
dmraid - device-mapper RAID tool
Supporting ATARAID devices via the generic Linux device-mapper

Heinz Mauelshagen
Red Hat Cluster and Storage Development

mauelshagen@redhat.com

Abstract

Device-mapper, the new Linux 2.6 kernel
generic device-mapping facility, is capable of
mapping block devices in various ways (e.g.
linear, striped, mirrored). The mappings are
implemented in runtime loadable plugins called
mapping targets.

These mappings can be used to support arbi-
trary software RAID solutions on Linux 2.6,
such as ATARAID, without the need to have
a special low-level driver as it used to be with
Linux 2.4. This avoids code-redundancy and
reduces error rates.

Device-mapper runtime mappings (e.g. map
sector N of a mapped device onto sector M of
another device) are defined in mapping tables.

The dmraid application is capable of creating
these for a variety of ATARAID solutions (e.g.
Highpoint, NVidia, Promise, VIA). It uses an
abstracted representation of RAID devices and
RAID sets internally to keep properties such
as paths, sizes, offsets into devices and lay-
out types (e.g. RAID0). RAID sets can be
of arbitrary hierarchical depth in order to re-
flect more complex RAID configurations such
as RAID10.

Because the various vendor specific meta-
data formats stored onto ATA devices by the

ATARAID BIOS are all different, metadata
format handlers are used to translate between
the ondisk representation and the internal ab-
stracted format.

The mapping tables which need to be loaded
into device-mapper managed devices are de-
rived from the internal abstracted format.

My talk will give a device-mapper architec-
ture/feature overview and elaborate on the dm-
raid architecture and how it uses the device-
mapper features to enable access to ATARAID
devices.

1 ATARAID

Various vendors (e.g. Highpoint, Silicon Im-
age) ship ATARAID products to deploy Soft-
ware RAID (Redundant Array Of Inexpensive
Disks) on desktop and low-end server system.
ATARAID essentially can be characterized as:

• 1-n P/SATA or SCSI interfaces

• a BIOS extension to store binary RAID set
configuration metadata on drives attached

• a BIOS extension to map such RAID sets
in early boot and access them as a single
device so that booting off them is enabled

• 289 •

290 • dmraid - device-mapper RAID tool

• an operating system driver (typically for
Windows) which maps the RAID sets after
boot and updates the vendor specific meta-
data on state changes (e.g. mirror failure)

• a management application to deal with
configuration changes such as mirror fail-
ures and replacements

Such ATARAID functionality can either be
provided via an additional ATARAID card or it
can be integrated on the mainboard as with so-
lutions from NVidia or VIA. It enables the user
to setup various RAID layouts, boot off them
and have the operating system support them as
regular block devices via additional software
(hence the need for Windows drivers). Most
vendors do RAID0 and RAID1, some go be-
yond that by offering concatenation, stacked
RAID sets (i.e. RAID10) or higher RAID levels
(i.e. RAID3 and RAID5).

1.1 Some metadata background

The vendor on-disk metadata keeps informa-
tion about:

• the size(s) of the areas mapped onto a disk

• the size of the RAID set

• the layout of the RAID set (e.g. RAID1)

• the number of drives making up the set

• a unique identifier (typically 1 or 2 32 bit
numbers) for the set

• the state of the set (e.g. synchronized for
RAID1) so that the driver can start a resyn-
chronization if necessary

What it usually doesn’t keep is a unique hu-
man readable name for the set which means,

that dmraid needs to derive it from some avail-
able unique content and make a name up. The
tradoff is, that names are somewhat recondite.

Some vendors (i.e. Intel) retrieve ATA or SCSI
device serial numbers and store them in the
metadata as RAID set identifiers. Others just
make unique numbers using random number
generators.

1.2 Support in Linux

Linux 2.4 supported a limited list of products
via ATARAID specific low-level drivers.

Now that we have the very flexible device-
mapper runtime in the Linux 2.6 kernel se-
ries, this approach is no longer senseful, be-
cause an application (i.e. dmraid) can translate
between all the different on-disk metadata for-
mats and the information device-mapper needs
to activate access to ATRAID sets. This ap-
proach avoids the overhead of seperate low-
level drivers for the different vendor solutions
in the Linux kernel completely.

2 Device-Mapper

The device-mapper architecture can be delin-
eated in terms of these userspace and kernel
components:

• a core in the Linux kernel which main-
tains mapped devices (accessible as reg-
ular block devices) and their segmented
mappings definable in tuples of offset,
range, target, and target-specific parame-
ters. Offset and ranges are in units of sec-
tors of 512 bytes. Such tuples are called
targets (see examples below). An arbitrary
length list of targets defining segments in
the logical address space of a mapped de-
vice make up a device mapping table.

2005 Linux Symposium • 291

• a growing list of kernel modules for plu-
gable mapping targets (e.g. linear, striped,
mirror, zero, error, snapshot, cluster map-
ping targets. . .) which are responsible
for (re)mapping IOs to a sector address
range in the mapped devices logical ad-
dress space to underlying device(s) (e.g. to
mirrors in a mirror set).

• an ioctl interface module in the kernel to
communicate with userspace which ex-
ports functionality to create and destroy
mapped devices, load and reload mapping
tables, etc.

• a device-mapper userspace library (libde-
vmapper) which communicates with the
kernel through the ioctl interface access-
ing the functions to create/destroy mapped
devices and load/reload their ASCII for-
mated mapping tables. This library is
utilized by a couple applications such as
LVM2 and dmraid.

• a dmsetup tool which uses libdevmapper
to manage mapped devices with their map-
ping tables and show supported mapping
targets, etc.

2.1 Mapping table examples

1. 0 1024 linear /dev/sda 0

2. 0 2048 striped 2 64 /dev/sda 1024 /dev/sdb 0

3. 0 4711 mirror core 2 64 nosync 2 /dev/sda 2048 /dev/sdb 1024

4. 0 3072 zero
3072 1024 error

Example 1 maps an address range (segment)
starting at sector 0, length 1024 sectors linearly
(linear is a keyword selecting the linear map-
ping target) onto /dev/sda, offset 0./dev/
sda 0 (a device path and an offset in sectors)
are the 2 target-specific parameters required for
the linear target.

Example 2 maps a segment starting at sector
0, length 2048 sectors striped (thestripedkey-
word selects the striping target) onto /dev/sda,
offset 1024 sectors and/dev/sdb , offset 0
sectors. The striped target needs to know the
number of striped devices to map to (i.e. ‘2’)
and the stride size (i.e. ‘64’ sectors) to use to
split the IO requests.

Example 3 maps a segment starting at sector 0,
length 4711 sectors mirrored (themirror key-
word selects the mirror target) onto/dev/
sda , offset 2048 sectors (directly after the
striped mapping from before) and/dev/sdb ,
offset 1024 sectors (after the striped mapping).

Example 4 maps a segment starting at sector
0, length 3072 sectors using the ‘zero’ target,
which returns success on both reads and writes.
On reads a zeroed buffer content is returned. A
segment beginning at offset 3072, length 1024
gets mapped with the ‘error’ target, which al-
ways returns an error on reads and writes. Both
segments map a device size of 4096 sectors.

As the last example shows, each target line in a
mapping table is allowed to use a different map-
ping target. This makes the mapping capabil-
ities of device-mapper very flexible and pow-
erfull, because each segent can have IO opti-
mized properties (e.g. more stripes than other
segments).

Note: Activating the above mappings at once is just
for the purpose of the example.

2.2 dmsetup usage examples

By putting arbitrary mapping tables like the
above ones into files readable by the dmsetup
tool (which can read mapping tables from stan-
dard input as well), mapped devices can be
created or removed and their mappings can be
loaded or reloaded.

292 • dmraid - device-mapper RAID tool

1. dmsetup create ols filename

2. dmsetup reload ols another_filename

3. dmsetup rename ols OttawaLinuxSympo-
sium

4. dmsetup remove OttawaLinuxSymposium

Example 1 creates a mapped device named
‘ols’ in the default device-mapper directory
/dev/mapper/ , loads the mapping table
from ‘filename’ (e.g. ’0 3072 zero’) and acti-
vates it for access.

Example 2 loads another mapping table from
‘another_filename’ into ‘ols’ replacing any
given previous one.

Example 3 renames mapped device ‘ols’ to ‘Ot-
tawaLinuxSymposium’.

Example 4 deactivates ‘OttawaLinuxSympo-
sium’, destroys its mapping table in the kernel,
and removes the device node.

3 dmraid

The purpose of dmraid is to arbitrate be-
tween the ATARAID on-disk metadata and the
device-mapper need to name mapped devices
and define mapping tables for them.

Because the ATARAID metadata is vendor spe-
cific and the respective formats therefore all
differ, an internal metadata format abtraction
is necessary to translate into and derive the
mapped device names and mapping tables con-
tent from.

The ‘translators’ between the vendor formats
and the internal format are called ‘metadata for-
mat handlers.’ One of them is needed for any
given format supported by dmraid.

An activation layer translates from there into
mapping tables and does the libdevmapper calls
to carry out device creation and table loads to
gain access to RAID sets.

3.1 dmraid components

• the dmraid tool which parses the command
line and calls into

• the dmraid library with:

– a device access layer to read and
write metadata from/to RAID de-
vices and to retrieve ATA and SCSI
serial numbers

– a metadata layer for the internal
metadata format abstraction with
generic properties to describe RAID
devices and RAID sets with their
sizes and offsets into devices, RAID
layouts (e.g. RAID1) including arbi-
trary stacks of sets (e.g. RAID10)

– metadata format handlers for every
vendor specific solution (e.g. High-
point, NVidia, VIA, . . .) translating
between those formats and the inter-
nal generic one

– an activation layer doing device-
mapper library calls

– a display layer to show properties
of block devices, RAID devices and
RAID sets

– a logging layer which handles output
for verbosity and debug levels

– a memory management layer
(mainly for debugging purposes)

– a locking layer to prevent parallel
dmraid runs messing with the meta-
data

2005 Linux Symposium • 293

3.2 Command line interface

The dmraid CLI comprehends options to:

• activate or deactivate ATARAID sets

• select metadata formats

• display properties of

– block devices

– RAID devices

– RAID sets

– vendor specific metadata

• display help (command synopsis)

• list supported metadata formats

• dump vendor metadata and locations into
files

• display the dmraid, dmraid library and the
device-mapper versions

The command synopsis looks like:

dmraid: Device-Mapper Software RAID tool

* = [-d|--debug]... [-v|--verbose]...

dmraid {-a|--activate} {y|n|yes|no} *
[-f|--format FORMAT]
[-p|--no_partitions]
[-t|--test]
[RAID-set...]

dmraid {-b|--block_devices} *
[-c|--display_columns]...

dmraid {-h|--help}

dmraid {-l|--list_formats} *

dmraid {-n|--native_log} *
[-f|--format FORMAT]
[device-path...]

dmraid {-r|--raid_devices} *
[-c|--display_columns]...
[-D|--dump_metadata]
[-f|--format FORMAT]
[device-path...]

dmraid {-r|--raid_devices} *
{-E|--erase_metadata}
[-f|--format FORMAT]
[device-path...]

dmraid {-s|--sets}...[a|i|active|inactive] *
[-c|--display_columns]...
[-f|--format FORMAT]
[-g|--display_group]
[RAID-set...]

dmraid {-V/--version}

3.3 dmraid usage examples

List all available block devices:

dmraid -b
/dev/sda: 72170879 total, "680631431K"
/dev/sdb: 8887200 total, "LG142316"
/dev/sdc: 72170879 total, "680620811K"

List all discovered RAID devices:

dmraid -r
/dev/dm-14: hpt45x, "hpt45x_dbagefdi", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-18: hpt45x, "hpt45x_dbagefdi", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-22: hpt45x, "hpt45x_bhchfdeie", \

mirror, ok, 320173045 sectors, data@ 0
/dev/dm-26: hpt45x, "hpt45x_bhchfdeie", \

mirror, ok, 320173045 sectors, data@ 0
/dev/dm-30: hpt45x, "hpt45x_edieecfd", \

linear, ok, 320173045 sectors, data@ 0
/dev/dm-34: hpt45x, "hpt45x_edieecfd", \

linear, ok, 320173045 sectors, data@ 0
/dev/dm-38: hpt45x, "hpt45x_chidjhaiaa-0", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-42: hpt45x, "hpt45x_chidjhaiaa-0", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-46: hpt45x, "hpt45x_chidjhaiaa-1", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-50: hpt45x, "hpt45x_chidjhaiaa-1", \

stripe, ok, 320172928 sectors, data@ 0

List all discovered RAID sets:

dmraid -cs
hpt45x_dbagefdi
hpt45x_bhchfdeie
hpt45x_edieecfd
hpt45x_chidjhaiaa

294 • dmraid - device-mapper RAID tool

Show mapped devices and mapping tables for
RAID sets discovered:

dmraid -tay
hpt45x_dbagefdi: 0 640345856 striped \

2 128 /dev/dm-14 0 /dev/dm-18 0
hpt45x_bhchfdeie: 0 320173045 mirror \

core 2 64 nosync 2 /dev/dm-22 0 /dev/dm-26 0
hpt45x_edieecfd: 0 320173045 \

linear /dev/dm-30 0
hpt45x_edieecfd: 320173045 320173045 \

linear /dev/dm-34 0
hpt45x_chidjhaiaa-0: 0 640345856 striped \

2 128 /dev/dm-38 0 /dev/dm-42 0
hpt45x_chidjhaiaa-1: 0 640345856 striped \

2 128 /dev/dm-46 0 /dev/dm-50 0
hpt45x_chidjhaiaa: 0 640345856 mirror \

core 2 256 nosync 2 \
/dev/mapper/hpt45x_chidjhaiaa-0 0 \
/dev/mapper/hpt45x_chidjhaiaa-1 0

Activate particular discovered RAID sets:

dmraid -ay hpt45x_dbagefdi hpt45x_bhchfdeie

3.4 Testbed

It is too costly to keep a broad range of
ATARAID products in a test environment for
regression tests. This would involve plenty
of different ATARAID cards and ATARAID-
equipped mainboards. Even worse, multiple
of each of those would be needed in order to
keep various configurations they support aces-
sible for tests in parallel (e.g. Highpoint 47x
type cards support RAID0, RAID1, RAID 10
and drive concatination). Not to mention the
amount of disks needed to cover thoseand a
couple of different sizes for each layout. For
the formats already supported by dmraid, the
costs easily sum up to a couple of USD 10K.

Because of that, the author created a testbed
which utilizes device-mapper to ‘fake’
ATARAID devices via sparse mapped de-
vices (that’s why the examples above show
/dev/dm-* device names). A sparse mapped
device is a stack of a zero and a snapshot

mapping on top. The snapshot redirects all
writes to the underlying device and keeps track
of those redirects while allowing all reads
to not-redirected areas to hit the underlying
device. In case of the zero mapping, success
and a zeroed buffer will be returned to the
application. The space where the snapshot
redirects writes to (called exception store) can
be way smaller than the size of the zero device.
That in turn allows the creation of much larger
sparse than available physical storage.

The testbed is a directory structure contain-
ing subdirectory hierarchies for every vendor,
adaptor type and configuration (images of the
metadata on each drive and drive size). The top
directory holds setup and remove scripts to cre-
ate and tear down all sparse mapped devices for
the drives invloved in the configuration which
get called from configuration directory scripts
listing them.

A typical subdirectory (e.g. /dmraid/

ataraid.data/hpt/454/raid10) looks
like:

hde.size hdg.size hdi.size hdk.size

hde.dat hdg.dat hdi.dat hdk.dat

setup remove

dmraid -rD is able to create the .dat and
.size files for supported formats for easy addi-
tion to the testbed. Users only need to tar those
up and send them to the author on request.

4 dmraid status and futures

dmraid and device-mapper are included in vari-
ous distributions such as Debian, Fedora, Nov-
ell/SuSE, and Red Hat.

Source is available at
http://people.redhat.com/

2005 Linux Symposium • 295

heinzm/sw/dmraid
for dmraid and
http://sources.redhat.com/dm
for device-mapper.

The mailing list for information exchange on
ATARAID themes including dmraid is
ataraid-list@redhat.com . If you’d
like to subscribe to that list, please go to
https://www.redhat.com/mailman/
listinfo/ataraid-list .

Work is in progress to add Fedora installer sup-
port for dmraid and device-monitoring via an
event daemon (dmeventd) and a libdevmap-
per interface extension to allow registration of
mapped devices for event handling. dmeventd
loads application specific dynamic shared ob-
jects (e.g. for dmraid or lvm2) and calls into
those once an event on a registered device oc-
curs. The DSO can carry out appropriate steps
to change mapped device configurations (e.g.
activate a spare and start resynchronization of
the mirrored set).

Additional metadata format handlers will be
added to dmraid including one for SNIA DDF.

The author is open for any proposals which
other formats need supporting. . .

296 • dmraid - device-mapper RAID tool

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

