal on the allocator.
If you do such things at a high rate then, yes,
you will exhaust the system of memory. Play
nice!

If it was a normal alloc (e.g.__GFP_WAIT |
__GFP_IO | __GFP_FS), then you have no
memory, and we could free no memory to sat-
isfy your request. Your system is in deep trou-
ble.

If the order was say 3 (or even larger) you prob-
ably have a slightly different problem. Order
n means trying to allocate 2n pages. For ex-
ample, order 3 means 23 = 8 pages. Worse,
these cannot be any old 8 pages, but 8 physi-
cally contiguous pages, aligned on an boundary
of 8 pages. Systems that have been running for
a while inevitably get fragmented to the point
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where large allocs are inevitably going to fail
(i.e. we have lots of smaller blocks free, but
none big enough for that). Possible fixes are:

• Wait for the VM to get better at deal-
ing with fragmentation (do not hold your
breath).

• See if the caller can do without physically
contiguous blocks of RAM.

• Make the caller operate out of a reserved
mempool

Use the printed stack trace to find the asso-
ciated caller requesting the memory. CIFS,
NFS, and gigabit ethernet with jumbo frames
are known offenders. /proc/buddyinfo will give
you more stats on fragmentation. Adding a
show_mem() to __alloc_pages just after
theprintk of the failure is often helpful.

7.2 So who ate all my memory then?

There are two basic answers, either the kernel
ate it, or userspace ate it. If the userspace ate it,
then hopefully the OOM killer will blow them
away. If it was kernel memory, we need two
basic things to diagnose it,/proc/meminfoand
/proc/slabinfo.

If your system has already hung, Alt+Sysrq+M
may give you some some of the same informa-
tion.

If your system has already OOM killed a bunch
of stuff, then it is hard to get any accurate out-
put. Your best bet is to reproduce it, and do
something like this:

while true
do

date

cat /proc/meminfo
cat /proc/slabinfo
ps ef -o user,pid,rss,command
echo ------------------------
sleep 10

done

From a script, preferably running that from a
remote machine and logging it, i.e.:

script log
ssh theserverthatkeepsbreaking
./thatstupidloggingscript

Examination of the logs from the time the ma-
chine got into trouble will often reveal the
source of the problem.

8 Future Direction

Memory reclaim is sure to be a focus area go-
ing forward—the difference in access latencies
between disk and memory make the decisions
about which pages we select to reclaim critical.
We are seeing ever increasing complexity at the
architectural level: SMP systems are becoming
increasingly large at the high end and increas-
ingly common at the desktop, SMT (symmetric
multi-threading) and multi-core CPUs are en-
tering the market at ever lower prices. All of
these place new constraints on memory in rela-
tion to memory contention and locality which
has a knock on effect on memory allocation
and thereby memory reclaim. There is already
much work in progress looking at these issues.

Promoting Reclaimabilty: work in the alloca-
tor to try and group the reclaimable and non-
reclaimable allocations with allocations of the
same type at various levels. This increases
the chance of finding contigious allocations and
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when they are not available greatly improves
the likelihood of being able to reclaim an ap-
propriate area.

Promoting Locality: work is ongoing to better
target allocations in NUMA systems when un-
der memory pressure. On much NUMA hard-
ware the cost of using non-local memory for
long running tasks is severe both for the perfor-
mance of the affected process and for the sys-
tem as a whole. Promoting some reclaim for
local allocations even when remote memory is
available is being added.

Hotplug: hot-removal of memory requires that
we be able to force reclaim the memory which
is about to be removed. Work is ongoing to
both increase the likelyhood of being able to re-
claim the memory and how to handle the case
where it cannot be reclaimed thorough remap-
ping and relocation.

Targeted Reclaim: memory reclaim currently
only comes in the form of general pressure on
the memory system. The requirements of hot-
plug and others brings a new kind of pressure,
pressure over a specific address range. Work is
ongoing to see how we can apply address spe-
cific pressure both to the normal memory allo-
cator and the slab allocators.

Active Defragmentation: as a last resort, we
can re-order pages within the system in order to
free up physically contiguous segments to use.

9 Conclusion

As we have shown memory reclaim is a com-
plex subject, something of a black art. The cur-
rent memory reclaim system is extremely com-
plex, one huge heuristic guess. Moreover, it
is under pressure from new requirements from
big and small iron alike. NUMA architectures

are moving to the desktop. Hotplug memory is
becoming the norm for larger machines, and is
increasingly important for virtualization. Each
of these requirements brings its own issues to
what already is a difficult, complex subsystem.
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