
On faster application startup times: Cache stuffing, seek
profiling, adaptive preloading

bert hubert
Netherlabs Computer Consulting BV

bert.hubert@netherlabs.nl

Abstract

This paper presents data on current applica-
tion start-up pessimizations (on-demand load-
ing), relevant numbers on real-life harddisk
seek times in a running system (measured from
within the kernel), and shows and demonstrates
possible improvements, both from userspace
and in the kernel. On a side note, changes
to the GNU linker are discussed which might
help. Very preliminary experiments have al-
ready shown a four-fold speedup in starting
Firefox from a cold cache.

1 1980s and 1990s mindset

The cycle of implementations means that things
that were slow in the past are fast now, but that
things that haven’t gotten any faster are per-
ceived as slow, and relatively speaking, are.

CPUs used to be slow and RAM was gener-
ally fast. These days, a lot of CPU engineering
goes into making sure we do not mostly wait on
memory.

Something like this has happened with hard
disks. In the late 1980s, early 90s, there was
a lot of attention for seek times, which was un-
derstandable as these were in the order of 70ms.

These have been reduced, but not as much
as disk throughput has increased. Typical
measured seek times on laptop hard disks
are still in the 15-20ms region, while 20
megabytes/second disk speeds would allow the
disks of old to be read in their entirety in under
10 seconds.

2 Some theory

To retrieve data from disk, four things must
happen:

1. The instruction must be passed to the drive

2. The drive positions its reading head to the
proper position

3. We wait until the proper data passes under
the disk

4. The drive passes the data back to the com-
puter

It is natural to assume that seeking to loca-
tions close to the current location of the head is
faster, which in fact is true. For example, cur-
rent Fujitsu MASxxxx technology drives spec-
ify the ‘full stroke’ seek as 8ms and track-to-
track latency as 0.3ms.

• 245 •



246 • On faster application startup times: Cache stuffing, seek profiling, adaptive preloading

However, for many systems the actual seeking
is dwarfed by the rotational latency. On aver-
age, the head will have to wait half a rotation
for the desired data to pass by. A quick calcu-
lation shows that for a 5400RPM disk, as com-
monly found in laptops, this wait will on aver-
age be 5.6ms.

This means that even seeking a small amount
will at least take 5.6ms.

The news gets worse—the laptop this article is
authored on has a Toshiba MK8025GAS disk,
which at 4200RPM claims to have an average
seek time of 12ms. Real life measurements
show this to be in excess of 20ms.

3 What this means, what Linux
does

That one should avoid seeking by all means.
Given a 20ms latency penalty, it is cheaper to
read up to 5 megabytes speculatively to get to
the desired location.

In Linux, on application startup, the relevant
parts of binaries and libraries get mmapped into
memory, and the CPU starts executing the pro-
gram. As the instructions are not loaded into
memory as such, the kernel encounters page
faults when data is missing, leading to disk
reads to fill the memory with the executable
code.

While highly elegant, this leads to unpre-
dictable seek behaviour, with occasional hits
going backwardon disk. The author has dis-
covered that if there is one thing that disks don’t
do well, it is reading backwards.

Short of providing a ‘reverse’ setting to the
disk’s engine, the onus is on the computer to
optimize this away.

4 How to measure, how to convert

As binary loading is “automatic,” userspace has
a hard time seeing page faults. However, the
recently implemented ‘laptop mode’ not only
saves batteries, it also allows for logging of ac-
tual disk accesses.

At the level of logging involved, only PID, de-
vice id, and sector are known, which is under-
standable as the logging infrastructure of lap-
top mode is mostly geared towards figuring out
which process is keeping the disk from spin-
ning down.

Typical output is:

bash(261): READ block 11916
on hda1

bash(261): READ block 11536
on hda1

bash(261): dirtied inode 737
(joe) on hda1

bash(261): dirtied inode 915
(ld-linux.so.2) on hda1

Short of dragging around a lot more infrastruc-
ture than is desireable, the kernel is in no posi-
tion to help us figure out which files correspond
to these blocks.

Furthermore, there is no reverse map in any
sane fs to tell us which block belongs to which
file.

Luckily, another recent development comes to
our rescue: syscall auditing. This can be
thought of as a global strace, allowing desig-
nated system calls to be logged, whatever their
origin. This generates a list of files which might
have caused the accesses.

This combined with the forward logical map-
ping facility used by lilo to determine the sector



2005 Linux Symposium • 247

locations of files allows us to construct a partial
reverse map that should include all block ac-
cesses logged by the kernel.

From this we gather information which parts of
which positions in whic files will be accessed
or system or application startup.

5 Naïvely using the gathered infor-
mation

Using the process above, a program was written
which gathers the data above for a typical De-
bian Sid startup, up to and including the launch
of Firefox. On next startup, a huge shell script
used ‘dd’ to read in all relevant blocks, sequen-
tially. Even without merging nearby reads, or
or utilizing knowledge of actual disk layout,
this sped up system boot measureably. Most
noticeable was the factor of four improvement
in startup times of Firefox.

In this process a few things have become clear:

• There are a lot of reads which cannot be
connected to a file

• The ‘dd’ read script is very inefficient

• The kernel has its own ideas on cache
maintenance and throws out part of the
data

• Reads are spread over a large number of
files

The reads which cannot be explained are in all
likelihood part of either directory information
or filesystem internals. These are of such quan-
tity that directory traversal appears to be a ma-
jor part of startup disk accesses.

It is interesting to note that only in the order
of 40 megabytes of disk is touched on boot-
ing, leading to the tentative conclusion that all
disk access could conceivably be completed in
2 seconds or less.

However, it is also clear that reads are spread
over a large number of files, making naïve ap-
plications ofreadahead(2) less effective.

6 More sophisticated ways of ben-
efiting from known disk access
patterns

Compiler, assmbler and linker work together in
laying out the code of a program. Andi Kleen
has suggested storing in an ELF header which
blocks are typically read during startup, allow-
ing the dynamic linker to touch these blocks
sequentially. Howver, this idea is not entirely
relevant anymore as most time is spent touch-
ing libraries, which will have differing access
patterns for each file program using them.

Linus Torvalds has suggested that the only way
of being really sure is to stuff the page cache
with a copy of the data we know that is needed,
and that we store that data in a sequential slab
on disk so as to absolutely prevent having to
seek.

The really dangerous bit is that we need to be
very sure our sequential slab is still up to date.
It also does not address the dentry cache, which
appears to be a dominant factor in bootup.

Another less intrusive solution is to use a
syscall auditing daemon to discover which ap-
plication is being started and touch the pages
that were read last time this binary was being
started. During bootup this daemon might get
especially smart and actually touch pages that
it knows will be read a few seconds from now.
The hard time is keeping this in sync.



248 • On faster application startup times: Cache stuffing, seek profiling, adaptive preloading

7 Conclusions

Currently a lot of time is wasted during applica-
tion and system startup. Actual numbers appear
to indicate that the true amount of data read dur-
ing startup is minimal, but spread over a huge
number of files.

The kernel provides some infrastructure which,
through convoluted ways, can help determine
seek patterns that userspace might employ to
optimize itself.

A proper solution will address both directory
entry reads as well as bulk data reads.



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


