
Usage of Virtualized GNU/Linux for Binary Testing
Across Multiple Distributions

Gordon McFadden
Intel corporation

gordon.mcfadden@intel.com

Michael Leibowitz
Intel Corporation

michael.leibowitz@intel.com

Abstract

In this paper, we will discuss how we created
a test environment using a single high-end test
host that implemented multiple test hosts. The
test environment enabled the testing of software
running on different Linux distributions with
different kernel versions. This approach im-
proved test automation, avoided capital expen-
ditures and saved on desktop real-estate. We
employed a version of Gentoo Linux with a
modified 2.6 kernel, along with multiple in-
stances of different distributions and version of
Linux running on User Mode Linux (UML).
The particular tests involved are related to the
Linux Standards Base, but the concept is appli-
cable to many different environments.

We will describe how we improved aspects
of the Gentoo kernel to improve performance.
We will describe the methods used to affect a
lightweight inter UML communications mech-
anism. We will also talk about the file systems
chosen for both the host OS and the UML. Fi-
nally, we will have a brief discussion around
the benefits and limitations of this type of test
environment, and will discuss plans for future
test environments.

1 Introduction

While setting up a test environment to execute
tests to verify compliance of various Linux dis-
tributions as part of the testing of the Linux
Standard Base (LSB) [1] 3.0 Specification, it
was noted that both time and capital expense
could be saved if the host running the tests
could be effectively reused.

In the context of executing LSB conformance
tests, it is the cass that many of the tests can be
readily executed in an automated and autonou-
mous manner. Only some tests are manual in
nature and require the attendance of a test op-
erator. It was also noted that the tests require
different distributions, including different ker-
nel versions.

Given the fact that the test cycle was not ex-
pected to last indefinitely, and that the num-
ber of distributions under test was likely to in-
crease, it did not make sense to attempt to allo-
cate one host to each distribution.

Additionally, it was important to the test phi-
losophy that the distributions be available at
all times, allowing tests to run independently
of each other. If a multi-boot system, such as
GRUB or LILO were employed, then testing
could only proceed sequentially.

Another required aspect of the test environment

• 297 •

298 • Usage of Virtualized GNU/Linux for Binary Testing Across Multiple Distributions

is the ability to instantiate tests without impact-
ing other running tests.

The solution that is employed is the use of a
host operating system running Guest Operating
Systems (GOS) in User Mode Linux (UML)
[2]. Gentoo [3] release 2.6.11-R-6 was cho-
sen as the host operating system because it is
very configurable in the areas of file systems,
how many process are running and other areas.
The intent is to keep the host of installed soft-
ware on the host operating system very small.
It is very easy to install a minimal set of pack-
ages in a GenToo build. While any distribution
provides the ability to configure installed pack-
ages, and allows modifications to the kernel,
the GenToo distributions seems to be geared to-
ward allowing installers to make the types of
modifications needed to encompass the solu-
tion.

It makes a great deal of sense from the perspec-
tive of cost and space to arrange the test envi-
ronment to use one host per architecture.

1.1 Changes to the kernel

1.1.1 Elevators

The processes of optimizing the kernel started
with the 2.6.11.6-vanilla Linux Kernel and in-
volved modifications to the elevator to increase
performance of spawning UML instances. The
Linux kernel implements a disk I/O scheduling
system referred to as the elevator. The name
elevator comes from the conceptual model of
the disk drive as a linear array with a single
read/write head. The head moves up and down
the disk, as an elevator moves in an elevator
shaft, and the blocks that are read or written
to as the call buttons on various floors. As
in the real world, the algorithm for moving
the elevator in response to floor requests is a

non-trivial dining philosophers type of prob-
lem. Responsiveness, repeatability, equity, and
aggregate bandwidth must all be carefully bal-
anced. No algorithm can always maximize
all of these needs, but any suitable algorithm
should be able to avoid starvation in all circum-
stances. User Mode Linux also has an elevator,
which operates in the same way as the host el-
evator does. Because several elevators may be
in use on multiple encapsulated operating sys-
tems in parallel (see Figure 1), they can effec-
tively “collude” to starve one or more processes
of disk access. The elevator of the host kernel
was modified to better deal with this situation.

1.2 File System Issues

XFS was chosen as the host file system. When
XFS was devised by SGI, it was designed to be
able to give high throughput for media appli-
cations. Filesystem-within-filesystem applica-
tions are similar to media, in that both involve
contiguous large files that are accessed in reg-
ular ways. In non-linear editing applications,
files are written to and read not in a strictly lin-
ear fashion, but in large linear blocks. File sys-
tem access from an guest operating system in
similar due to the elevator inside the encapsu-
lated kernel.

1.3 Execution Environment

There are two modes of executing kernels in
a UML environment. The first is refered to
as Tracing Threads (TT) mode. The sec-
ond mode is Separate Kernel Address Space
(SKAS) mode. In the TT mode, the processes
and the kernel of the GOS all exist in the user
space of the host kernel. In SKAS mode, the
kernel is mapped into its own address space.
The advantage to Tracing Thread mode is that
there is support for Symetric Multi-Processor

2005 Linux Symposium • 299

Figure 1: Nested Elevators

(SMP) based platforms. The most compelling
reason to consider using the SKAS mode is the
perfomance advatage it holds over TT mode.
This advanage is most noticable in applications
that are fork() intensive.

To work in SKAS mode requires a minor patch
to the host OS kernel. This patch was exam-
ined and it was determined that for the purposes
of the specific LSB tests being considered, the
patch did not affect the viability of the test.

It was not nessesary to have SMP available
to the GOS kernels in order to run the tests,
and the host kernel effectively makes use of
the SMP platform. Therefore, the desision was
made to employ the SKAS patch.

1.4 Distributions Tested

The following represents a sample of the distri-
butions required for the LSB 3.0 testing:

• Novell Linux Distribution 10

• RedHat Enterprise Linux 3

• RedHat Enterprise Linux 4

• Red Flag

1.5 Intra-UML communications

In the deployed environment, even though each
GOS has it own IP address and stack and is con-
necte via a virtual switch, there was no require-
ment for communications between individual
GOSs. In the future, it is foreseen that extend-
ing the test environment to allow Client/Server
style tests on separate GOSs may provide value.
In this environment, GOSs could communicate
in one of three methods. First of all, given the
fact that there is an IP stack running on each
GOS, then socket based communications are
available. This would include direct sockets,
ssh, ftp, rsh, and other well known IP-based
communications methods. Second, it would
also be possible to use semaphore files between
GOSs in a manner similar to that described in
this paper. Finally, it is theoretically possible

300 • Usage of Virtualized GNU/Linux for Binary Testing Across Multiple Distributions

to attach TTY/PTY devices between GOSs, al-
lowing character based traffic to be passed be-
tween two GOSs. This approach would have
very little overhead, and may be very attractive
as a management conduit for test control. More
research is needed in this area.

2 Concurrent Test Limitations

It is important to understand the limitations that
exist when running encapsulated or virtualized
test environments. These limitations associated
with running concurrent tests on a UML based
system include:

• hardware abstraction—it may not be ap-
propriate to test the hardware and hard-
ware abstraction layers since some aspects
of the encapsulated operating systems are
abstraced. Example of this are the appar-
ent memory size of which the encapsu-
lated system is aware, the block I/O sys-
tems, etc.

• resource sharing—it is possible for a test
to have different resources available for
different invocations of the test. This may
produce different results in the area of ex-
ecution time, CPU utilization, and other
similar measurements.

• inter-client communication—it adds value
to the test cycle for the host operating sys-
tem to be able to communicate with the
guest operating systems for the purpose
of kicking off tests and recovering test re-
sults. In the future it may also be useful
to enable communication between encap-
sulated systems.

For the purposes of the LSB testing, these lim-
itations are not onerous, and the test environ-
ment is sensible.

3 The Cost of UML

As with any system of emulation, encapsula-
tion, or virtualization, there is some perfor-
mance penalty to be expected. Because the
LSB compliance testing takes such a long time
to execute, two synthetic benchmarks were
chosen that isolate particular areas of system
performance that have a large impact on our
tests. Of principal interest is file system per-
formance and scheduler performance.

3.1 File System Test results

One of the benchmark tools employed was
Bonnie++ (1.03a) a widely accepted file system
throughput test. The Bonnie++ benchmark was
used the in the development of the ReiserFS
file system. Even though a HyperThreaded ma-
chine is used as the test host, it was decided to
use single threaded mode for bonnie++ because
the primary interest is in the performance that
one process would receive, rather than trying
to approximate a full running system in some
way. Bonnie++ was configured to choose the
set size, which for the host was 2G. The encap-
sulated operating systems have varying quanti-
ties of memory, so the same set size as the host
was not used. The intent of this study was to
compare file system performance in the encap-
sulated operating systems, rather than compar-
ing encapsulated performance to the host. See
Table 1 for details on file system throughput.

3.2 Scheduler Performance

Because the LSB tests require a large number
of sequential and concurrent operations, sched-
uler performance inside the encapsulated oper-
ating systems is of interest. There are two fac-
tors of interest here, the process creation over-
head and the context switching time. To mea-
sure the former, thespawn test program of the

2005 Linux Symposium • 301

Sequential Output Sequential Input
Per Char Block Rewrite Per Char Block

Host Kernel KB/s KB/s KB/s KB/s KB/s
2.6.11.6-skas3-v9-pre1 30775 64928 22433 14864 53974
2.6.11.6 30726 65639 22906 15159 54649

.16% –1.08% –2.06% –1.95% –1.24%

Table 1: Host disk throughput comparison

unixbench-4.1.0 test suite was used. To mea-
sure the latter, the context switching measure-
ments of the lmbench-3.0-a4 test suite was ob-
served.

4 Testing on UML

One of the factors that influenced the design
of the test environment was the relative exe-
cution time of the tests in questions. Gener-
ally, the compliance tests take in the order of
an hour to execute. The Application Battery
suite of tests for LSB certification takes in the
order of 3 hours per distribution, and is a very
manual operation. The validation of the Sample
Implementation takes about 30 minutes. The
full testing of the distribution using the runtime
library is documented to take approximately
seven hours on a uni-processor host.

Since the tests take so long to execute, there is
no need to launch the tests instantly. If it takes
one or two seconds to cause the testing to be-
gin, this will cause no appreciable difference in
overall test execution time. Accordingly, a file
based system was developed based on an NFS
file system. Each GOS exports a directory to
be used for testing. The host OS mounts a di-
rectory for each GOS. The fact that test take a
long time to execute also means that that the
residual files will persist for quite some time.
It is for this reason that.ini and.fini files
are used in the scripts to indicate when a test is
ready to start, and when it has completed. This

approach also allows multiple tests to be run
concurrently.

The appropriateness of running concurrent tests
must be determined by examining the many as-
pects associated with backgrounding tests. It
would be possible for one GOS to over con-
sume CPU and disk resources by instantiating
many tests. The GOS side of the test environ-
ment does not put any restrictions on the num-
ber of concurrent tests that may be run.

For a general purpose test environment, it
would not be difficult to modify the scripts so
they kept track of the number of outstanding
test—those actively executing tests—and throt-
tle the arrival rate of tests according to some
high water mark.

4.1 Launching a test

Table 2 describes the steps taken by the host OS
to launch a test on GOS 2.

For the purposes of this example, it is as-
sumed the test to be run exists in local directory
/opt/test1 in the form of an executable and
some supporting files. The tests are to be exe-
cuted on GOS #2.

Note that the executable test and any supporting
data must be transferred before the.ini file
used to kick off the test is created.

302 • Usage of Virtualized GNU/Linux for Binary Testing Across Multiple Distributions

Each EOS exports /opt/test

UML Switch

Encapsulated OS #1 Encapsulated OS #2 Encapsulated OS #3

 Host OS mounts
/opt/test/test_<hostname>
 for each EOS

Diagram showing pseudo-hosts

Virtual network switch

NFS

Host OS

Figure 2: UML Figure

$ host: ls /opt/test1
CVS bin result data

$ host: ls /mnt/GOS2
$ host: mkdir /mnt/GOS2/bin
$ host: mkdir /mnt/GOS2/results
$ host: mkdir /mnt/GOS2/data
$ host: cp -R /opt/test1/data /mnt/GOS2/data
$ host: cp /opt/test1/bin/test_exec /mnt/GOS2/bin/test_exec
$ host: touch /mnt/GOS2/bin/test_exec.ini

Table 2: Script Used to Launch Tests

2005 Linux Symposium • 303

4.2 Test execution

On each GOS, there is a script running that pe-
riodically checks for the existence of a test. The
script is presented in Table 3.

If can be noted that this script tests for the ex-
istences of.ini files in the .bin directory,
executes the tests redirecting stdin and stderr to
files based on the test name in a results direc-
tory. When the test has completed, the script
create a.fini file, which is a flag to indicate
the test is complete.

4.3 Getting results

Obtaining the results of the test are reasonably
trivial. The test application on the host OS
waits for the creation of a.fini file in the
results directory. Once this empty file is cre-
ated, then the stdout and stderr of the test can
be evaluated to determine the success of failure
of the test. If the test generates any log files,
then these too can be evaluated.

5 Futures

One of the major drawbacks of the method em-
ployed in the test environment described in this
paper is the fact that the system resources are
not protected. The memory associated with
one encapsulated may be partially swapped out
in the host operating system. Disk file sys-
tems need to be carefully planned, and can not
change with out adversely affecting disk per-
formance. The overhead of the host OS also
reduces the resources available to the encapsu-
lating OSes.

A solution that addresses the shortcoming is
the newly released Virtualization Technology

(VT) platform. This platform would a allowed
a much faster deployment of the test environ-
ment. It also has a much faster transition be-
tween guest operating systems due to the hard-
ware assisted switching. A VT platform also
allows the operating systems that run on them
to have protected hardware resources.

Although not available for this test environ-
ment, UML is being ported to a VT technol-
ogy platform, allowing a more efficient use of
system resources from within an GOS. UML is
also being ported to x86-64 architures, as well
as PPC and S390 processors.

As the testing for the Linux Standards Base
continues, it is fully anticipated that this test
environment will be migrated to a VT-enabled
platform in the very near term.

6 Conclusion

The test environment described in this paper
was designed to facilitate simultaneous or near
simultaneous testing of different distributions.
The nature of the testing involved was well
suited for the type of environment available
from a UML based test platform. Performance
slowdowns were not an issue.

7 Acknowledgments

The authors would like to express their thanks
to Jeffery Dike, one of the developers and main-
tainers of UML, for taking the time to answer
questions and for providing information on the
future of UML.

304 • Usage of Virtualized GNU/Linux for Binary Testing Across Multiple Distributions

#!/bin/sh

export TD=/mnt/test
while [1 -gt 0] ; do

for test in ‘ls $TD/bin/*.ini‘ ; do
echo TEST is $test
export fex=‘basename $test .ini‘
echo $fex
if [-x $TD/bin/$fex] ; then

($TD/bin/$fex > $TD/results/$fex.out 2> $TD/results/$fex.err;
touch $TD/results/$fex.fini;
rm $TD/bin/$fex) &

fi
rm $test

done
sleep 5

done

Table 3: Script Used to Execute Tests

8 References

[1] Linux Standard Base at
http://www.linuxbase.org/

[2] Read more about User Mode Linux at
http://usermodelinux.org/

[3] Read more about Gentoo at
http://www.gentoo.org/

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

