
Automated BoardFarm: Only Better with Bacon

Christian Höltje
TimeSys Corp.

christian.holtje@timesys.com

Bryan Mills
TimeSys Corp.

bryan.mills@timesys.com

Abstract

In this presentation, we introduce the con-
cept of a BoardFarm, a tool to aid in the de-
velopment and support of embedded systems.
TimeSys had an opportunity to save time and
energy that was being spent juggling a lim-
ited number of embedded boards among our
support staff and developers who are spread
throughout the world. We decided to build a
system to provide remote access to the boards
and to automate many of the tedious tasks such
as running tests, booting the boards and in-
stalling software including the operating sys-
tems, board support packages and toolchains.
This allows the developers and support gurus
at TimeSys to concentrate on specific problems
instead of how each board boots or how a spe-
cific board needs to be set up.

We talk about why the BoardFarm was built,
how to use it, how it works, and what it’s being
used for. We also talk about ideas that we have
for future improvements. Pigs were harmed in
the making of this BoardFarm and were deli-
cious.

1 Intro

Let’s talk about embedded system boards. In
the fast paced hi-tech world of embedded de-
velopment, we just call them “boards.” These
little gizmos are developer prototypes, used to
design software that goes in your MP3 player,
routers, your new car, and Mars rovers.

These boards usually look like motherboards
with the normal ports and such, but not always.
Some are huge and others are itsy-bitsy. They
all have one thing in common, though. They are
expensive. These boards are usually bleeding
edge technology and are only made available
so that developers can get software out the door
before the boards become obsolete. This means
that usually a company can only afford one (or
maybe two) of a board that they are working
on.

The BoardFarm is an online tool that gives
users remote access to all the boards. It is an
interface to the boards and includes automation
and testing. The goal is make the boards avail-
able to all users, everywhere, all the time.

• 233 •



234 • Automated BoardFarm: Only Better with Bacon

2 Problems

Fred and Sue have problems.

The first problem is finding a board. “Fred had
that last week,” but Fred says that Sue has it
now, but she’s out of the office. Whereis that
board? This is asset management, but it is com-
plicated by having the boards move between
developers and with no central repository. It
is even more complicated if your coworkers are
not in the building or worse, in a different town
or state! “Oh, yeah, Sue took that with her to
California, did you need that?”

What if Fred and Sue need the same board at
the same time? “Board snatching” is the com-
mon name for a form of stealing (not usually in-
vestigated by Scotland Yard) and is quite com-
mon when two people have deadlines involving
the same board. If they’re lucky, they can co-
operate and maybe work at different hours to
share the board.

Finally, and possibly the most frustrating, is
having to rediscover how to boot and config-
ure a board. “Didn’t Fred work on that board a
year ago?” A lot of the boards are unlabeled,
only configurable through arcane methods or
require sacrifices (under a full moon) to enter
the boot loader. Sure, the developer should
write it down. Fred usually does. But writ-
ing down a process is never as good as having
functioning code that does the process. And the
code is well exercised which means you know
it works.

3 The BoardFarm: Grab a hoe and
get to it

So what do we do? Panic? Sure! Run around
in circles? Why not? Write code? Nah. . . No,
wait, that was right answer.

So now, instead of investing in sharp cutlery,
Fred and Sue can use our BoardFarm. The
boards are safely locked away where they will
no longer be stolen or used as blunt weapons,
yet are easily accessible and even more useful
than before.

What was our secret? We used the awesome
power of python and bacon to create the Board-
Farm. The BoardFarm acts as resource man-
ager, automating some tasks and scheduling
when Fred and Sue can use boards. It knows
how to configure the board, install a board sup-
port package (BSP), boot the board using the
BSP, and even how to run tests. This means that
Fred and Sue can worry about their own prob-
lems, not who has the board or how the thing
boots.

3.1 A day in the life of Fred and Sue

Sue has been working on a really tough spu-
rious interrupt problem in some kernel driver.
Fred has been running various tests in the
PPC7xx compiler, using the same board as Sue
because someone discovered a bug.

So Sue sits down at her desk to start a Board-
Farm session. She uses ssh to connect to one
of the BoardFarm testroot servers. Once there,
she reserves a testroot and specifies the BSP
that she is going to use. The BoardFarm creates
a clean testroot, a virtual machine, and installs
the selected BSP. This virtual machine is called
the testroot. She logs into the testroot and starts
her work.

Since the BSP is already installed and the BSP
has the kernel sources and proper cross compil-
ers, she is ready to start working on her prob-
lem. As she progresses, she compiles the kernel
then tells the BoardFarm to run a portion of a
testsuite which has been really good at trigger-
ing the system-crippling bug. The BoardFarm



2005 Linux Symposium • 235

grabs an available board, boots the board using
her newkernel, compiles the tests in the test-
root and then runs the tests on the board. She
checks the results and keeps on working on her
bug. She can repeat these steps as often as she
wants.

Fred is working his way through the test-results
that show his bug. He got the test results from
an automated test that ran last night. The au-
tomated tests run every time a change happens
to a major component of the BSP. Last night,
it detected problems with the toolchain. Since
Fred broke it, he gets to fix it.

Fred sits at his desk. Instead of requesting a
testroot to work in, Fred uses his own worksta-
tion, preferring to submit test requests via the
web interface. Using the test results, he figures
out where the problem probably is and starts
working on his bug. After an hour or two, he
has what he thinks is a good rough fix. He com-
piles the toolchain and submits it to the Board-
Farm web page to automatically test. He tells
the BoardFarm to use specific testsuites that are
good for testing compilers. The BoardFarm re-
serves the appropriate board when it’s avail-
able, sets up a testroot, installs a BSP and his
new toolchain, boots the board, compiles the
tests and then runs them. When the tests fin-
ish, the BoardFarm saves the results, destroys
the testroot and unreserves the board. Fred uses
the results from the tests to analyze his work.

This works even if Fred and Sue are using the
same board. If Fred and Sue submit requests
that need the board at the same time, then the
BoardFarm schedules them and runs them one
after another. Either Fred or Sue’s results might
take a little longer, but neither has to hover
around the desk of the other, waiting to snatch
the board. Instead, if their jobs conflict, they
can just go grab a bacon sandwich from the
company vending machine while the Board-
Farm does the needful.

By the end of the day, Fred feels confident that
he has throughly squished the PowerPC bug.
To be sure, he should really check his new and
improved toolchain out on more than just the
one board. So he kicks off full test suite runs,
using his new toolchain, on all the PPC7xx
boards and then goes home. While each test
suite can take 8 hours or more, they can all run
in parallel, automatically, while Fred relaxes in
a lawn chair with his Bermuda shorts and a
good Belgian beer, out front of his south-side
Pittsburgh town home.

We’d like to take this opportunity to point out
some interesting facts. Neither Fred nor Sue
had to worry about booting the boards or in-
stalling the BSPs. The BoardFarm knew how
to boot the boards, install the BSPs and did it
without human primate intervention. This is a
real time-saver as well as a great way to prevent
Sue and especially Fred from getting distracted.

4 Architecture: The design, layout,
blueprint, and plan

How is the BoardFarm put together? The
BoardFarm is made up of four parts: a web
server, a database, testroot systems, and the
boards themselves. There is also some other
support hardware: an SMNP-controlled power
strip, a network switch, and a serial terminal
server.

The web server is running Apache2 [2]. The
web pages are powered by PSE [7] which uses
mod_python [1] to get the job done. We
chose this combination to allow fast develop-
ment and to harness the power of Python’s [6]
extensive library.

The database system is powered by Post-
greSQL [5]. It’s otherwise just a normal hum-
ble box. The database itself isn’t that radical.



236 • Automated BoardFarm: Only Better with Bacon

It’s mainly used to track who is using a board
and what architecture and model a board is. We
need this information to match a given BSP to
one or more boards.

The testroot systems are normal boxes run-
ning Python and have a standardized OS im-
age that is used to build a testroot. The OS im-
age must have the components needed to com-
pile, remotely test and debug problems on the
boards. The testroot is an isolated environment
that could be implemented as a chroot or UML
[8] environment.

The boards themselves are all different. This is
one of the hard parts of dealing with embedded
developer boards. Some of them even require
special hardware tricks just to power on.

All boards are powered via a network-
controlled power strip. This allows us to re-
boot a system remotely. Usually. Some boards
require a button to be pressed which requires
interesting solutions ranging from relays to
LEGO[3] Mindstorms[4].

A serial terminal server is needed to connect all
the serial ports on the boards to the test servers.
Since the serial terminal servers are networked,
we can share one board among many testroot
servers.

5 Show me the BoardFarm

Let’s talk about the user interface. The Board-
Farm has two user interfaces: a web page and a
remote shell.

The web page is the easiest to use. Fred likes
it because it’s simple, direct, and has pretty
colors. To run a test, Fred chooses the BSP,
picks some tests and then clicks the “Test” but-
ton. After the BoardFarm is done, Fred gets an

email with a link to the web page with all the
test results.

Sue preferred the more powerful interface: the
testroot command line shell. The shell is con-
nected to via ssh and looks remarkably like a
bash shell prompt, mainly because it is. Within
the testroot, Sue has a series of BoardFarm shell
commands.

These shell commands are very powerful. They
provide control of the testroot, the BSPs, ker-
nel, and the board itself. Using these com-
mands, Sue can clean out the testroot, rein-
stall the BSP, choose a custom kernel, reserve
a board, boot the board, power-cycle the board,
run tests on the board, connect to the board’s
serial console, unreserve the board and save
the test results. Furthermore, since these are
normal shell commands, Sue can write custom
batch scripts.

6 Successes so far

This system is actually afully operational death
star. . . It has been running now for over 6
months inside TimeSys. The BoardFarm is
used on a daily basis. TimeSys and the Board-
Farm are located in Pittsburgh, Pennsylvania,
and we have remote users in California and
even India.

We have used the BoardFarm to successfully
troubleshoot problems, help develop new BSPs
and to test old BSPs. The support team uses
the BoardFarm to reproduce and troubleshoot
customer problems. The documentation team
uses the BoardFarm to confirm their manuals
and to gather screen shots.

In addition to manual tasks, the automated test-
ing is used with various TimeSys test suites to
test BSPs on demand (just one click!TM). In



2005 Linux Symposium • 237

addition, new BSPs are automatically tested as
soon as they are successfully built in our build
system.

It is only fair to point out that the BoardFarm is
actually a part of TimeSys’s in-house build en-
vironment. This integration makes manual us-
age easy and provides the starting point for the
automated testing. As the build system success-
fully finishes a build, the BoardFarm queues the
build to run tests when the appropriate boards
are available. This makes the “change, com-
pile, test” cycle much shorter.

7 Known Limitations

We knew from the beginning that we couldn’t
have everything (at least not right away).
The original plan for the BoardFarm was to
only provide an automated testing environment.
Since then we have added the ability to do ac-
tual development using the BoardFarm. Since
these goals have evolved, we have run into
some limitations with our original design.

In general though, these limitations boil down
to one real problem. These are developer
boards, not meant to be production level de-
vices, that at times require someone to actually
go and visit the board. For example, a board
might need a button pressed to power on. Or
certain error situations can only be diagnosed
by looking at a pattern of LEDs.

Another aspect of the “no access” problem is
developing peripheral device support. To trou-
bleshoot USB, you need to be able to plug-in
and remove devices. To check that PCMCIA
is working, you have to try various classes of
devices. And so on.

The only other limitation isn’t a technical
problem, it’s a social one. Developers are

the ultimate power users. Most developers
hate having something between them and what
they’re working on. Some developers appre-
ciate the advantages of having the BoardFarm
help them. Others try to work around the
BoardFarm however they can. And a few of
the extremists just demand that the board be
handed over to them.

8 The future’s so bright, we gotta
wear shades

Like most projects we have grandiose plans for
the future. We have plans to make the Board-
Farm do test analysis, boot boards that require
a button press, and integrate with our project
management tools.

The BoardFarm collects all test results but it
doesn’t understand them. Some tests are more
important than others and sometimes multiple
failures can be due to just one root problem.
The BoardFarm can’t make this distinction. We
would like the BoardFarm to help us under-
stand our trends in failures and help recognize
where we need to focus our efforts.

Some boards require a button to be pressed.
Despite experimentation with electrodes and
lawyers, we haven’t found a sufficiently reli-
able solution. Plus, the lawyers were expensive.
We have our crack electrical engineering team
working on a solution.

The BoardFarm is just a piece of a larger sys-
tem. Even though it works with the large sys-
tem, it isn’t feeding back information into all
the systems. Ideally, we’d like it to file bugs
and test things that have we have bugs open for.



238 • Automated BoardFarm: Only Better with Bacon

9 Conclusion

In conclusion, we only have this to say: “Bacon
Rocks.”

Good Night!

References

[1] Apache python module.
http://www.modpython.org/ .

[2] Apache web server.
http://httpd.apache.org/ .

[3] Lego. http://www.lego.com/ .

[4] Lego mindstorms.http:
//www.legomindstorms.com/ .

[5] Postgres sql database.
http://www.postgres.org/ .

[6] Python language.
http://www.python.org/ .

[7] Python servlet engine.
http://nick.borko.net/pse/ .

[8] User mode linux.
http://user-mode-linux.
sourceforge.net/ .



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


