
Testing the Xen Hypervisor and Linux Virtual Machines

David Barrera
IBM Linux Technology Center

dbarrera@us.ibm.com

Li Ge
IBM Linux Technology Center

lge@us.ibm.com

Stephanie Glass
IBM Linux Technology Center

sglass@us.ibm.com

Paul Larson
IBM Linux Technology Center

plars@us.ibm.com

Abstract

Xen is an interesting and useful technology
that has made virtualization features, normally
found only in high-end systems, more widely
available. Such technology, however, demands
stability, since all virtual machines running on a
single system are dependent on its functioning
properly. This paper will focus on the methods
employed to test Xen, and how it differs from
normal LinuxR© testing. Additionally, this pa-
per discusses tests that are being used and cre-
ated, and automation tools that are being devel-
oped, to allow testers and developers working
on Xen to easily run automated tests.

1 Testing Linux vs. Testing Linux
Under Xen

Xen, which provides a high performance
resource-managed virtual machine monitor
(VMM) [2], is one of several open-source
projects devoted to offering virtualization soft-
ware for the Linux environment. As virtualiza-
tion is rapidly growing in popularity, Xen has
recently gained a lot of momentum in the open-
source community and is under active develop-
ment. Therefore, the need to test Xen becomes

Figure 1: Testing Linux With and Without Xen

a critical task to ensure its stability and relia-
bility. Most often, people run tests on Linux
under Xen in order to exercise Xen code and
to test its functionalities, as Xen is the hypervi-
sor layer that is below the Linux and above the
hardware.

1.1 Similarities

Testing Linux under Xen and testing Linux it-
self are very much alike. Those traditional test-
ing scenarios used to test Linux can also be ap-
plied to testing Linux under Xen. The most

• 271 •

272 • Testing the Xen Hypervisor and Linux Virtual Machines

common testing done on Linux is testing dif-
ferent kernels and kernel configurations to un-
cover any regressions or new bugs. To help in-
sure binary compatibility, different versions of
glibc may also be used. Another big chunk of
tests done is a wide range of device I/O tests
including networking and storage tests. Also,
hardware compatibility testing is very impor-
tant to insure reliability across a broad range of
hardware such as x86, x86-64, UP, SMP, and
Blades.

The ABI for running Linux under Xen is no
different than running under Linux on bare
hardware, there is no change needed for user-
space applications when running on Linux un-
der Xen. In general, all user-space applications
that can be used to test Linux can be used to
test Linux on Xen. For example, memory in-
tensive web serving application and real world
large database applications are very good tools
to create high stress workload for both Xen and
the guest Linux OS.

1.2 Differences

Although testing Linux under Xen and testing
Linux are very similar, there are still some fun-
damental differences. First, Xen supports many
virtual machines, each running a separate oper-
ating system instance. Hence, on one physi-
cal machine, testing Linux under Xen involves
testing multiple versions of Linux, which can
be different on multiple domains, including
host domain and guest domain. The Linux dis-
tribution, library versions, compiler versions,
and even the version of the Linux kernel can be
different on each domain. Furthermore, each
domain can be running different tests without
disturbing the tests running on other domains.
The beneficial side of this is that you can use a
single machine to enclose and test upgrades or
software as if they were running in the existing

environment, but without disturbing the other
domains [3].

Second, running tests on Linux under Xen
guest domain actually accesses hardware re-
sources through Xen virtual machine inter-
faces, while running tests on Linux accesses
physical hardware resources directly. Xen
virtual machine interfaces have three aspects:
memory management, CPU, and device I/O [2].
In order to achieve virtualization on these three
aspects, Xen uses synchronous hypercalls and
an asynchronous event mechanism for control
transfer, and uses the I/O rings mechanism for
data transfer between the domains and the un-
derlying hypervisor. Therefore, even though
the Xen hypervisor layer appears to be trans-
parent to the application, it still creates an addi-
tional layer where bugs may be found.

Third, Xen requires modifications to the oper-
ating system to make calls into the hypervisor.
Unlike other approaches to virtualization, Xen
uses para-virtualization technology instead of
full virtualization to avoid performance draw-
backs [2]. For now, Xen is a patch to the Linux
kernel. Testing Linux on Xen will be testing
the modified Linux kernel with this Xen patch.
As Xen matures though, it may one day be part
of the normal Linux kernel, possibly as a sub-
architecture. This would simplify the process
of testing Xen and make it much easier for more
people to become involved.

2 Testing Xen With Linux

One useful and simple approach to testing Xen
is by running standard test suites under Linux
running on top of Xen. Since Xen requires no
user space tools, other than the domain man-
agement tools, this is a very straightforward ap-
proach. The approach to test Linux under Xen
described here is patterned after the approach

2005 Linux Symposium • 273

Figure 2: Xen Testing Model

taken to test the development Linux kernels.
The traditional testing model used to test the
Linux kernel involves function, system, and in-
tegration testing. One clear advantage to this
approach is that results can easily be checked
against results of the same tests, running on an
unmodified kernel of the same version, running
on bare hardware.

The Linux Test Project (LTP) test suite is the
primary tool we used in function testing. LTP
is a comprehensive test suite made up of over
two thousand individual test cases that test such
things as system calls, memory management,
inter-process communications, device drivers,
I/O, file systems, and networking. The LTP
is an established and widely used test suite in
the open source community, and has become a
de facto verification suite used by developers,
testers, and Linux distributors who contribute
enhancements and new tests back to the project.

The system testing approach involves running
workloads that target specific sub-systems. For
example, workloads that are memory intensive
or drive heavy I/O are used to stress the system
for a sustained period of time, say 96 hours.
These tests are performed after function tests
have successfully executed; thus, defects that
manifest only under stressful conditions are

discovered. For example, in past system test ef-
forts testing development Linux kernels, a com-
bination of I/O heavy and file system stress
test suites have been used such as IOZone,
Bonnie, dbench, fs_inode, fs_maim, postmark,
tiobench, fsstress, and fsx_linux. The tests are
executed on a given file system, sustained over
a period of time to expose defects. The com-
bination of these tests have proven themselves
particularly useful in exposing defects in many
parts of the kernel.

Integration testing is done after function and
system testing have been successfully executed.
This type of testing involves the running of
multiple, varied workloads that exercise most
or all subsystems. A database workload, for ex-
ample, is used to insert, delete, and update mil-
lions of database rows, stressing the I/O sub-
system, memory management, and networking
if running a networked application. Addition-
ally, other workloads are run in parallel to fur-
ther stress the system. The objective is to create
a realistic scenario that will expose the oper-
ating systems to interactions that would other-
wise not be exercised under function or system
test.

Figure 3, Sample Network Application, il-
lustrates an integration test scenario where a
database application, the Database Open source
Test Suite (DOTS), is used to create a pseudo-
networked application running both the clients
and the server on virtual machines running on
the same hardware under Xen. Obviously, this
is an unlikely scenario in the real world, but it
is useful in test to induce a workload in a test
environment.

3 Testing Xen More Directly

While much of the functionality of Xen can
be tested using Linux and standard tests, there

274 • Testing the Xen Hypervisor and Linux Virtual Machines

Figure 3: Sample Network Application

are many features that are very specific to Xen.
Such features often require careful attention to
insure they are adequately tested. A couple of
examples include privileged hypercalls, and the
balloon driver. A testing strategy for each is
briefly outlined here to illustrate why simply
running Linux as a guest OS under Xen and
running standard tests does not suffice for test-
ing Xen as a whole.

3.1 Testing Privileged Hypercalls

Domain 0 in Xen is considered to be a privi-
leged domain. As the privileged domain, there
are certain operations that can only be per-
formed from this domain. A few of these privi-
leged operations include:

1. DOM0_CREATEDOMAIN– create a new do-
main

2. DOM0_PAUSEDOMAIN– remove a domain
from the scheduler run queue

3. DOM0_UNPAUSEDOMAIN– mark a paused
domain as schedulable again

4. DOM0_DESTROYDOMAIN– deallocate all
resources associated with a domain

5. DOM0_IOPL– set I/O privilege level

6. DOM0_SETTIME– set system time

7. DOM0_READCONSOLE– read console con-
tent from the hypervisor buffer ring

These are just a few of the privileged operations
available only to domain 0. A more complete
list can be found inxen/include/public/

dom0_ops.h or in the Xen Interface Manual
[4].

Many of these operations perform actions on
domains such as creating, destroying, pausing,
and unpausing them. These operations can
easily be tested through the Xen management
tools. The management tools that ship with
Xen provide a set of user space commands that
can be scripted in order to exercise these oper-
ations.

Other operations, such asDOM0_SETTIME, can
be exercised through the use of normal Linux
utilities. In the case ofDOM0_SETTIME, some-
thing like hwclock --systohc may be
used to try to set the hardware clock to that of
the current system time. The return value of
that command on domain 0 is 0 (pass) while on
an unprivileged domain it is 1 (fail). This sim-
ple test not only verifies that it succeeds as ex-
pected on domain 0, but also sufficiently shows
that the operation fails as expected on an un-
privileged domain.

For something like IOPL, there are tests in LTP
that exercise the system call. These tests are
expected to pass on domain 0, but fail on un-
privileged domains. This is an example where
a the results of a test may be unintuitive at first
glance. The iopl test in LTP will prominently
display a failure message in the resulting test
output, but context must be considered as a
“FAIL” result would be considered passing in
unprivileged domains.

2005 Linux Symposium • 275

Still other operations such asDOM0_

READCONSOLEare probably best, and easiest
to test in an implicit manner. The functionality
of readconsole may be exercised by simply
booting Xen and watching the output for
obviously extraneous characters, or garbage
coming across the console. Moreover, features
of the console can be tested such as pressing
Control-A 3 times in a row to switch back and
forth from the domain 0 console to the Xen
console.

3.2 Testing the Xen Balloon Driver

Another feature of Xen that warrants attention
is the balloon driver. The balloon driver al-
lows the amount of memory available to a do-
main to dynamically grow or shrink. The cur-
rent balloon information for a domain running
Linux can be seen by looking at the contents of
/proc/xen/balloon . This is an example of
the resulting output:

cat /proc/xen/balloon
Current allocation: 131072 kB
Requested target: 131072 kB
Low-mem balloon: 0 kB
High-mem balloon: 0 kB
Xen hard limit: ??? kB

This feature is wide open to testing possibili-
ties. Some of the possible test scenarios for the
balloon driver include:

1. Read from/proc/xen/balloon .

2. Echo a number higher than current ram to
balloon, cat balloon and see that requested
target changed.

3. Echo a number lower than current ram to
balloon, cat balloon and see that requested
target and current allocation changed to
that number.

4. Allocate nearly all available memory
for the domain, then use/proc/xen/

balloon to reduce available memory to
less than what is currently allocated.

5. Try to give/proc/xen/balloon a value
larger than the available RAM in the sys-
tem.

6. Try to give/proc/xen/balloon a value
way too low, say 4k for instance.

7. Write something to /proc/xen/

balloon as a non-root user, expect
-EPERM.

8. Write 1 byte to /proc/xen/balloon ,
expect-EBADMSG.

9. Write >64 bytes to /proc/xen/

balloon , expect-EFBIG .

10. Rapidly write random values to/proc/

xen/balloon .

Many of the above tests may also be performed
by using an alternative interface for controlling
the balloon driver through the domain manage-
ment tools that come with Xen. Scripts are be-
ing written to automate these tests and report
results.

4 Xentest

In the process of testing Xen, occasionally a
patch will break the build, or a shallow bug will
get introduced from one day to the next. These
kinds of problems are common, especially in
large projects with multiple contributers, but
they are also relatively easy to look for in an
automated fashion. So, a decision was made
to develop an automated testing framework
centered around Xen. This automated testing
framework is calledXentest.

276 • Testing the Xen Hypervisor and Linux Virtual Machines

There are, of course, several test suites already
available that may be employed in the testing
of Xen. It should be made clear that Xentest is
not a test suite, but rather an automation frame-
work. The main purpose of Xentest is to pro-
vide automated build services, start the execu-
tion of tests, and gather results. That being
said, the build and boot part of Xentest can be
considered a build verification test (BVT) in its
own right.

Our hope is that Xentest can be used by anyone
with a spare machine to execute nightly tests of
Xen. It was designed to be simple and unobtru-
sive, while still providing the basic functional-
ity required in an automated testing framework.
Our goals were:

1. Use existing tools in Xen wherever possi-
ble.

2. Simple and lightweight design, requires
only a single physical machine to run.

3. Supports reusable control files.

4. Tests running under Xentest are easily ex-
tended by just adding lines to the control
file.

At the time this is being written, Xentest is
composed of three main scripts named xen-
build, xenstartdoms, and xenruntests. There is
also a small init.d script, and a control file is
used to describe information such as: where
to pull Xen from, which virtual machines to
launch, and which tests to run on which virtual
machines. A shared directory must also be cre-
ated and defined in the control file. The shared
directory is used for communicating informa-
tion down to the virtual machines, and for stor-
ing results for each virtual machine. Usually,
something like NFS is used for the shared di-
rectory.

Figure 4: Xentest process

The xenbuild script takes a single argument,
the name of control file to use for this test.
That control file is first copied to/etc/xen/

xentest.conf . The xenbuild script is re-
sponsible for downloading the appropriate ver-
sion of Xen, building it, and rebooting the sys-
tem. Before the system reboot occurs, a file is
created in/etc calledxen_start_tests .
The init.d script checks for the existence of
this file to signify that it should launch the re-
maining scripts at boot time.

If the init.d script has detected the exis-
tence of /etc/xen_start_tests , the next
script to be executed after a successful reboot
is xenstartdoms. The xenstartdoms script reads
/etc/xentest.conf and callsxm create
to create any virtual machines defined in the
control file. The xenstartdoms script also cre-
ates subdirectories for each virtual machine in
the shared directory for the purpose of stor-
ing test results. For now though,/etc/
xentests.conf , which is a copy of the
original control file passed to xenbuild, is
copied into that directory.

2005 Linux Symposium • 277

The xenruntests script looks for a directory
matching its hostname in the shared directory.
In this directory it expects to find a copy of
xentests.conf that was copied there by
xenstartdoms. All domains, including dom0,
look for xentests.conf there in the xen-
runtests scripts, so that no special handling is
needed for domain 0. Xenruntests is the only
script executed in all domains. After reading
the control file in, xenruntests finds the section
corresponding to the virtual machine it is run-
ning on, and reads a list of tests that it needs to
execute. A section corresponding to each test is
then located in the control file telling it where to
download the test from, how to build and install
the test, how to run the test, and where to pick
up logs from. After performing all these tasks
for each test, xenruntests removes its own copy
of the control file stored in the shared directory.
This signifies that it is complete, and prevents
the possibility of it from interfering with future
runs.

5 Xentest control file format

The Xentest control file structure is simple and
easy to read, but it is also highly configurable.
It allows tests to be easily defined, and executed
independent of one another on multiple guests.
The ConfigParser class in python is used to im-
plement Xentest control files, so the control file
structure adheres to RFC 822 [1]. Let’s take a
look at a basic control file.

[Preferences]
xen-tree=xen-unstable
shared_dir=/xentest/shared

This section defines the tree you want down-
loaded for testing, and the shared directory
to use. Remember that these config files are
reusable, so it’s easy to set up a control file

for any given machine to explicitly run tests
on the stable, testing, and unstable Xen builds.
The other variable here is the shared directory,
which was discussed previously and is usu-
ally mounted over something like NFS. The
/etc/fstab should be configured to auto-
matically mount the shared directory for every
domain configured for testing under Xentest.

[Locations]
xen-2.0=http://www.where/to/

download/xen-stable.tgz
xen-2.0-testing=http://www.where/

to/download/xen-testing.tgz
xen-unstable=http://www.where/to/

download/xen-unstable.tgz

The locations in this section simply describe
where to download each of the Xen nightly
snapshot tarballs. More can be added if it
ever becomes necessary. To work properly, the
value for xen-tree above must simply match the
variable name of one of these locations.

[LTP]
source_url=http://where.to.download/

ltp/ltp-full-20050207.tgz
build_command=make
install_command=make install
test_dir=ltp-full-20050207
log_dir=logs/ltp
run_command=./runltp -q > \

../logs/ltp/runltp.output

A bit more information is require to describe a
specific test to Xentest. First,source_url
describes where to get the tarball for the test
from. Currently gzip and bzip2 compressed tar
files are supported.

Thetest_dir variable tells Xentest the name
of the directory that will be created when it ex-
tracts the tarball. After changing to that direc-
tory, Xentest needs to know how to build the
test. The command used for building the test, if

278 • Testing the Xen Hypervisor and Linux Virtual Machines

any command is needed, is stored inbuild_
command. Likewise, if any commands are
needed for installing the test before execution,
Xentest can determine what to run by looking
at the value ofinstall_command .

The value oflog_dir is used to tell Xen-
test where to pick up the test output from, and
run_command tells it how to run the test.
This will be enough or more than enough to
handle a wide variety of tests, but for espe-
cially complex tests, you might consider writ-
ing a custom script to perform complex setup
tasks beyond the scope of what is configurable
here. Then all that would need to be defined
for the test issource_url , test_dir , and
run_command .

Since Xentest relies on the ConfigParser class
in python to handle control files, variables may
be used and substituted, but only within the
same section, or if they are defined in the
[DEFAULT] section. For instance, if tempo-
rary directory was defined in this section as
tempdir , then variables likelog_dir can
be specified as:

log_dir=%(tempdir)s/logs/ltp

Since the temporary directory is more appro-
priately defined under the domain section (de-
scribed below), a variable substitution cannot
be used here. It is for this reason that all di-
rectories in the test section are relative to the
path of the temporary directory on the domain
being tested. Even though the variable substitu-
tion provide by the python ConfigParser class is
not available for use in this case, there may be
other situations where a Xentest user can define
variables in [DEFAULT], or in the same sec-
tion that would be useful for substitution. This
allows for a great range of configuration possi-
bilities for different environments.

[XENVM0]

tempdir=/tmp
config=none
name=bob13
test1=LTP

[XENVM1]
tempdir=/tmp
config=/home/plars/xen/xen-sarge/

bob13-vm1.config
name=bob13-vm1
test1=LTP

[XENVM2]
tempdir=/tmp
config=/home/plars/xen/xen-sarge/

bob13-vm2.config
name=bob13-vm2

These three sections describe the domains to be
started and tested by Xentest. The only require-
ment for these section names is that they start
with the stringXENVM. That marker is all Xen-
test needs in order to understand that it is deal-
ing with a domain description, anything after
that initial string is simply used to tell one from
another.

The config variable sets the config file that
will be used to start the domain, if any. If
this variable is set, that file will be passed to
xm create -f in order to start the domain
running. In the case of domain 0, or in the event
that the domain will already be started by some
other mechanism before Xentest is started, the
field may be left blank.

Thetempdir variable is used to designate the
temporary directory that will be used on that
domain, since you may want a different direc-
tory for every one of them. Thename variable
should match the hostname of the domain it is
running on. Remember that this file is going to
get copied into the shared directory for every
domain to look at. In order to figure out where
its tempdir is, each domain will find its sec-
tion in the control file by simply looking for its
own hostname in one of the XENVM sections.

2005 Linux Symposium • 279

Notice that Xentest does not try to understand
whether a test passes or fails. Determination of
test exit status is best left up to post-processing
scripts that may also contain more advanced
features specific to the context of an individual
test. Such features may include:

1. Results comparisons to previous runs

2. Nicer output of test failures

3. Graphing capabilities

4. Test failure analysis and problem determi-
nation

5. Results summaries for all tests

No post-processing scripts are currently pro-
vided as part of Xentest, but as more tests are
developed for testing Xen, they would be a use-
ful enhancement.

Xenfc is an error or negative path test for the
domain 0 hypercalls in Xen, and was originally
written by Anthony Liguori. What that means
is that xenfc attempts to make calls into the hy-
pervisor, most of which are expected to fail, and
checks to see that it received the expected er-
ror back for the data that was passed to the hy-
percall. Furthermore, xenfc does not systemat-
ically test all of the error conditions, but rather
generates most of its data randomly. It is prob-
abilistically weighted towards generating valid
hypercalls, but still with random data.

Xenfc generates a random interface version 1%
of the time, the other 99% of the time it uses
the correct interface version. 80% of the time,
a valid hypercall is generated, 20% of the time,
it is a random hypercall. The random nature of
this test accomplishes three important goals:

1. Stress testing the error code path in Xen
hypercalls

2. Consistency checking in error handling
with different data

3. Bounds checking, as often the data is on
the edge, far off from expected limits

Valid commands currently tested by xenfc are:

1. DOM0_CREATEDOMAIN

2. DOM0_PAUSEDOMAIN

3. DOM0_UNPAUSEDOMAIN

4. DOM0_DESTROYDOMAIN

These are only a few of the domain 0 hyper-
calls currently available in Xen, and more tests
are being added to cover these in xenfc. Even
in its current state though, xenfc has turned up
some interesting results, and uncovered bugs
in Xen not yet seen in any other tests. Tests
such as xenfc are highly effective at uncovering
corner cases that are hard to reproduce by con-
ventional means. Even though bugs like this
are difficult to find in normal use, that does not
make them any less serious. Even though xenfc
relies heavily on randomization, the seed is re-
ported at the beginning of every test run so that
results can be reproduced.

Xenfc currently supports the following options:

1. s – specify a seed rather than generating
one for reproducing previous results

2. l – specify a number of times to loop the
test, new random data and calls are gener-
ated in each loop

Here is some sample output of xenfc in its cur-
rent form:

280 • Testing the Xen Hypervisor and Linux Virtual Machines

Seed: 1114727452
op

.cmd = 9

.interface_version = 2863271940

.u.destroydomain
.domain = 41244

Expecting -3
PASS: errno=-3 expected -3

In this example, xenfc is calling theDOM0_

DESTROYDOMAINhypercall. The interface ver-
sion is valid, but the domain it’s being told to
destroy is not, so-ESRCH is expected. Be-
fore attempting to execute the hypercall, the
dom0_op_t structure is dumped along with
the relevant fields for this particular call. This
can help debug the problem in the event of a
failure.

6 Legal Statement

Copyright c© 2005 IBM.

This work represents the views of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo, are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States, other countries, or
both.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] The Python Library Reference, March
2005.http:
//www.python.org/doc/2.4.1/
lib/module-ConfigParser.html .

[2] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization.
In 19th ACM Symposium on Operating
Systems Principles (SOSP 2003). ACM,
October 2003.

[3] Bryan Clark. A moment of xen: Virtualize
linux to test your apps.
http://www-128.ibm.com/
developerworks/linux/
library/l-xen/ , March 2005.

[4] The Xen Team.Xen Interface Manual -
Xen v2.0 for x86, 2004.
http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/
readmes/interface.pdf .

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

