
Building Murphy-compatible embedded Linux systems

Gilad Ben-Yossef
Codefidence Ltd.

gilad@codefidence.com

“If builders built buildings the
way programmers wrote programs,
then the first woodpecker that came
along would destroy civilization.”

— Murphy’s Law of Technology #5
[Murphy]

Abstract

It’s 2:00 a.m. An embedded Linux system in
the ladies’ room of an Albuquerque gas sta-
tion is being updated remotely. Just as the last
bytes hit the flash, disaster strikes—the power
fails. Now what? The regular way of updat-
ing the configuration or performing software
upgrade of Linux systems is anonsequiturin
the embedded space. Still, many developers
use these methods, or worse, for lack of a bet-
ter alternative. This talk introduces a better
alternative—a framework for safe remote con-
figuration and software upgrade of a Linux sys-
tem that supports atomic transactions, parallel,
interactive and programmed updates, and mul-
tiple software versions with rollback and all
using using such “novel” concepts as POSIX
rename(2) , Linux pivot_root(2) , and
the initrd/initramfs mechanism.

1 Introduction: When bad things
happen to good machines

Building embedded systems, Linux-based or
otherwise, involves a lot of effort. Thought
must be given to designing important aspects
of the system as its performance, real time con-
straints, hardware interfaces, and cost.

All too often, the issue of system survivabil-
ity in face of Murphy’s Law is not addressed
as part of the overall design. Alternatively, it
may be delegated to the implementor of specific
parts of the overall system as “implementation
details.”

To understand what we mean by “system sur-
vivability in face of Murphy’s law,” let us con-
sider the common warning often encountered
when one updates the firmware of an embed-
ded system:

“Whatever happens, DO NOT
pull the plug or reboot this system un-
til the firmware update has been com-
pleted or you risk turning this system
into a brick.”

If there is something we can guarantee with cer-
tainty, while reading such a sincere warning, it
is that somewhere and some when the power
will indeed falter or the machine reboot just as

• 13 •

14 • Building Murphy-compatible embedded Linux systems

those last precious bits are written to flash, ren-
dering the system completely unusable.

It is important to note that this eventuality, al-
though sure to happen, is not common. Indeed,
the system can undergo thousands of firmware
upgrades in the QA lab without an incident;
there seems to be some magical quality to the
confinements of QA labs that stops this sort of
thing from happening.

Indeed, any upgrade of a a non-critical piece
of equipment in an idle Tuesday afternoon is
considered quite safe in the eyes of the authors,
with relation to the phenomena that we are dis-
cussing.

However, any critical system upgrade, per-
formed on a late Friday afternoon is almost
guaranteed to trigger a complex chain of events
involving power failures, stray cats, or the odd
meteorite or two, all leading to the some sad
(yet expected) outcome—a $3k or $50 irre-
placeable brick.

In essence therefore, system survivability in
face of Murphy’s Law is defined as the chances
of a given system to function in face of failure
in the “worst possible time.”

Despite the humorous tone chosen above, this
characteristic of embedded system has a very
serious and direct consequence on the bottom
line: a 0.1% RMA1 rate for a wireless router
device, or a single melt down of a critical core
router in a strategic customer site can spell the
difference between a successful project or a
failed one. Despite this, all too often design re-
quirements and QA processes do not take Mur-
phy’s Law into account, leading to a serious is-
sue which is only detected in the most painful
way by a customer, after the product has been
shipped.

1Return Materials Authorization, frequently used to
refer to all returned product, whether authorized or not.

If there is a way therefore, to build Murphy-
compliant systems, as it were, that will survive
the worse possible scenario without costing the
implementor too much money or time, it will
be a great boon to society, not to mention em-
bedded system developers.

As always, a trade off is at work here: for ex-
ample, we can coat the system developed with a
thick layer of lead, thus protecting it from dam-
age by cosmic rays. This, however, is not very
logical to do—the price-to-added-protection ra-
tio is simply not attractive enough.

We must therefore pick our battles wisely.

In the course of a 7-year career working
on building GNU/Linux-based embedded sys-
tems, we have identified two points of failure
which we believe based on anecdotal evidence
to be responsible for a significant number of
embedded system failures, and that are eas-
ily addressable with no more then a little pre-
meditative thought and the GNU/Linux feature
set. In this paper we describe those points and
suggest an efficient way to address them when
developing GNU/Linux-based embedded sys-
tems. Those points are:

• Embedded system configuration

• Embedded system software upgrade

The lessons we talk about were learned the hard
way: three different products sold in the market
today (by Juniper Networks Inc., Finjan Soft-
ware Inc., and BeyondSecurity Ltd.) already
make use of ideas or whole parts of the system
we’re about to introduce here, and more prod-
ucts are on the way. In addition, as we will later
disclose—we are not the first going down this
road, but more on that later.

The rest of this paper is outlined as follows: In
Section 2 we present current approaches, their

2005 Linux Symposium • 15

weaknesses and strengths. In Section 3 we
present the requirements from a system which
will have all the strengths of the current ap-
proaches but none of their weaknesses. In Sec-
tion 4 we present our approach to solving the
problem of embedded system configuration:
cfgsh , the configuration shell. In Section 5
we present our approach to solving the prob-
lem of embedded system upgrade:sysup : the
system upgrade utility. In Section 6 we discuss
future directions, and we conclude in Section 7.

2 Current approaches: The good,
the bad, and the ugly

In this section we will present two of the more
common approaches: the “naïve” approach and
the RTOS approach. We will discuss each ap-
proach as to its merits and faults.

2.1 The “naïve” approach: tar balls and rc
files

When a developer familiar with the Unix
way is faced with the task of building a
GNU/Linux-based embedded system, his or her
tendency when it comes to handling configu-
ration files and software update is to mimic
the way such tasks are traditionally han-
dled in Unix based workstation or servers
[Embedded Linux Systems]. The flash device
is used in the same way a hard disk is used in a
traditional GNU/Linux workstation or server.

System configuration state, such as IP ad-
dresses, host name, or the like, is stored in
small text files which are read by scripts being
run by theinit(8) process at system startup.
Updating the configuration calls for editing the
text files and possibly re-running the scripts.

In a similar fashion, a software upgrade is done
by downloading and opening tar files of bi-
naries which replace the system binaries and
restarting the relevant processes. The more
“advanced” developers forgo tar files in favor
of plain cpio archives, RPM, deb files, ipkg or
proprietary formats which are essentially file
archives as well.

2.1.1 The good: the Unix way

The strengths of this approach are self evident:
this approach makes use of the Unix “Every-
thing is a file” paradigm, configuration files are
written in the universal interface of plain text,
and since the system behaves like a regular
GNU/Linux workstation or server installation,
it’s easy to build and debug.

In addition, because all the components of a
software version are just files in a file system,
one can replace individual files during system
operation, offering an easy “patch” facility. In
the development and QA labs, this is a helpful
feature.

2.1.2 The bad: no atomic transactions

A power loss during a configuration or software
update may result in a system at an inconsistent
state. Since the operations being performed in
either case are non atomic replacements of files,
a power loss in the middle of a configuration
change or a system upgrade can leave some of
the files in a pre-changed status while the rest
of the files have already been updated and the
system is no longer in a consistent state.

Inconsistent here really can mean anything at
all: from a system that boots with the wrong
IP, through a system which behaves strangely

16 • Building Murphy-compatible embedded Linux systems

or fails in various ways due to incompatible li-
brary versions, and all the way up to a system
that will not boot at all.

Considering that many embedded devices are
being upgraded and managed via a network, a
system with the wrong (or no) IP address may
be as useless as a system which does not boot,
when you are on the wrong side of the continent
or even on a different continent altogether.

In addition, the ease of replacing single files,
which is considered a boon in the development
and QA labs, is a software-versions nightmare
at the customer site. The ability to patch sin-
gle files at a customer site gives rise to a multi-
tude of unofficial mini-versions of the software.
Thus, when a bug report comes in, how can one
tell if the software really is “version 1.6” as the
report says and not “version 1.6 with that patch
we sent to this one customer to debug the prob-
lem but that the guys from professional services
decided to put on each installation since”? The
sad answer is: you can’t.

2.1.3 The ugly: user interface

Editing configuration files and scripts or open-
ing tar files is not an acceptable interface for
the user of a embedded device. A tool has to be
written to supply a decent interface for the user.

Given the lack of any such standard tool, every
GNU/Linux-based embedded system developer
seems to write one of its own. Sometimes,
when there is a need for a configuration solu-
tion that spans telnet and serial CLI, web,and
SNMP interfaces, three different configuration
tools are written.

2.2 The RTOS approach: what we did in
that other project

The RTOS2 approach is favored by people ex-
perienced with legacy RTOS systems, which
seldom have a file system at their disposal, be-
cause it costs extra.

The basic idea is that both configuration infor-
mation and software versions are kept as blobs
of data directly on the system flash.

Configuration is changed by mapping the flash
disk memory and modifying the configuration
parameters in place.

Software update is performed by overwriting
whole images of the system software, com-
prised of the kernel, initrd or initramfs images
to the flash. Some developers utilize an Ext2
[ext2] ram disk image, which leaves the system
running from a read/write, but volatile environ-
ment.

Other developers prefer to use Cramfs [cramfs]
or Squashfs [Squashfs] file systems, in which
the root file system is read-only.

2.2.1 The good

The RTOS approach enjoys two advantages:
atomic system upgrade (under certain condi-
tions) and manageability of system software
versions while possible retaining the ability to
update single files at the lab.

Because system software is a single blob of
data, we can achieve a sort of atomic update
ability by having two separate partitions to
store two versions of the system software. In

2For marketing reasons, most embedded OS vendors
call their offering a Real Time OS, even if most of the
projects using them have negligible real time require-
ments, if any.

2005 Linux Symposium • 17

this scenario, software update is performed by
writing the new version firmware to the parti-
tion we didn’t boot from, verify the write and
marking in the configuration part of the flash
the partition we just wrote to as the active one
and booting from it.

In addition, because software updates are per-
formed on entire file systems images, we need
not worry about the software version nightmare
stemming from the ability to update single files
as we described in the Section 2.1.2 previously.

Furthermore, if we happen to be using a
read/write but volatile root file system (such as
a ram disk), we allow the developer the free-
dom to patch single files at run time, while hav-
ing the safety guard of having all these changes
rolled back automatically in the next reboot.

2.2.2 The bad

However, utilizing this advanced method re-
quires additional flash space and a customized
boot loader that can switch boot partition based
on configuration information stored on the
flash. Even then, we are required to prepare in
advance a partition for each possible software
version, which in practice leads only support-
ing two versions at a time.

In addition, booting into a verified firmware
version with a major bug might still turn the
machine into a brick.

As for the configuration information—it is kept
as binary data on a flash, which is an inflexi-
ble and unforgiving format, hard to debug, and
hard to backup.

2.2.3 The ugly

This approach suffers from the same need for a
user interface as the naïve approach. While the

approach based on standard Unix configuration
files can at least rely on some common infras-
tructure to read and update its files, the RTOS
approach dictates the creation of a proprietary
tool to read the binary format in which the con-
figuration is written on the flash.

Moreover, if different user interfaces are re-
quired to handle the configuration of the sys-
tem (for example: telnet and serial CLI, web
and SNMP interfaces) three different tools will
have to be written or at least some common
library that allows all three interfaces to co-
operate in managing the configuration.

3 Requirements: building a better
solution

In this section we present the requirements
from a solution for updating and configuring
an embedded system. These requirements are
derived from the merits of existing approaches,
while leaving out the limitations.

The selected approach should follow the fol-
lowing guidelines:

1. Allow atomic update of configuration and
software versions.

2. Not require any special boot loader soft-
ware.

3. Allow an update of individual files of the
system software, but in a controlled fash-
ion.

4. Everything that can be represented as a
file, should.

5. Configuration files should be human read-
able and editable.

18 • Building Murphy-compatible embedded Linux systems

6. Offer a standard unified tools to deal with
configuration and version management.

As we have seen, the naïve approach follows
guidelines 2, 4, and 5 but fails to meet guide-
lines 1, 3, and 6. On the other hand the RTOS
approach follows guidelines 1 and 3, although
both of them optionally, and fails to meet guide-
lines 2, 4, 5, and 6.

It should be pointed out that both the ap-
proaches we introduced are only examples.
One can think of many other approaches that
follow some of the 6 guidelines but not all of
them. Looking at the two approaches described
above we can understand why—choosing one
or the other of them is a trade off: it mandates
choosing which of the guidelines you are will-
ing to give up for the others.

Another thing worth mentioning is that there is
no tool currently known to the authors which
will be a good candidate to satisfy guideline
6. This is surprising, since the embedded
GNU/Linux field is not short of such embedded
space infrastructure (or framework): the busy-
box meta-utility maintained by Eric Anderson
and friends or the crosstool script by Dan Kegel
are two prime examples of such software which
most (if not all) embedded GNU/Linux systems
are built upon3.

Still, no common framework exists today that
deals with configuration and software up-
grade of embedded systems in the same way
that Busybox deals with system utilities and
crosstool with building cross tool chains and
which allows the embedded developer to build
upon to create his or her respective systems.

3And which the authors of this article will gladly sac-
rifice a goat or two in order to show their gratitude to
their maintainers if not for the very real fear of scaring
them off from doing any additional work on their respec-
tive tools. . .

Can there really exist a solution which will al-
low us to follow all 6 guidelines with no com-
promises or do embedded systems are too tied
up to their unique hardware platforms to give
rise to such a unified tool? And if such a tool is
made, will it need to be a complex and costly-
to-implement solution requiring changes in the
kernel, or a simple straightforward solution re-
quiring no more than some knowledge in C?

Since you’re reading this paper, you’re proba-
bly assuming that we did came up with some-
thing in the end and you’re perfectly right. But
before we are going to tell you all about it we
need to get something off of our chest first: we
didn’t really invent this solution at all.

Rather, when faced with the daunting task of
building the perfect embedded configuration
and upgrade tool(s) we chose to “stand on the
shoulders of giants” and simply went off and
found the best example we could lay our hands
on and imitated it.

Our victim was the Cisco family of routers and
its IOS operating system. Since we have ob-
served that this specific product of embedded
devices does seem to follow all of these guide-
lines, we naturally asked ourselves, “How did
they do that?”

Cisco embedded products, however, do not run
on GNU/Linux, our embedded OS of choice,
nor does Cisco shares the code to its OS with
the world4. What we are about to describe in
the next chapters is therefore, how to get the
same useful feature set of the Cisco line of em-
bedded devices when using GNU/Linux—all
implemented as Free Software.

4At least not willingly...

2005 Linux Symposium • 19

4 cfgsh – an embedded GNU /
Linux configuration shell

cfgsh is an embedded GNU/Linux system
configuration shell. It is a small C utility which
aims to provides a unified standard way of han-
dling the configuration of a GNU/Linux-based
embedded system.

cfgsh was independently implemented from
scratch, though it is influenced by the Cisco
IOS shell. cfgsh supports three modes: an
interactive mode, a setup mode, and a silent
mode. Those modes will be described in the
following subsections.

4.1 Interactive mode

Interactive mode gives a user an easy text-
based user interface to manage the configura-
tion, complete with menus, context sensitive
help and command line completion. This is the
default mode.

Upon entering the program, the user is pre-
sented with a prompt of the host name of the
machine. The user can then manage the system
configuration by entering commands. On-line
help is available for all menus.

The GNU readline library [GNU Readline] is
used to implement all the interaction with the
user.

Figure 4.1 showscfgsh main help menu.

The user may enter a sub-menu by entering the
proper command. Upon doing so, the prompt
changes to reflect the menu level the user is at
that moment.

Figure 2 shows how the network menu is en-
tered.

linbox>help
role Display or set system role: role

[role].
timezone Display or set time zone: timezone

[time zone].
network Enter network configuration mode:

network.
ping Ping destination: ping <hostname |

address>.
hostname Displays or set the host name: host-

name [name].
halt Shutdown.

reboot Reboot.
show Display settings: show [config | in-

terfaces | routes | resolver].
save Save configuration.
exit Logout.
quit Logout.
help Display this text.

linbox>

Figure 1:cfgsh main menu help

At any stage the user may utilize the online
context-sensitive line help by simply pressing
the [TAB] key. If the user is entering a com-
mand, the result is simple command comple-
tion. If the user has already specified a com-
mand and she is requesting help with the pa-
rameters, she will get either a short help text on
the command parameters or parameter comple-
tion, where appropriate.

Figure 3 shows the command-line completion
for the “timezone” command5

Every change of configuration requested by the
user is attempted immediately. If the attempt
to reconfigure the system is successful, it is
also stored in thecfgsh internal configuration
“database.”

The user can ask to viewcfgsh internal
configuration database, which reflects (barring

5As can be guessed, the source for the suggested val-
ues for the timezone command are the list of files found
in /usr/share/zoneinfo/ . These are dynamically
generated and are a good example of howcfgsh uti-
lizes the GNU readline library to create a friendly user
interface.

20 • Building Murphy-compatible embedded Linux systems

linbox>network
linbox (network)>help
interface Enter interface configuration mode:

interface [interface].
route Enter route configuration mode:

route [priority].
default Display or set default gateway ad-

dress: gateway [address].
resolver Enter domain name resolution con-

figuration mode: resolver.
exit Return to root mode.
quit Logout.
help Display this text.

linbox (network)>

Figure 2:cfgsh network sub-menu

linbox>timezone
timezone Display or set time zone: timezone [time zone].

Africa Cuba GMT+0 Kwajalein Pacific W-SU
America EET GMT-0 Libya Poland WET
Antarctica EST GMT0 MET Portugal Zulu
Arctic EST5EDT Greenwich MST ROC iso3166.tab
Asia Egypt HST MST7MDT ROK posix
Atlantic Eire Hongkong Mexico Singapore posixrules
Australia Etc Iceland Mideast SystemV right
Brazil Europe Indian NZ Turkey zone.tab
CET Factory Iran NZ-CHAT UCT
CST6CDT GB Israel Navajo US
Canada GB-Eire Jamaica PRC UTC
Chile GMT Japan PST8PDT Universal
linbox>timezone Africa/Lu
timezone Display or set time zone: timezone [time zone].

Luanda Lubumbashi Lusaka
linbox>timezone Africa/Lusaka

Figure 3: cfgsh timezone context sensitive
help

bugs: see below on loosing sync with the sys-
tem??) the system status using “show config”
command. When used, the “show config” com-
mand will display the list ofcfgsh commands
that, once fed intocfgsh , will re-create the
current configuration state.

Figure 4 shows an example of such a report.

In order to save the current system information
for the next system boot, the user enters the
command “save,” which stores the configura-
tion as a text file comprised ofcfgsh com-
mands. If issued, those commands will bring
the system to the exact current state. This con-
fig text file looks exactly like the output of the
“show config” commands (and is in fact gener-
ated from the same code).

linbox>show config
Configuration Shell config file
hostname linbox
timezone Israel/IDT
network

interface eth0
dhcp off
ip 192.168.1.1
netmask 255.255.255.0
broadcast 2192.168.1.255
exit

default none
route 0

set none
exit

route 1
set none
exit

route 2
set none
exit

resolver
primary 194.90.1.5
secondary 194.90.1.7
search codefidence.com
exit

exit
role none
linbox>

Figure 4: cfgsh show config command output

Unless the user has issued the “save” command,
all the changes to the system configuration are
in effect only until the next system reboot, at
which point the previous configuration will be
used.

4.2 Setup mode

The purpose of setup mode is to allowcfgsh
to set up the system as a replacement for system
rc files. This mode is entered by running the
program with the “setup” argument. Normally,
this will be done once when the system boots,
on every boot, by calling the program from the
systeminittab(5) file.

During setup mode,cfgsh reads the text con-
fig file saved using the “save” command in in-
teractive mode and executes all of the com-
mand in the file in order to automatically set
up the embedded system while also initializ-
ing the run time configuration data base in the

2005 Linux Symposium • 21

shared memory segment for future instances of
cfgsh running in interactive or silent mode.

After the file has been read and all the com-
mands executed,cfgsh exists. When run-
ning in this mode, the normal prompt and some
output is suppressed but normal messages are
printed to stdout (e.g. “the system IP is now
192.168.1.1”).

4.3 Silent mode

Silent mode iscfgsh way of supporting a sim-
ple programmable interface to manage the con-
figuration to other programs, such as web man-
agement consoles and the like. This mode is en-
tered by supplying the argument “silent” when
running the program.

In this modecfgsh runs exactly like in inter-
active mode, except that the prompt and some
verbose output is suppressed. A program wish-
ing to change the system configuration can sim-
ply run an instance ofcfgsh running in silent
mode and feed it via a Unix pipecfgsh com-
mand for it to execute.

4.4 Internal configuration database

The internal configuration database is kept in
a POSIX shared memory object obtained via
shm_open(3) which is shared between all
instances ofcfgsh 6 and which stays resident
even when no instance ofcfgsh is running.

Thanks to this design decision,cfgsh does not
need to re-read configuration files or query sys-
tem interfaces when an instance of it is being

6At the time of writing this paper, cfgsh still misses
correct code that will prevent race conditions when ac-
cessing the shared memory area by multiple instances at
the same time. This is however on the TODO list. . .

typedef struct {
char ip[NUMIF][IPQUADSIZ];
char nmask[NUMIF][IPQUADSIZ];
char bcast[NUMIF][IPQUADSIZ];
char gw[IPQUADSIZ];
char ns_search[HOST_NAME_MAX];
char ns1[IPQUADSIZ];
char ns2[IPQUADSIZ];
char role[PATH_MAX];
char tz[PATH_MAX];
char dhcp[NUMIF][DHCP_OPT];
char dhcp_is_on[NUMIF];
char hostname[HOST_NAME_MAX];
char route[ROUTE_NUM][MAX_ROUTE_SIZE];
char num_ifs;

} CONF;

Figure 5: Internal configuration database struc-
ture

run, since the information is available in the
shared memory object.

This design also suffers from at least one down-
side: since most of the information in the con-
figuration database is already present in the sys-
tem in some form (the Linux kernel for IP ad-
dresses or /etc/resolv.conf for resolver address
for example), there is always a risk of losing
sync with the real state of the system. De-
spite this down side we believe that the central
database which holds all the configuration in-
formation in a unified format is a design win
(for embedded systems) despite the replication
of information.

Figure 5 shows the structure of this internal
database.

4.5 Command structure

cfgsh menus are comprised from arrays of
commands. The program maintain a pointer
to the current menu which is initialized in pro-
gram start to the array of the main menu. Each
choice of a sub-menu simply replaces the cur-
rent menu pointer with the address of the ap-

22 • Building Murphy-compatible embedded Linux systems

typedef struct {
char *name;
rl_icpfunc_t *func;
char *doc;
complete_func_t *complete_func;
char * complete_param;

} COMMAND;

Figure 6:cfgsh commands structure

propriate command array. It also updates the
prompt.

Each command entry in the command array is
a command structure which holds a pointer to
the function to be called to perform the com-
mand, a description line to be shown as part
of the help, a GNU readline library command
competition function to perform context sensi-
tive help for the command and a parameter to
pass to the completer function to enable re-use
of common functions (like directory competi-
tion).

Figure 6 shows the structure used to hold a sin-
gle command entry.

4.6 Atomic configuration update

As have been described previously,cfgsh
keeps the configuration database in memory
and only commits it to disk (as a text file
containingcfgsh commands) at the user re-
quests via the “save” command. The same file
is then used during the next boot to initialize
booth the system andcfgsh own configura-
tion database.

As can be understood, writing this configura-
tion file correctly so that in to point on time we
will not have a corrupt (or empty) configura-
tion, is very important part of whatcfgsh is
meant to accomplish.

The method used is a very simple and well
know one, which is based on the fact that the

int commit_file(char *tmp_file, char *file)
int ret = 0;
int fd = open(tmp_file, O_RDWR);
if(fd == -1) return errno;
if((ret = fsync(fd)) == -1) {
close(fd);
goto error;

}
if((ret = close(fd)) == -1) goto error;
if ((ret = rename(tmp_file, file)) != 0)

goto error;
return 0;

error:
unlink(tmp_file);
return ret;

}

Figure 7: The commit_file() procedure

POSIX standard mandates that the if the sec-
ond argument to therename(2) system call
already exists, the call will atomically replace
the old file for the new file such that there is
not point at which another process attempting
to access the original name will find it missing.

To utilize this fact, we simply first created a full
configuration file at a temporary location, sync
its content to disk usingfsync(2) and then
rename(2) the new file over the old file.

Figure 7 shows the code of thecommit_
file() procedure that does the actual heavy
lifting.

One thing which is perhaps missing from the
procedure is a sync to the directory which holds
the configuration file after the rename is over.
Without this extra sync a sudden power fail-
ure after the rename may result in the directory
entry never being written to permanent storage
and the old configuration file used after reboot.

We believe that this is a valid scenario, as our
purpose is to guarantee that the operation ei-
ther fails as a whole or succeed as a whole but
people who consider (quite rightfully) a system
which boots with the previous IP address and

2005 Linux Symposium • 23

network parameters after a configuration save a
failure can simple add an fsync to the directory
where the configuration file resides.

This brings up another issue to consider - the
atomicity of this method is really only valid
if and only if the underlying file system saves
a directory entry as part of an atomic transac-
tion. Since file systems that do exactly this are
not rare (e.g. Ext3 [ext3]) this is considered a
reasonable requirement by the authors, but it is
worth noting by would be implementors.

5 sysup – embedded GNU/Linux
system software update utility

sysup —an embedded GNU/Linux system
software update utility—is a very simple tool
that is meant to run at boot time from ini-
trd/initramfs of a Linux-based embedded sys-
tem in order to mount the root file system.
Its objective is allow for an easily and atom-
ically update-able embedded system software
versions.

5.1 File system structure

To utilize sysup, the system file system layout
must be done in a certain specific way, which is
a little different from the normal layout used in
embedded systems.

We shall define several different file system:

Main storage This is the file system on the
main storage of the system—usually the
flash disk. JFFS2 [JFFS2] or Ext3 appro-
priate file system types. This file system
will contain configuration files and images
of versions file system but not system soft-
ware or libraries.

Kernel
+initrd/
initramfs

Mass
Storage

/
bin/
sbin/
lib/
tmp/
dev/

/
bin/
sbin/
lib/
tmp/
dev/

versions.conf

Version 1.0

Version 1.1

Figure 8: File systems layout with sysup

Version image This is a file system that con-
tains the files for a specific version of the
system software. It is meant to be used as
the root file system of the system and con-
tains all binaries, static configuration files,
device files and software. Version images
are (possibly compressed) loop back im-
ages and reside as files on the Main stor-
age file system. Cramfs or Squashfs are
the prime candidate as the type of these file
system, although an Ext2 file system can
be used as well if it is mount read-only.

initrd/initramfs This is a file system image or
cpio archive which are used to host the
files of the sysup mechanism. These file
system are mounted during boot and dis-
carded once the boot sequence is com-
plete. Again, Cramfs, Squashfs, or Ext2
are good choices for the kind of this file
system.

Figure 8 shows a schematic of the various file
systems layout in relation to each other.

5.2 The boot process with sysup

What sysup does can be best explained by de-
scribing the basic boot process on a sysup en-
abled system:

24 • Building Murphy-compatible embedded Linux systems

1. System boots.

2. Boot loader loads kernel and ini-
trd/initramfs images into memory.

3. Kernel runs and mounts initrd or initramfs
content

4. sysup is run.

5. sysup mounts the main storage.

6. sysup locates on the main storage the ver-
sions.conf file.

7. sysup locates on the main storage a ver-
sion image.

8. sysup takes an MD5 signature of the ver-
sion image and compares it to the one
stored in the versions.conf file.

9. If the signatures do not match or in re-
sponse to any other failure, sysup rolls
back to the previous version by moving on
to the next entry in the versions.conf file
and branching back to stage 77.

10. If the signatures match, sysup will loop
back mount the version image in a tem-
porary mount point.

11. sysup will move the mount point of the
main storage device into a mount point in
temporary mount point of the version im-
age. This is done using the “new” (2.5.1,
but back ported to 2.4) MS_MOVE mount
flag tomount(2) 8.

12. sysup will thenpivot_root(2) into
the temporary mount point of the mounted
version image, thus turning it to the new
root file system.

7At the time of the writing of this paper only 2 ver-
sions.conf entries are supported, but changing this is very
easy should the need ever arise.

8Used by the-move options tomount(8) .

7e90f657aaa0f4256923b43e900d2351 \
/boot/version-1.5.img
2c9d55454605787d5eff486b99055dba \
/boot/versions-1.6.img

Figure 9: versions.conf

13. The boot is completed by un-mounting the
initrd or initramfs file systems and exec-
ing into /sbin/init .

An example version.conf file is shown in fig-
ure 9. A very simple implementation of sysup
as a shell script is in figure 10.

5.3 System software update

The above description of a sysup boot sequence
sounds more complicated then usual. On the
other hand, the system software upgrade proce-
dure is quite simple:

1. Download a new version image to the
main storage storage.

2. Calculate its MD5sum and do any other
sanity checks on the image.

3. Create a new versions.conf file under a
temporary name, with the MD5 and path
of the new version image as the first en-
try and the old version image and its MD5
sum (taken from the current version.conf
file) as the second entry.

4. fsync the new versions.conf under its tem-
porary name.

5. rename(2) the new version.conf file over
the old one.

6. Reboot.

2005 Linux Symposium • 25

#!/bin/sh
Name and path to file with filename and MD5s
VERSIONS=versions
How to get the first line of the file
LINE=‘tail -n 1 versions‘
File name if MD5 is correct, empty otherwise
FILE=‘./md5check $LINE‘
How to get the second line of the file
ALTLINE=‘head -n 1 versions‘
File name if MD5 is correct, empty otherwise
ALTFILE=‘./md5check $LINE‘
File system type of images
FSTYPE=ext2
Mount point for new root
MNT=/mnt
File system type for data parition
(which holds the image files)
DATAFSTYPE=ext3
Mount point of data partition
DATA=/data
Name of directory inside the images
where the original root mount point
will be moved to
OLDROOT=initrd
device of data parition
DATADEV=/dev/hda1
Emergency shell
EMR_SHELL=/bin/sh
boot() {

mount -t $FSTYPE $FILE $MNT && \
cd $MNT && \
pivot_root . $OLDROOT &&
mount $OLDROOT/$DATA $DATA -o move && \
umount $OLDROOT && \
exec /sbin/init

}
mount -t proc /proc && \
mount -t $DATAFSTYPE $DATADEV && \
if test -z "$FILE"; then \

echo "Attempting to boot 1st choice" && boot(); \
fi && \
if test -z "$ALTFILE"; then \

echo "Attempting to boot 2nd choice" && boot(); \
fi
echo "Boot failure." && exec $EMR_SHELL

Figure 10: sysup shell script

Once again, just like withcfgsh configura-
tion file, the POSIX assured atomicity of the re-
name(2) system call, guarantees that at no point
in time will a loss of power lead to a system that
cannot boot.

5.4 Variations on a theme

To this basic scheme we can add some more
advanced features as described in this section.
None of these implemented in the current ver-
sion of sysup, but they are on our TODO list for
future versions.

5.4.1 Upgrade watchdog

A version image might have good checksum
and mounted correctly, but the software in it
might be broken in such a way as to get the ma-
chine stuck or reboot before allowing the user
to reach a stage that he or she can roll back to
the previous version.

To resolve this issue, or at least to mitigate its
effect to some extent, the following addition
can be made to the sysup boot process:

• During boot, before mounting a version
image file, sysup should look on the main
storage file system for a “boot in progress”
indicator file. If the file is there, it should
roll back and boot the next entry of ver-
sions.conf file.

• If the file is not there and before sysup
mounts the new version image file, it will
create a “boot in progress” indicator file on
the main storage file system.

• After a version image finished its boot suc-
cessfully to such a degree that the user
can request a software version upgrade or

26 • Building Murphy-compatible embedded Linux systems

downgrade, the software on the version
image will delete this “boot in progress”
indicator from the main storage file sys-
tem.

This addition to the boot process allows detect
errors that would otherwise lead to a system
that reboots into a broken version in an infinite
loop.

5.4.2 Network software updates

Another possible extension to the sysup boot
model is to extend sysup to look for newer ver-
sion to boot in a network directory of sorts, in
addition to theversions.conf file.

If a newer version is found, it is downloaded
and Incorporated into the regular version repos-
itory on the main storage (perhaps deleting an
older version to accommodate).

If the newest version on the network directory
is the same as the version stored on the mass
storage, boot continues as before.

5.4.3 Safe mode

Sometime, despite our best efforts, the version
images on the flash can become corrupted. In
such an event, it can be very useful to allow the
sysup code in the initrd/initramfs image, when
it detects such an occurrence, to enter a “safe
mode” which will allow the minimal configu-
ration of the system (e.g. network settings) and
download of a fresh version image to flash.

5.5 The Achilles heel of sysup: kernel up-
grades

The reason sysup is able to supply atomic up-
grade of software version is exactly because,

thank to the ability of the Linux kernel to loop
back file system images, all the system soft-
ware can be squeezed into a single file. Unfor-
tunately, the kernel image itself cannot be in-
cluded in this image for obvious reasons, which
leads to a multitude of problems

As long as we are willing to treat the kernel and
the initrd/initramfs images with it, as a sort of
a boot ROM, only update-able in special cir-
cumstances by re-writing in a non atomic fash-
ion the appropriate flash partition, we have no
problem.

Unfortunately, this is not always enough. Bugs
in the kernel, support for new features and the
need of kernel modules to be loaded into the
same kernel version for which they were com-
piled may require kernel upgrades, not to men-
tions bugs in sysup code itself. . .

There are two ways to overcome this limitation,
each with its own set of problems:

5.5.1 Two kernel Monte

Under this scheme, we add another field to the
versions.conf file—the version of the ker-
nel required by that version image. sysup then
needs to check whether the currently running
kernel is the right one. If it is, we proceed as
usual. If it is not we utilize a Linux based Linux
loader such as kexec or similar in-kernel load-
ers [kexec]9 and boot into the correct kernel.
This time we will be in the right kernel version
and boot will continue as normal.

This method works quite well, however it has
two major drawbacks:

• At the time of the writing of this paper,
neither kexec, two kernel Monte or lobos

9Our tests with this mode of operation were done with
the Two kernel Monte module from Scyld Computing.

2005 Linux Symposium • 27

are integrated into the vanilla kernel, re-
quiring a patch.

• Those solutions that do exist seems to
cover x86 and to some degree ppc32 ar-
chitecture only.

• Using this approach lengthens boot time.

5.5.2 Cooperating with the boot loader

As an alternative to booting a Linux kernel
from Linux, we can use the very same mecha-
nism discussed before of marking each version
with the required kernel version to run it and
simply change the boot loader configuration to
boot the right kernel version next time and then
reboot the machine. If all goes well, when we
next run, we will already be running under the
right kernel.

The drawback of this method is of course that
we are now tied to the specific feature set of
a specific boot loader and not all boot loader
lend themselves easily to this sort of coopera-
tion with regard to choosing the Linux kernel
image to boot.

6 Read, Copy, Update

One of the readers of the early draft of this pa-
per remarked how much our approach to cre-
ate atomic update of complex data by creating
a copy and then switching pointers to this data
is similar to the well known IBM patented RCU
method utilized in the latest Linux kernel ver-
sions.

While we happily agree that the mechanism is
the basically the same, we would like to point
out that the purpose of applying the technique
(which we of course do not claim to have in-
vented) is different: the RCU implementation

in the Linux kernel is done to avoid locking
when accessing data structure as an way to
speed up access to these data structures, where
as our use of the technique is done because it is
impossibleto lock the data structure we want to
access, barring the use of a battery attached to
each embedded device.

It is interesting though, to note the usefulness
of the same technique to solve different, but re-
lated problems.

7 Future directions

Apart from implementing our lengthy TODO
list, some of which has been discussed in this
paper, there are some “blue skies” areas of in-
terest for additional research withcfgsh and
sysup.

The most interesting one, in the humble opinion
of the authors, is the possibility that the tech-
niques outlined here and implemented in the
two projects can be useful outside the scope of
embedded systems design, especially with re-
gard to “stateless Linux,” virtual machine set-
tings and GNU/Linux-based clusters.

Because the approach presented here essen-
tially locks all the information about software
versions and configuration in a couple of eas-
ily controlled files, and supports transactional
management of these resources it is hoped that
developers and researches working in those
fields would be able to utilize the easy ability
to change and save the state of a machine with
regard to software version and configuration to
create mechanism to automatically and safely
control their systems, virtual instances or clus-
ter node in the same way that we demonstrated
can be done with embedded systems.

28 • Building Murphy-compatible embedded Linux systems

8 Thanks

The authors wish to thank the following people:

To Orna Agmon, Oleg Goldshmidt and Muli
Ben-Yehuda for their support and advice dur-
ing the writing of this paper.

To Aviram Jenik and Noam Rathaus from Be-
yondSecurity Ltd. for sponsoring the original
creation ofcfgsh as Free Software licensed
under the GPL (which is why I forgive them
for forgetting to send me their patches to the
program.)

Last but not least, to my wife Limor, just for
being herself.

References

[Squashfs] Artemiy I. Pavlov,SquashFS
HOWTO, The Linux Documentation
Project,
http://www.artemio.net/
projects/linuxdoc/squashfs/

[ext2] Remy Card, Theodore Ts’o, Stephen
TweedieDesign and Implementation of
the Second Extended Filesystem, The
Proceedings of the First Dutch
International Symposium on Linux,
ISBN 90-367-0385-9,
http://www.artemio.net/
projects/linuxdoc/squashfs/

[Murphy] http://dmawww.epfl.ch/
roso.mosaic/dm/murphy.
html#technology

[GNU Readline] Chet Ramey and others,
http:
//cnswww.cns.cwru.edu/php/
chet/readline/rltop.html

[cramfs] Linus Torvalds and others,

[ext3] Stephen Tweedie,EXT3, Journaling
Filesystem, The Proceedings of Ottawa
Linux Symposium 2000,http:
//olstrans.sourceforge.net/
release/OLS2000-ext3/
OLS2000-ext3.html

[JFFS2] David Woodhouse,JFFS: The
Journalling Flash File System,
http://sources.redhat.com/
jffs2/jffs2.pdf

[Embedded Linux Systems] Karim
Yaghmour,Building Embedded Linux
Systems, O’Reilly Press, ISBN:
0-596-00222-X

[kexec] Andy Pfiffer,Reducing System Reboot
Time With kexec,
http://developer.osdl.org/
rddunlap/kexec/whitepaper/
kexec.html

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

