
Building Linux Software with Conary

Michael K. Johnsonrpath, Inc.
ols2005@rpath.com

Abstract

This paper describes best practices in Conary
packaging: writing recipes that take advan-
tage of Conary features; avoiding redundancy
with recipe inheritance and design; implement-
ing release management using branches, shad-
ows, labels, redirects, and flavors; and design-
ing and writing dynamic tag handlers. It de-
scribes how Conary policy prevents common
packaging errors. It provides examples from
our rpath Linux distribution, illustrating the de-
sign principles of the Conary build process. It
then describes the steps needed to create a new
distribution based on the rpath Linux distribu-
tion, using the distributed branch and shadow
features of Conary.

Conary is a distributed software management
system for Linux distributions. Based on exten-
sive experience developing Linux distributions
and package management tools, it replaces tra-
ditional package management solutions (such
as RPM and dpkg) with one designed to enable
loose collaboration across the Internet. It en-
ables sets of distributed and loosely connected
repositories to define the components which are
installed on a Linux system. Rather than having
a full distribution come from a single vendor, it
allows administrators and developers to branch
a distribution, keeping the pieces which fit their
environment while grabbing components from
other repositories across the Internet.

If you do not have a basic working knowledge

of Conary terminology and design, you may
want to read the paperRepository-Based Sys-
tem Management Using Conary,in Proceed-
ings of the Linux Symposium, Volume Two,
2004, kept updated athttp://www.rpath.

com/technology/techoverview/ , which
introduces Conary’s design and vocabulary in
greater detail. Terms called out inboldface in
this paper without an explicit definition are de-
fined in that overview.

1 Conary Source Management

Unlike legacy package management tools,
Conary has integral management for source
code and binaries, and the binaries are directly
associated with the source code from which
they have been built.

Conary stores source files insource compo-
nents, and then uses arecipe (described later)
to build binary components that it can in-
stall on a system. While most of the code
that handles the two kinds of components is
actually the same, the interface is different.
The source components are managed using a
Software Configuration Management (SCM)
model, and the binary components are managed
using a system management model.

The SCM model for managing source com-
ponents is sufficiently familiar to experienced
Concurrent Versioning System (cvs) or Subver-
sion (svn) users; you can create a new source

• 249 •



250 • Building Linux Software with Conary

component, check out an existing source com-
ponent, add files to a source component, re-
move files from a source component (this is a
single action in Conary, unlike cvs’s two-step
operation), rename files in a source component
(like svn, but unlike cvs), and commit the cur-
rent set of changes since the last commit (like
svn, and like cvs except that the commit is
atomic).

Conary has not been optimized as a complete
SCM system. For example, we do not use it
to manage subdirectories within a source com-
ponent, and instead of importing source code
into vendor branches, we import archives and
apply patches to them. Conary may some-
day support a richer SCM model, since there
are no significant structural or design barriers
within Conary. It was a choice made for the
sake of simplicity and convenience, and to fo-
cus attention on Conary as a system manage-
ment tool rather than as an SCM tool—to en-
courage using Conary to track upstream devel-
opment, rather than encourage using it to create
forks.

In addition, Conary stores in the repository
(without cluttering the directory in which the
other files are stored) all files that are refer-
enced by URL. When they are needed, they are
downloaded (from the repository if they have
been added to the repository; otherwise, via the
URL) and stored in a separate directory. Then,
when committing, Conary stores those auto-
matically added source files (auto-source files)
in the repository so that the exact same source
is always available, enabling repeatable builds.

Like cvs, Conary can create branches to sup-
port divergent development (forks); unlike cvs,
those branches can span repositories, and the
repository being branched from is not modified,
so the user only needs write privileges in the
repository in which the branch is created. Un-
like cvs (and any other SCM we are aware of),

Conary also has two features that support con-
verging source code bases:shadowsthat act
like branches but support convergent instead of
divergent development by providing intentional
tracking semantics, andredirects that allow
redirecting from the current head of the branch
(or shadow) to any other branch (or shadow),
including but not limited to that branch’s par-
ent. The redirect is not necessarily permanent;
the branch can be revived. A redirect can even
point to a different name package entirely, and
so is useful when upstream names change, or
when obsoleting one package in favor of an-
other.

1.1 Cooking with Conary

Using a recipe to turn source into binary is
calledcooking.

The exact output produced by building source
code into a binary is defined by several factors,
among them the instruction set (or sets) that the
compiler emits, and the set of features selected
to be built. Conary encodes each combination
of configuration and instruction set as aflavor.
The configuration items can be system-wide or
package-local. When cooking, Conary builds
a changesetfile that represents the entire con-
tents of the cooked package.

There are three ways to cook:

• A local cook builds a changeset on the
special local@local:COOK branch. It
loads the recipe from the local filesystem,
and can cook with recipes and sources that
are not checked into the repository. It will
download any automatic sources required
to build.

• A repository cook builds a transient
changeset on the same branch as the
source component, and then commits it to



2005 Linux Symposium • 251

the repository. It loads the source compo-
nent (including the recipe and all sources)
from the repository, not the local filesys-
tem. It finds all automatic sources in the
repository. The same version can be built
into the repository multiple times with dif-
ferent flavors, allowing users to receive the
build that best matches their system flavor
when they request a trove.

• An emerge builds a transient change-
set on the speciallocal@local:EMERGE

branch, and then commits it to (that is,
installs it on) the local system. Like a
repository cook, it takes the recipe and
all sources from the repository, not the
filesystem. (This is the only kind of cook
that Conary allows to be done as the root
user.)

2 The Conary Recipe

All software built in Conary is controlled
through arecipe, which is essentially a Python
module with several characteristics. Here is an
example recipe, which has a typical complexity
level:1

class MyProgram(PackageRecipe):
name = ’myprogram’
version = ’1.0’
def setup(r):

r.addArchive(
’http://example.com/%(name)s-%(version)s.tar.gz’)

r.Configure()
r.Make()
r.MakeInstall()

The goal of Conary’s recipe structure is not to
make all packaging trivial, but to make it possi-
ble to write readable and maintainable complex
recipes where necessary, while still keeping the
great majority of recipes extremely simple—
and above all, avoiding boilerplate that needs to

1No, I do not like two-column formatting for techni-
cal papers, either.

be copied from recipe to recipe. This example
is truly representative of the the most common
class of recipes; the great majority of packag-
ing tasks do not require any further knowledge
of how recipes work. In other words, this exam-
ple is representative, not simplistic. New pack-
agers tend to find it easy to learn to write new
Conary packages.

However, some programs are not designed for
such easy packaging, and many packagers have
become used to the extreme complexity re-
quired by some common packaging systems.
This experience can lead to writing needlessly
complex and thereby hard-to-maintain recipes.
This, in turn, means that while reading the
RPM spec file or Debian rules for building a
package can be an easy way to find a resolution
to a general packaging problem when you are
writing a Conary recipe, trying to translate ei-
ther of them word-by-word is likely to lead to a
poor Conary package.

The internal structure of objects that underlie
Conary recipes makes them scale gracefully
from simple recipes (as in the example) to com-
plex ones (the kernel recipe includes several
independent Python classes that make it eas-
ier to manage the kernel configuration process).
Some of the more complex recipe possibilities
require a deeper structural understanding.

• The recipe module contains a class
that is instantiated as therecipe object
(MyProgram in the example above). This
class declares, as class data, aname string
that matches the name of the module, a
version string, and asetup() method.
This class must be a subclass of one of a
small family of abstract superclasses (such
asPackageRecipe ).

• Conary calls the recipe object’ssetup()

method, which populates lists of things
to do; each to-do item is represented by



252 • Building Linux Software with Conary

an object. There aresource objects,
which represent adding an archive, patch,
or source file; andbuild objects, which
represent actions to take while building
and installing the software. Additionally,
there are pre-existing lists ofpolicy ob-
jects to which you can pass extra informa-
tion telling them how to change from their
default actions. Thesetup() function re-
turns after preparing the lists, before any
build actions take place.

• Conary then processes the lists of things
to do; first all the source objects, then all
the build objects, and finally all the policy
objects.

It is important to keep in mind that unlike RPM
spec files and portage ebuild scripts (processed
in read-eval-print loop style by a shell pro-
cess) or Debian rules (processed by make), a
Conary recipe is processed in two passes (three,
if you count Python compiling the source into
bytecode), because it both constrains the ac-
tions you can or should take and makes Conary
more powerful. For example, you should not
add sources inside a Python conditional (in-
stead, you unconditionally add them but can
choose not to apply them based on a condi-
tional), but this constraint allows Conary to al-
ways automatically store copies of all sources
that it has fetched by URL instead of being ex-
plicitly committed locally.

Another important data structure in a recipe is
the macros object, an enhanced dictionary ob-
ject that is an implicit part of every recipe. Al-
most every string used by any of the differ-
ent kinds of objects in the recipe—including
the strings stored in the macros object itself—
is automatically evaluated relative to the con-
tents of the macros object, meaning that stan-
dard Python string substitution is done. Thus,
you do not have to type%r.macros after every

string; the substitution is done within the func-
tions you call. It also means that macros can
reference each other. Be aware that changes to
the macros object all take place before any list
processing. This means that an assignment or
change to the macros object at the end of the
recipe will affect the use of the macros object at
the beginning of the recipe. This is an initially
non-obvious result of the multi-pass recipe pro-
cessing.

The string items contained in the macros ob-
ject are colloquially referred to by the Python
syntax for interpolating dictionary items into
a string. Thus,r.macros.foo is usually re-
ferred to as%(foo)s , because that is the way
you normally see it used in a recipe.

The macros object contains a lot of immedi-
ately useful information, including the build di-
rectory (%(builddir)s ), the destination di-
rectory (%(destdir)s ) that is the proxy for
the root directory (/ ) when the software is in-
stalled, many system paths (%(sysconfdir)

s for /etc and %(bindir)s for /usr/

bin ), program names (%(cc)s ), and argu-
ments (%(cflags)s ).

3 Recipe Inheritance and Refer-
ence

Conary recipes can reference each other, which
makes it easier to use them to create a coherent
system.

When many packages are similar, it is easy to
end up with boilerplate text that is copied be-
tween packages to make the result of cook-
ing them reflect that similarity. That boil-
erplate can be encoded inPackageRecipe

subclasses, stored in recipes that are normally
never cooked because they function as ab-
stract superclasses. The recipes containing



2005 Linux Symposium • 253

those abstract superclasses are loaded with the
loadSuperClass() function, which loads
the latest version of the specified recipe from
the repository into the current module’s names-
pace. The main class in the recipe then de-
scends from that abstract superclass. (The in-
heritance is pure Python, so it is possible to
use multiple inheritance if that is useful.) This
mechanism serves two purposes: it reduces
transcription errors in what would otherwise be
boilerplate text, and it reduces the effort re-
quired to build similar packages. It also allows
bug fixes that are generic to be made in the su-
perclass and thus automatically apply to all the
subclasses.

Sometimes, you want to reference a recipe
without inheriting from it. In that case, you use
a similar function calledloadInstalled() ,
which loads a recipe while preferring the ver-
sion that is installed on your system, if any ver-
sion is installed on your system. (Otherwise,
it acts just likeloadSuperClass() .) For ex-
ample, you can load the perl recipe in order to
programmatically determine the version of perl
included in the distribution, without actually re-
quiring that perl even be installed on the sys-
tem.

4 Dynamic Tag Handlers

Conary takes a radically different approach to
install-time scripts than legacy package man-
agement tools do. Typical install-time scripts
are package-oriented instead of file-oriented,
primarily composed of boilerplate, and often
clash with rollback (for those package man-
agement tools that even try to provide rollback
functionality). Conary tags individual files, in-
stead; this file is a shared library, that file is an
init script, another file is an X font. Then, at
install time, once for each transaction (which
may be many troves all together), it callstag

handler scripts to do whatever is required with
the tagged files.

Bugs in tag handlers demonstrate some of the
good characteristics of this system. When a
bug in a tag handler is fixed, that bug is fixed
for all packages in one place, without any need
to copy code or data around. It is fixed even
for older versions of packages built before the
tag handler was fixed (as long as the package in
question is not the one that implements the tag
handler). Also, tag handlers can be called based
not only on changes to the tagged files, but also
changes to the tag handler itself, including bug
fixes.

While tag handlers are clearly an improvement
over legacy install-time scripts, it is still possi-
ble to make many of the same mistakes.

Overuse It is always slower to run a script than
to package the results of running a script.
Therefore, if you can perform the action at
packaging time instead, do so. For exam-
ple, put files in the/etc/cron.d/ direc-
tory instead of calling thecrontab pro-
gram or editing the/etc/crontab file.

Excessive dependenciesThe more programs
a script calls, the more complex the de-
pendency set needed to run it. Circular
dependencies are worse; they will break,
one way or another. Finally, calling more
programs increases the risk of accidental
circular dependencies.

Inappropriate changes Modifying file data or
metadata that is under package manage-
ment and storing backup copies of files are
generally inappropriate for any package
manager, not just Conary. With Conary,
though, a few more things are inappropri-
ate, including adding users and groups to
the system (it is too late; the files have al-
ready been created).



254 • Building Linux Software with Conary

Poor error handling Scripts that do not check
for error return codes can easily wreak
havoc by assuming that previous actions
succeeded. (We have discovered that if
you are having difficulty managing error
handling in a tag handler, you may be tak-
ing an approach that is needlessly com-
plex. Look for a simpler way to solve the
problem.)

It is also easy to misapply assumptions devel-
oped while writing legacy install-time scripts to
tag handler scripts. The most important thing to
remember is that everything in Conary, includ-
ing tag handlers, is driven by changes. There-
fore, if a package includes five files with the
foo tag, and none of those tagged files is af-
fected by an update, thefoo tag handler will
simply not be called. If only two of the five
files is modified in the update, thefoo tag han-
dler will be called, but asked to operate only on
the two modified files.

Write tag handlers with rollbacks in mind. This
means that if the user does the inverse operation
in Conary, the effect of the tag handler should
be inverted as well. Most post-installation tasks
merely involve updating caches, and often the
list of affected files is not even required in order
to update the cache. These cases are easy; just
run the program which regenerates the cache.

When inventing new tag names, keep the tag
mechanism in mind.mypackage-script is
a horrible name for a tag handler, because it
initiates or perpetuates the wrong idea about
what it is and how it works. The name of a
tag handler should describe the files so tagged.
The sentence “file is a(n) tag name” should
sound sensible, as in “/lib/libc-2.3.2.so

is a shlib ” or “ /usr/share/info/gawk.

info.gz is an info-file ”. Following this
rule carefully has helped produce clean, simple,
fast, relatively bug-free tag handlers.

5 Policy

After unpacking sources, building binaries, and
installing into the%(destdir)s , Conary in-
vokes an extensive set of policy objects to nor-
malize file names, contents, locations, and se-
mantics, and to enforce inter-package and intra-
package consistency.

Policy objects are invoked serially and have
access to the%(destdir)s as well as
the %(builddir)s . Early policy ob-
jects can modify the%(destdir)s . Af-
ter all %(destdir)s modification is finished,
Conary creates a set of objects that represents
the set of files in the destdir. Later policy then
has that information available and can modify
the packaging, including marking configuration
files, marking tagged files, setting up depen-
dencies, and setting file ownership and permis-
sions.

The policy.Policy abstract superclass im-
plements much of the mechanism that policies
need. Many policies can simply list some regu-
lar expressions that specify (positively and neg-
atively) the files to which they apply by default,
and then implement a single method which is
called for each matching file. The superclass
provides a rich generic exception mechanism
(also based on regular expressions) and a file
tree walker that honors all the regular expres-
sions. Policies are not required to use that su-
perstructure; they can implement their own ac-
tions wherever necessary.

Policies can take additional information, as
well as exceptions. For example, policy divides
the files in a package into components auto-
matically, but when the automatic assignment
makes a bad choice, you can pass additional
information to theComponentSpec policy to
change its behavior. Whenever you want to
create multiple packages from a single recipe,



2005 Linux Symposium • 255

you have to give thePackageSpec policy in-
formation on which files belong to what pack-
age. When you use non-root users and groups,
you need to provide user information using the
User policy and group information using the
Group policy.

This object-oriented approach is fundamentally
different from RPM policy scripts. In contrast
to Conary policy, RPM policy scripts are shell
scripts (or are driven by shell scripts), and have
an all-or-nothing model. If they do not do ex-
actly what you want, you have to disable them
and do by hand every action that the scripts
would have done. This means that if you do
not keep up with changes in the RPM policy
scripts, your re-implementation may not keep
up with changes in RPM. Also, because this re-
striction is onerous, RPM policy scripts cannot
be very strict or very useful; they have to be
limited in power and scope to the least common
denominator. By contrast, the rich exception
mechanism in Conary policy allows the policy
to be quite strict by default, allowing for ex-
plicit exceptions where appropriate. This al-
lows Conary to enable a rich array of tests that
enable packaging quality assurance, with the
tests run before any cooked troves are commit-
ted to the repository or even placed in a change-
set.

Policies have access to the recipe object,
mainly for the macros and a cache of content
type identification that works like an object-
oriented version of thefile program’s magic
database and is therefore called themagic
cache. This makes it easy to predicate policy
action on ELF files, ar files, gzip files, bzip2
files, and so forth. The magic objects (one per
file) sometimes contain information extracted
from the files, such as ELF sonames and com-
pression levels in gzip and bzip2 files.

Some policy, such as packaging policy, is in-
tended to remain a part of the Conary program
per se. However, many policies will eventually

be defined (or expanded) outside of Conary, by
the distribution, viapluggable policy. This
will be a set of modules loaded from the filesys-
tem, probably with one policy object per mod-
ule, and a system to ensure that ordering con-
straints are honored.

5.0.1 Policy Examples

One of the best ways to describe what policy
can do is to describe some examples of what it
does do. As of this writing, there are 58 pol-
icy modules, so these few examples are by no
means exhaustive; they are merely illustrative.

The FilesInMandir policy is very simple,
and demonstrates how one line of code and
several lines of data can implement effec-
tive policy. It looks only in %(mandir)s ,
%(x11prefix)s/man , and %(krbprefix)

s/man , does not recurse through subdi-
rectories, and within those directories only
considers file entries, not subdirectory en-
tries. Any recipe that needs to actu-
ally store a file in one of those directories
can run r.FilesInMandir(exceptions=

’%(mandir)s/somefile’) to cause the pol-
icy to ignore that file. All of this action speci-
fied so far requires only three simple data ele-
ments to be initialized as class data in the pol-
icy. Then a single-line method reports an error
if the policy applies to any files, automatically
ignoring any exceptions that have been applied
from the recipe.

This simple policy effectively catches a com-
mon disagreement about what the--mandir

configure argument or theMANDIRmake vari-
able specifies; the autotools de-facto stan-
dard is/usr/share/man/ but some upstream
packages set it instead to be a subdirec-
tory thereof, such as/usr/share/man/man1 ,
which would cause all the man pages to go in
the wrong place by default. Having this policy



256 • Building Linux Software with Conary

to catch errors makes it feasible for Conary to
set--mandir andMANDIRby default, and fix
up the exceptional cases when they occur.

The RemoveNonPackageFiles policy mod-
ifies the %(destdir)s and is even simpler
in implementation thanFilesInMandir . It
lists as class data a set of regular expressions
defining files that (by default) should not be
included in the package, such as .cvsignore
files, .orig files, libtool .la files, and so forth.
It then has a single-line method that removes
whatever file it is applied to. Again like
FilesInMandir , a simple exception over-
rides the defaults; a recipe for a package that
actually requires the libtool .la files (there are a
few) can avoid having them removed by calling
RemoveNonPackageFiles(exceptions=

r’\.la$’) —note the leadingr , which tells
Python that this is a “raw” string and that it
should not interpret any\ characters in the
string.

Both RemoveNonPackageFiles and
FilesInMandir use the built-in direc-
tory walking capabilities of thePolicy

object. Most policy does, but it is not re-
quired. The NormalizeManPages policy
is different. It implements its own walking
over each man directory (the same ones
that the FilesInMandir policy looks at),
and removes any accidental references to
%(destdir)s in the man pages (a common
mistake), makes maximal use of symlinks,
makes sure that all man pages are compressed
with maximal compression, and then makes
sure that all symlinks point to the compressed
man pages. It uses almost none of the built-in
policy mechanism; it merely asks to be called
at the right time.

TheNormalizeCompression policy ignores
man pages and info pages, since they have
their compression normalized intrinsically via
other policy. It automatically includes all files
that end in.gz and .bz2 . Then, for each

file, it looks in the magic cache (which is self-
priming; if no entry exists, it will create one),
and if it really is a gzip or bzip2 file and is not
maximally compressed, it recompresses the file
with maximal compression.

Finally, the DanglingSymlinks policy uses
packaging information, looking at which com-
ponent each file is assigned to. It is not enough
to test whether all symlinks in a package re-
solve; it is also important to know whether
a symlink resolves to a different component,
since components can be installed separately.
There are also special symlinks that are allowed
to point outside the package, including console-
helper symlinks (which create an automatic re-
quirement for theusermode:runtime com-
ponent) and symlinks into the /proc filesystem.
TheDanglingSymlinks policy simply warns
about symlinks that point from one component
into another component built from the same
package (except for shared libraries, where:

devel components are expected to provide
symlinks that cross components); symlinks that
are not resolved within the package and are
not explicitly provided as exceptions cause the
cook to fail.

6 Recipe Writing Best Practices

Disclaimer: Not all recipes written by rpath
follow these best practices. We learned many
of these best practices by making mistakes,
and have not systematically cleaned up every
recipe. So the first rule is probably not to worry
about mistakes; Conary is pretty forgiving as a
packaging system, and we have tried to make it
fix mistakes and warn about mistakes. You ab-
solutely do not need to memorize this list to be
a Conary packager. It’s quite possible that the
majority of new Conary recipes are fewer than
ten lines of code. Relax, everything is going to
be all right!



2005 Linux Symposium • 257

The best practices are somewhat arbitrarily di-
vided into general packaging policy sugges-
tions, conventions affecting building sources
into binaries, and conventions affecting the
%(destdir)s .

6.1 General Packaging Policy

Before worrying about packaging details, start
working on consistency at a higher level.
Names of packages, structure of recipes, and
versions are best kept consistent within a repos-
itory, and between repositories.

6.1.1 Simple Python Modules

Starting simple: recipes are Python modules.
Follow Python standards as a general rule. In
particular, do not use any tabs for indenta-
tion. Tabs work fine, but you will be running
thecvc diff command many times, and tabs
make diff output look a little odd because the
indentation levels are not all even, and when
you mix leading tabs and leading spaces, the
output looks even weirder.

Second, follow Conary standard practice.
Conary standard practice has one significant
difference from Python standard practice: the
self-referential object is calledr (for recipe) in-
stead ofself because it is used on practically
every line.

To get the most benefit from Conary, write your
recipes to make it easy to maintain a unified
patch that modifies them. That way, some-
one who wants to shadow your recipe to make
(and maintain) a few small changes will not be
stymied. The most basic way to do this is to
keep your recipe as simple as possible. Don’t
do anything unnecessary. Don’t do work that
you can count on policy to do for you, such

as recompressing gzip or bzip2 files with max-
imal compression turned on, or moving files
from /etc/rc.d/init.d to %(initdir)s ,
unless policy can’t do the job quite the right
way—and in that case, add a comment explain-
ing why, so that the person shadowing your
recipe does not walk into a trap.

Not doing lots of make-work has another im-
portant benefit. The less you do in the recipe,
the less likely you are to clash with future ad-
ditions to policy, and the more likely you are to
benefit from those additions. Policy will con-
tinue to grow to solve packaging problems as
we continue to find ways to reduce packaging
problems to general cases that have solutions
which we can reliably (partially or completely)
automate.

6.1.2 Follow Upstream

Whenever possible, follow upstream conven-
tions. Use the upstream name, favoring lower
case if upstream sometimes capitalizes and
sometimes does not, and converting “- ” to “ _”
because “- ” is reserved as a separator charac-
ter. Do not add version numbers to the name;
use version numbers in the name only if the
upstream project indisputably uses the version
number in the name of the project. Conary can
handle multiple versions simultaneously just
fine by using branches; no need to introduce
numbers into the name. The branches can be
created quite arbitrarily; they do not need to be
in strict version order. Just avoid clashing with
the label used for release stages by choosing a
very package-specific tag. Example tags rpath
has used so far aresqlite2 , gnome14, and
cyrus-sasl1 . The head ofconary.rpath.

com@rpl:devel for sqlite is sqlite ver-
sion 3, and the branchconary.rpath.com@

rpl:devel/2.8.15-1/sqlite2/ contains
sqlite version 2, as of this writing ver-
sion 2.8.16, giving a full version string



258 • Building Linux Software with Conary

of /conary.rpath.com@rpl:devel/2.8.

15-1/sqlite2/2.8.16-1

When possible and reasonable, one upstream
package should produce one Conary package.
Sometimes, usually to manage dependencies
(such as splitting a text-mode version of a pro-
gram from a graphical version so that the text-
mode version can be installed on a system with-
out graphical libraries installed) or installed
features (such as splitting client from server
programs), it is reasonable to have one up-
stream package produce more than one Conary
package. Rarely, it is appropriate for two up-
stream packages to be combined; this is gener-
ally true only when the build instructions for
a single package require multiple archives to
be combined to complete the build, and all
the archive files really are notionally the same
project; they aren’t just a set of dependencies.

If you have to convert “- ” to “ _” in the name,
the following convention may be helpful:

r.macros.ver = \
r.version.replace(’_’, ’-’)

r.mainDir(’%(name)s-%(ver)s’)

6.1.3 Redirects

Finally, if the upstream name changes, change
the name of the package as well. This means
creating a new package with the new name, and
then changing the old package into a redirect
that points to the new package. Users who up-
date the package using the old name will auto-
matically be updated to the new package.

Alternatively, if you change the package that
provides the same functionality, you can do
the exact same thing; from Conary’s point of
view there is no difference. For example, rpath
Linux used to use the old mailx program to
provide /usr/bin/mail , but switched to the

newer nail program for that task. The mailx
recipe was then changed to create a redirect to
the newer nail package. Anyone updating the
mailx package automatically got the nail pack-
age instead.

A redirect is not necessarily forever. The old
recipe for mailx could be restored and a new
version cooked; the nail recipe could even be
changed to a redirect back to mailx. If that
happened, an update from the older version of
mailx would completely ignore the temporary
appearance of the redirect to nail. (Not that this
is likely to happen—it just would not cause a
problem if it did.)

Redirects pointing from the old troves to the
new troves solve the “obsoletes wars” that show
up with RPM packages. In the RPM universe,
two packages can each say that they obsolete
each other. In the Conary world, because redi-
rects point to specific versions and never just
to a branch or shadow, this disagreement is not
possible; the path to a real update always termi-
nates, and terminates meaningfully with a real
update. There are no dead ends or loops.

6.2 Build Conventions

Compiling software using consistently similar
practices helps make developers more produc-
tive (because they do not have to waste time fig-
uring out unnecessarily different and unneces-
sarily complex code) and Conary more useful
(by enabling some of its more hidden capabili-
ties).

6.2.1 Use Built-in Capabilities

Use build functions other thanr.Run when-
ever possible, especially when modifying the
%(destdir)s .



2005 Linux Symposium • 259

Build functions that do not have to start a
shell are faster thanr.Run . Using more spe-
cific functions enables more error checking; for
example,r.Replace not only is faster than
r.Run(’sed -i -e ...’) but also defaults
to raising an exception if it cannot find any
work to do. These functions can also remove
build requirements (for example, forsed:

runtime ), which can make bootstrapping sim-
pler and potentially faster.

Most build functions have enough con-
text to prepend %(destdir)s to ab-
solute paths (paths starting with the
/ character) but in r.Run you have
to explicitly provide %(destdir)s

whenever it is needed. For example,
r.Replace(’foo’, ’bar’, ’/baz’)

is essentially equivalent (except for error
checking) tor.Run("sed -i -e ’s/foo/

bar/g’ %(destdir)s/baz") in function,
but ther.Replace is easier to read at a glance.

Many build functions automatically make use
of Conary configuration, including macros.
r.Make automatically enables parallel make
(unless parallel make has been disabled for
that recipe withr.disableParallelMake ),
and automatically provides many standard vari-
ables.

A few build functions can actually check for
missing buildRequires items. For exam-
ple, if you install desktop files into the/usr/

share/applications/ directory using the
r.Desktopfile build command, it will en-
sure thatdesktop-file-utils:runtime is
in your buildRequires list, and cause the
build to fail if it is not there.

In particular,r.Configure , r.Make , andr.

MakeParallelSubdirs provide options and
environment variables that the autotools suite,
and before that, the default make environment,
have made into de-facto standards, including
names for directories, tools, and options to

pass to tools. Consistency isn’t just aesthetic
here; it also enhances functionality. It enables
:debuginfo components that include debug-
ging information, source code referenced by
debugging information, and build logs. It al-
lows consistently rebuilding the entire operat-
ing system with different compiler optimiza-
tions or even different compilers entirely. This
is useful for testing compilers as well as cus-
tomizing distributions.

6.2.2 Macros

Use macros extensively. In general, macros al-
low recipes to be used in different contexts, al-
low changes to be made in one place instead of
all through a recipe, and can make the recipe
easier to read.

Using macros for filenames means that a sin-
gle recipe can be evaluated differently in dif-
ferent contexts. If you refer to the direc-
tory where initscripts go as%(initdir)s ,
the same recipe will work on any distribution
built with Conary, whether it uses/etc/rc.

d/init.d/ or /etc/init.d/ .

Using macros such as%(cc)s for program
names (done implicitly with make variables
when calling the r.Make* build actions)
means that the recipe will adapt to using dif-
ferent tools, whether that is for building an ex-
perimental distribution with a new compiler, or
for using a cross-compiler to build for another
platform, or any other similar purpose.

Use the macros that define standard arguments
to pass to programs, such as%(cflags)s ,
and modify them intelligently. Instead
of overwriting them, just modify them,
like r.macros.cflags += ’ -fPIC’

or r.macros.cflags = r.macros.

cflags.replace(’-O2’, ’-Os’)



260 • Building Linux Software with Conary

or r.macros.dbgflags = r.macros.

dbgflags.replace(’-g’, ’-ggdb’)

Creating your own macros for text that you
would otherwise have to repeat throughout your
recipe makes the recipe more readable, less
susceptible to bugs from transcribing exist-
ing errors and making errors in transcription,
and easier to modify. You might, for exam-
ple, do things liker.macros.prgdir = ’%

(datadir)s/%(name)’

Creating your own macros can also help you
make your recipes fit in 80 columns, for easier
reading in the majority of terminal sessions.

r.macros.url = ’http://reallyLongURL/’
r.addArchive(’%(url)s/%(name)s-%(version)s.tar.bz2’)

6.2.3 Flavored Configuration

When configuring software (generally speak-
ing, before building it, but it is also possible
for configuration to control what gets installed
rather than what is built), make sure that the
configuration choices are represented in the fla-
vor. When a configuration item depends on the
standard set ofUse flagsfor your distribution,
use those. If there is no system-wide Use flag
that matches that configuration item, you can
create alocal flag instead.

A lot of configuration is encoded in the ar-
guments tor.Configure . We commonly
use the variableextraConfig to hold those.
There are two reasonable idioms:

extraConfig = ’’
if Use.foo:

extraConfig += ’ --foo’
r.Configure(extraConfig)

and

extraConfig = []
if Use.foo:

extraConfig.append(’--foo’)
r.Configure(

’ ’.join(extraConfig))

In either case, referencingUse.foo will cause
the system-wide Use flag named “foo” to be
part of the package’s flavor, with the value that
is set when the recipe is cooked.

If you need to create a local flag, you do it with
the package metadata (likename, version ,
andbuildRequires ):

class Asdf(PackageRecipe):
name = ’asdf’
version = ’1.0’
Flags.blah = True
Flags.bar = False
def setup(r):

if Flags.blah:
...

Now theasdf package will have a flavor that
referencesasdf.blah and asdf.bar . The
values provided as metadata are defaults that
are overridden (if desired) when cooking the
recipe.

6.3 Destdir Conventions

Choosing how to install files into%(destdir)

s can determine how resilient your recipe is to
changes in Conary and in upstream packaging,
and how useful the finished package is.

6.3.1 Makefile Installation

Using r.Make(’install’) would not work
very well, because it would normally cause the
Makefile to try to install the software directly



2005 Linux Symposium • 261

onto the system, and you would soon see the
install fail because of permission errors. In-
stead, user.MakeInstall() . It works if the
Makefile defines one variable which gives a
“root” into which to install, which by default
is called DESTDIR (thus the %(destdir)s

name). If that does not work, read the Makefile
to see if it uses another make variable (common
names areBUILDROOTandRPM_BUILD_DIR),
and pass that in with therootVar keyword:
r.MakeInstall(rootVar=’BUILDROOT’)

Sometimes there is no single variable name
you can use. In these cases, there is
a pretty powerful “shotgun” available:r.
MakePathsInstall . It re-defines all the
common autotools-derived path names to
have the %(destdir)s prepended. This
works for most of the cases without an in-
stall root variable. Sometimes you will
find (generally from a permission error, less
commonly from reviewing the changeset)
that you need to pass an additional op-
tion: r.MakePathsInstall(’WEIRDDIR=

%(destdir)s/path/to/weird/dir’)

For a few packages, there is no Makefile,
just a few files that you are expected to copy
into place manually. User.Install , which
knows when to prepend%(destdir)s to a
path, and knows that source files with any ex-
ecutable bit set should default to mode 0755
when packaged, and source files without any
executable bit set should default to 0644; spec-
ify other modes likemode=0600—do not for-
get the leading 0 that makes the number oc-
tal. (Conary does look for mode values that
are nonsensical modes and look like you left
the 0 off, and warns you about them, but try
not to depend on it; the testing is heuristic
and not exhaustive.) Like other build actions,
r.Install will create any necessary directo-
ries automatically. If you want to install a file
into a directory, make sure to include a trailing
/ character on the directory name so that Install

knows that it is intended to be a directory, not
a file. (It is this requirement that allows it to
make directories automatically.)

6.3.2 Multi-lib Friendliness

Conary does its best to make all packages
multi-lib aware. Practically all 32-bit x86 li-
braries are available to work on the 64-bit
x86_64 platform as well, making Conary-based
distributions for x86_64 capable of running
practically any 32-bit x86 application, not just
a restricted set that uses some of the most
commonly-used libraries.

The first thing to do is to always use
%(libdir)s and %(essentiallibdir)s

instead of/usr/lib and /lib , respectively.
Furthermore, for any path that is not in one of
those locations, but still has a directory named
“lib” in it, you should use%(lib)s instead
of lib . Conveniently, for programs that use
the autotools suite, Conary does this for you,
but when you are reduced to choosing direc-
tory names or installing files by hand, follow
this rule.

On 64-bit platforms on which%(lib)s re-
solves tolib64 , Conary tries to notice library
files that are in the wrong place, and will even
move 64-bit libraries where they belong, while
warning that this should be done in the pack-
aging rather than as a fixup, because there is
probably other work that also needs to be done.
Conary warns about errors that it cannot fix up,
and causes the cook to fail.

Conary specifically ensures that:python and
:perl components are multi-lib friendly, since
there are special semantics here; some:

python or :perl packages have only inter-
preted files and so should be found in the 32-
bit library directory even on 64-bit platforms;
others have libraries as well, and should be in



262 • Building Linux Software with Conary

the 64-bit library on 64-bit platforms. Putting
the 64-bit object files in one hierarchy and in-
terpreted files in another hierarchy would cre-
ate path collisions between 32-bit and 64-bit
:python or :perl components.

6.3.3 Direct to Destdir

Occasionally, an upstream project will include
a package of data files that is intended to
be unpacked directly into the filesystem.
Instead of unpacking it into the build directory
with r.addSource and then copying it to
%(destdir)s with r.Copy or r.Install ,
use the dir argument to r.addArchive .
Normally, dir is specified with a relative path
and thus is relative to the build directory, but
an absolute path is relative to%(destdir)s .
So something liker.addArchive(’http:

//example.com/foo.tar.bz2’, dir=

’%(datadir)s/%(name)s/’) will do what
you want in just one line. Not only does it
make for a shorter recipe with less potentially
changing text to cause shadow merges to
require manual conflict resolution, it is also
faster to do.

6.3.4 Absolute Symlinks

Most packaging rules tell you to use relative
symlinks (../ ...) instead of absolute (/ ...)
symlinks, because it allows the filesystem to
continue to be consistent even when the root
of the filesystem is mounted as a subdirectory
rather than as the system root directory; for ex-
ample, in some “rescue disk” situations.

This rationale is great, but Conary does some-
thing even better. It automatically converts
all absolute symlinks not just to relative
symlinks, but tominimal relative symlinks.
That is, if you create the absolute symlink

/usr/bin/foo -> /usr/bin/bar , Conary
will change that to/usr/bin/foo -> bar ,
and /usr/bin/foo -> /usr/lib/foo/

bin/foo to /usr/bin/foo -> ../lib/

foo/bin/foo . Therefore, for Conary, it
is best to use absolute symlinks in your
%(destdir)s and let Conary change them to
minimal relative symlinks for you.

6.4 Requirements

Conary has a very strong dependency system,
but it is a bit different from legacy dependency
systems. The biggest difference is that depend-
ing on versions is very different from any other
packaging system. Because Conary (by de-
sign) does not have a function that tries to guess
which upstream versions might be newer than
another upstream version, you cannot have a
dependency that looks like “upstream version
1.2.3 or greater.”

Because Conary has the capability for a rich
branching structure, trying to do version com-
parisons even on Conary versions for the pur-
poses of satisfying dependencies fails utility
tests. If you say that a shadow does not sat-
isfy a dependency that its parent satisfies, then
shadows are almost useless for creating deriva-
tive distributions. However, if you say that a
shadow does satisfy a dependency that its par-
ent satisfies, then a shadow that intentionally
removes some particular capability relative to
its parent will falsely satisfy versioned depen-
dencies. Trying to do strict linear comparisons
in the Conary version tree universe just does not
work.

Conary separates dependencies into different
spaces that are provided with individual se-
mantics. Each ELF shared library provides
a sonamedependency that includes the ABI
(for example,SysV), class (ELFCLASS32 or
ELFCLASS64encoded asELF32 or ELF64, re-
spectively), and instruction set (x86 , x86_64 ,



2005 Linux Symposium • 263

ppc , and so forth) as well as any symbol ver-
sions (GLIBC_2.0 , GLIBC_2.1 , ACL_1.0 and
so forth). The elements are stored as sepa-
rateflags. Programs that link to the shared li-
braries have a dependency with the same for-
mat. These dependencies (requirements or pro-
visions) are coded explicitly as asoname de-
pendency class. The order in which the flags
are mentioned is irrelevant.

Trove dependencies are limited to components,
since they are the only normal troves that di-
rectly reference the files needed to satisfy the
dependencies. (Filesets also contain files, but
they are always files pulled from troves, so they
are not the primary sources of the files, and
they are not intended for this use.) By de-
fault, a trove dependency is just the name of the
trove, but it can also includecapability flags,
whose names are arbitrary and not interpreted
by Conary except checking for equality (just
like upstream versions).

This provides the solution to the version com-
parison problem. Trove A’s recipe does not re-
ally require upstream version 1.2.3 or greater
of trove B:devel in order to build. Instead,
it requires some certain functionality in trove
B:devel. The solution, therefore, is for pack-
age B to provide a relevant capability flag de-
scribing the necessary interface, and for trove
A’s recipe to require trove B:devel with that
capability flag. The capability flag could be
as simple as1.2.3 , meaning that it supports
all the interfaces supported by upstream ver-
sion 1.2.3 (the meaning of any package’s
capability flag is relative to only that pack-
age). So package B’s recipe would have to
call r.ComponentProvides(’1.2.3’) and
trove A’s recipe would have to require’B:

devel(1.2.3)’ .

This solution does require cooperation between
the packagers of A and B, but only in respect
to a single context. This means that you may
choose to shadow trove B in order to add this

capability flag in the context of your derived
distribution, if your upstream distribution does
not provide the capability your package re-
quires.

Do not add trove capability flags without good
reason, especially for build requirements. They
add complexity that is not always useful. Usu-
ally, the development branch for a distribu-
tion just needs to be internally consistent, and
adding lots of capability flags will just make it
harder for someone else to make a derivative
work from your distribution, particularly if they
are deriving from multiple distributions at once
(a reasonable thing to do in the Conary con-
text).

6.4.1 Build Requirements

Conary’s build requirements are intentionally
limited to trove requirements.

In general, there are two main kinds of build re-
quirements::runtime components (and their
dependencies) for programs that need to run at
build time, and:devel components (and their
dependencies) for libraries to which you need
to link.

Build requirements need to be added to a
list that is part of recipe metadata. Along
with name andversion , there is a list called
buildRequires , which is simply a list of
trove names (including, if necessary, flavors,
branch names, and capability flags, but not ver-
sions). It can be extended conditionally based
on flavors.

buildRequires = [
’a:devel(A_CAPABILITY)’,
’gawk:runtime’,
’pam:devel[!bootstrap]’,
’sqlite:devel=:sqlite2’,

]



264 • Building Linux Software with Conary

if Use.gtk:
buildRequires.append(

’gtk:devel’)

The buildRequires list does not have to
be exhaustive; you can depend on transitive
install-time dependency closure for the troves
you list. That is to say, in the example
above, you do not have to explicitly listglib:

devel , becausegtk:devel has an install-
time requirement forglib:devel . (The
buildRequires lists do not themselves have
transitive closure, as that would be meaning-
less; you never require a:source component
in a buildRequires list, and the dependen-
cies that the other components carry are install-
time dependencies.)

Build requirements for:runtime components
can be a little bit hard to find if you already
have a complete build environment, because
some of them are deeply embedded in scripts.
It is possible to populate a changeroot envi-
ronment with only those packages listed in the
buildRequires list and their dependencies,
then chroot to that environment and build in it
and look for failures, but it is not likely to be a
very useful exercise. The best approach here is
to add items to address known failure cases.

Build requirements for :devel com-
ponents are much simpler. Cook the
recipe to a local changeset, and then use
conary showcs --deps foo-1.0.ccs to
show the dependencies. (Better yet, use--all

instead of--deps and review the sanity of
the entire changeset.) Then, for each soname
requirement listed under eachRequires

section, add the associated component to the
list. (Right now, this takes too many steps;
you need to look for the library, then use
conary q --path /path/to/library

to find the name of the component. In the
future, there will be a simple command for
looking these up, and we are considering

automating the whole process of resolving
soname requirements tobuildRequires list
entries.)

6.4.2 Runtime Requirements

The best news about runtime requirements is
that you can almost ignore the whole problem.
The automatic soname dependencies handle al-
most everything for you without manual inter-
vention.

There are also some automatic file dependen-
cies, which present a little bit of an asymme-
try. Script files automatically require their in-
terpreters. That is, if a file starts with#!

/bin/bash that file (and thereby its com-
ponent) automatically has a requirement for
file: /bin/bash added to it. However,
there is no automatic provision of file paths.
This is because files are not primarily ac-
cessed by their paths, but rather by a long
numeric identifier (rather like an inode num-
ber in a filesystem, but much longer, and ran-
dom rather than sequential in nature). Files
can be tagged as providing their path, but this
must be done manually. In practice, this is not
a big problem; most programs that normally
act as script interpreters are already tagged as
providing their paths, and so the exceptions
tend to exist within a single trove. Those
cases are easy to fix; Conary refuses to in-
stall a trove saying that it cannot resolve a
file: /usr/bin/foo dependency, but the
trove itself contains the /usr/bin/foo file. Just
addr.Provides(’file’, ’%(bindir)s/

foo’) to the recipe.

The hard job with any dependency system is
working out the dependencies for shell scripts.
It is not practical to make shell dependencies
automatic for a variety of reasons (including
the fact that shell scripts could generate addi-
tional dependencies from the text of their in-



2005 Linux Symposium • 265

put), and so it remains a manual process. If
you are lucky, the package maintainer has listed
the requirements explicitly in an INSTALL or
README file. If not, you need to glance
through shell scripts looking for programs that
they call. Since this is not a new problem, you
can in practice (for some packages, at least),
find the results of other people’s efforts in this
direction by reading RPM spec files and dpkg
debian/rules . This also tends to be an area
where dependencies accrete as a result of bug
reports.

There is one place where you need to be much
more careful about listing the requirements of
shell scripts: you must explicitly list all the re-
quirements of the tag handlers you write. This
should not be a great burden; most tag handlers
are short and call only a few programs. But if
you do not list them, Conary cannot ensure that
the tag handlers can always be run, which can
jeopardize not only successful installation but
also rollback reliability.

7 Release Management

Building software into a repository is already
an improvement over legacy package manage-
ment, but release and deployment need more
management and process than just building
software into a versioned repository. Several of
Conary’s features are useful for managing re-
lease and deployment; groups, branches, shad-
ows, redirects, and labels can all help.

Different release goals or deployment needs
will result in different policies and processes.
This paper uses some concrete examples to
demonstrate how Conary features can support
a release management process, but the mecha-
nisms are flexible and can support diverse pro-
cesses. A release can go through one QA step
or ten separate QA steps without changing the

fundamental processes. Release management
and deployment have many of the same needs,
so this paper will refer generally to release
management except when it is useful to distin-
guish between the two.

The capabilities needed for release manage-
ment include:

Staging Collecting troves (including locally
modified versions) to create a coherent set
for promotion to the next step in the pro-
cess.

Access Control Mandatory or advisory con-
trols on who can or should access a set of
troves.

Maintenance Controlled updates for sets of
troves.

In addition, the jargon for talking about Linux
distributions is somewhat vague and used in
conflicting ways. The following definitions ap-
ply to this discussion.

Distribution A notionally-connected set of
products consisting of an operating system
and related components. A distribution
might last for years, going through many
major release cycles. Examples include
rpath Linux, Foresight Linux, Red Hat
Linux, Fedora Core, Debian, Mandrake
(now Mandriva) Linux, CentOS, cAos,
and Gentoo.

Version One instance of a distribution prod-
uct, encompassing the entire “release cy-
cle,” which might include steps like alpha,
beta, release candidate, and general avail-
ability. Examples include rpath Linux 1,
Red Hat Linux 7.3, Fedora Core 2, etc.

Stage A working space dedicated to a task.



266 • Building Linux Software with Conary

ReleaseAn instance of any step in the distribu-
tion release management process. (This is
a slightly unusual meaning for “release;”
“version” and “release” are often used al-
most interchangeably, but for the purposes
of this discussion, we need to differentiate
these two meanings.) This might be alpha
1 release candidate 1, alpha 1 release can-
didate 2, alpha 1, beta 1, beta 2, release
candidate 1, general availability, and each
individual maintenance update.

A release of a version of a distribution is de-
fined (in Conary terms) by a unique version of
an inclusive group that defines the contents of
the distribution. In rpath Linux, that group is
calledgroup-os .

7.1 Example Release Management Process

The policy and much of the process in this ex-
ample is synthetic, but the version tree structure
it demonstrates (including the names for labels
in the example) is essentially the one that we
have defined for rpath Linux.

The development branch called/conary.

rpath.com@rpl:devel (hence,:devel ) is
where the latest upstream versions are com-
mitted. At some point, a group defin-
ing a distribution is shadowed to create
a base stage, /conary.rpath.com@rpl:

devel//rel-base (hence,//rel-base ) al-
lowing unfettered development to continue on
the :devel development branch, while con-
trolled development (a state sometimes called
“slush,” by analogy from “freeze”) is now pos-
sible on//rel-base .

Given a very simple, informal release manage-
ment process—say, one where only one person
is doing all the work, following all the process
from the time that the initial release stage is cre-
ated, and in which maintenance does not need

to be staged—this single shadow creating a sin-
gle stage might be sufficient. However, in order
to allow any controlled development to happen
in parallel with the full release engineering pro-
cess, and in order to allow maintenance work to
be staged, a two-level stage structure is neces-
sary.

Therefore, when the controlled development
has reached the point where an alpha release
is appropriate, another shadow is created on
which to freeze that release. This allows con-
trolled development to continue on the release
base stage: /conary.rpath.com@rpl:

devel//rel-base//rel-alpha (hence,
//rel-alpha ). Build the shadowed
group-os (or whatever you have called
your inclusive group), and the version you
have just created is a candidate alpha release.
Cycle through your test, fix, rebuild process
until you have a version ofgroup-os that
meets your criteria for release as an alpha. At
this point, that specific version ofgroup-os ,
say group-os=/conary.rpath.com@rpl:

devel//rel-base//rel-alpha/1.0.

1-2.3.1-35 , is your alpha 1 release.

Note that during the test, fix, rebuild process
for alpha 1, development work aimed at al-
pha 2 can already be progressing on the base
stage. Fixes that need to be put on the alpha
stage for alpha 1 can either be committed to the
base stage and thence shadowed to the alpha
stage, or if further development has happened
on the base stage that could destabilize the al-
pha stage, or the immediate fix is a workaround
or hack and the right fix has not yet been com-
mitted to the base stage, the fix, workaround,
or hack can be committed directly to the alpha
stage.

Then for the alpha 2 cycle, you re-shadow ev-
erything from the base stage to the alpha stage,
and start the test, fix, rebuild process over
again. When you get to betas, you just cre-
ate a beta stage:/conary.rpath.com@rpl:



2005 Linux Symposium • 267

devel//rel-base//rel-beta (hence, //

rel-beta ) and work with it exactly as
you worked with the alpha stage. Fi-
nally, when you are ready to prepare re-
lease candidates, build them onto the fi-
nal release stage/conary.rpath.com@rpl:

devel//rel-base//rel (hence,//rel ) in
the same way.

Note that it is possible to do all your release
staging from first alpha to ongoing maintenance
onto the release stage//rel . However, using
separate named stages for alpha, beta, and gen-
eral availability can be a useful tool for commu-
nicating expectations to users. It is your choice
from a communications standpoint; it is not a
technical decision.

During maintenance, do all of your mainte-
nance candidates on the base stage, and pro-
mote the candidate inclusive group to the re-
lease stage by shadowing it when all the com-
ponents have passed all necessary tests.

All the stages are reallylabels, as well
as shadows. You can shadow any
branch you need to onto the base stage,
and you will probably want to shadow
troves from several branches. Not just
/conary.rpath.com@rpl:devel but also
branches like /conary.rpath.com@rpl:

devel/1.5.28-1-0/cyrus-sasl1/

(hence,:cyrus-sasl1 ) for different versions
where both versions should be installed at
once. With that :cyrus-sasl1 branch
and cyrus-sasl 2 from the:devel branch
both shadowed onto the base stage and
thence to the release stages, the command
conary update cyrus-sasl will put both
versions on your system.

When the release stage is no longer maintained,
you might choose to cook redirects (perhaps
only for your inclusive group, perhaps for all
the packages) to another, still-maintained re-
lease. This is purely a matter of distribution

policy.

8 Derived Distributions

The possibilities for creating derived distribu-
tions are immense, but a few simple examples
can show some of the power of creating derived
distributions.

The simplest example of a derived distri-
bution is the 100% derived distribution. If
you merely want control over deployment of
an existing distribution, just treat the parent
distribution’s release stage (//rel ) as your
base stage, and create a shadow of it in
your own repository. You will end up with
something like:/conary.rpath.com@rpl:

devel//rel-base//rel//conary.

example.com@rpl:myrel (hence,
//myrel ). Then, whenever a group on
//rel passes your acceptance tests, you
shadow it onto//myrel .

If you are doing anything more complicated,
you may want to set up two stages; your own
base stage and your own release stage. If you
are doing this, you probably do not want to
shadow a release stage as your base stage; you
will end up with very long version numbers like
1.2.0-2.0.4.0-1.0.1.0; each shadow adds a “. ”
character with a trailing number. You proba-
bly want either to shadow the parent distribu-
tion’s base stage, or even create your own base
stage. To create your own base stage, create
your own shadow of the parent distribution’s
inclusive group and make your own changes to
it. Those changes might be adding references
to some unique troves from your own repos-
itory, or to shadows in your repository from
other repositories.

You could create a private corporate distribu-
tion, with your repository inaccessible from



268 • Building Linux Software with Conary

outside, that contains your internally developed
software, or third-party proprietary software to
which you have sufficient license. (A source
trove doesn’t necessarily have to contain source
files; it could contain an archive of binary files
which are installed into the%(destdir)s .)
You could create a distribution in which every-
thing is identical to the parent, except that you
have your own kernel with special patches that
support hardware you use locally that is not yet
integrated into the standard kernel, and it has
two extra packages which provide user-space
control for that hardware.

It is also possible to make significant changes.
For example, Foresight Linux2 is built from
the same development branch as rpath Linux,
but about 20% of its troves are either spe-
cific to Foresight Linux or are shadows that
are changed in some way in order to meet
Foresight’s different goals as a distribution;
rpath Linux is meant to be very “vanilla,” with
few patches relative to upstream packages and
therefore easy to branch from, while Foresight
Linux is intended to provide the latest innova-
tions in GNOME desktop technology and opti-
mize the rest of the distribution to support this
role.

Conclusion

Conary combines system management and
software configuration management, sharing
features between the two models and imple-
menting them both using a distributed reposi-
tory that combines source code and the binaries
built from that source code. It brings a unique
set of features that simplify and unify sys-
tem management, software configuration man-
agement, and release management. This new

2http://www.foresightlinux.com/

model drastically reduces the cost and com-
plexity of creating customized Linux distribu-
tions. The best practices discussed in this paper
help you take advantage of this new paradigm
most effectively.



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


