
eCryptfs: An Enterprise-class Encrypted Filesystem for
Linux

Michael Austin Halcrow
International Business Machines

mhalcrow@us.ibm.com

Abstract

eCryptfs is a cryptographic filesystem for
Linux that stacks on top of existing filesys-
tems. It provides functionality similar to that of
GnuPG, except the process of encrypting and
decrypting the data is done transparently from
the perspective of the application. eCryptfs
leverages the recently introduced Linux ker-
nel keyring service, the kernel cryptographic
API, the Linux Pluggable Authentication Mod-
ules (PAM) framework, OpenSSL/GPGME,
the Trusted Platform Module (TPM), and the
GnuPG keyring in order to make the process
of key and authentication token management
seamless to the end user.

1 Enterprise Requirements

Any cryptographic application is hard to imple-
ment correctly and hard to effectively deploy.
When key management and interaction with the
cryptographic processes are cumbersome and
unwieldy, people will tend to ignore, disable,
or circumvent the security measures. They will
select insecure passphrases, mishandle their se-
cret keys, or fail to encrypt their sensitive data
altogether. This places the confidentiality and

the integrity of the data in jeopardy of compro-
mise in the event of unauthorized access to the
media on which the data is stored.

While users and administrators take great
pains to configure access control mecha-
nisms, including measures such as user ac-
count and privilege separation, Mandatory Ac-
cess Control[13], and biometric identification,
they often fail to fully consider the circum-
stances where none of these technologies can
have any effect – for example, when the me-
dia itself is separated from the control of its
host environment. In these cases, access con-
trol must be enforced via cryptography.

When a business process incorporates a cryp-
tographic solution, it must take several issues
into account. How will this affect incremental
backups? What sort of mitigation is in place
to address key loss? What sort of education is
required on the part of the employees? What
should the policies be? Who should decide
them, and how are they expressed? How dis-
ruptive or costly will this technology be? What
class of cryptography is appropriate, given the
risks? Just what are the risks, anyway? When-
ever sensitive data is involved, it is incumbent
upon those responsible for the information to
reflect on these sorts of questions and to take
action accordingly.

We see today that far too many businesses ne-

• 201 •

202 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

glect to effectively utilize on-disk encryption.
We often see news reports of computer equip-
ment that is stolen in trivial cases of burglary[5]
or of backup tapes with sensitive customer data
that people lose track of.[10] While the physi-
cal security measures in place in these business
establishments are usually sufficient given the
dollar value of the actual equipment, businesses
often underrate the value of the data contained
on the media in that equipment. Encryption can
effectively protect the data, but there there exist
a variety of practical barriers to using it effec-
tively. eCryptfs directly addresses these issues.

1.1 Integration of File Encryption into the
Filesystem

Cryptography extends access control beyond
the trusted domain. Within the trusted do-
main, physical control, authentication mecha-
nisms, DAC/MAC[14][13], and other technolo-
gies regulate what sort of behaviors users can
take with respect to data. Through various
mathematical operations, cryptographic appli-
cations can enforce the confidentiality and the
integrity of the data when it is not under these
forms of protection. The mathematics, how-
ever, is not enough. The cryptographic solu-
tion must take human behavior into account and
compensate for tendencies to take actions that
compromise the security afforded by the cryp-
tographic application.

Several solutions exist that solve separate
pieces of the data encryption problem. In one
example highlighting transparency, employees
within an organization that uses IBMTM Lo-
tus NotesTM [11] for its email will not even
notice the complex PKI or the encryption pro-
cess that is integrated into the product. En-
cryption and decryption of sensitive email mes-
sages is seamless to the end user; it involves
checking an “Encrypt” box, specifying a recip-
ient, and sending the message. This effectively

addresses a significant file in-transit confiden-
tiality problem. If the local replicated mail-
box database is also encrypted, then this ad-
dresses confidentiality (to some extent) on the
local storage device, but the protection is lost
once the data leaves the domain of Notes (for
example, if an attached file is saved to disk).
The process must be seamlessly integrated into
all relevant aspects of the user’s operating en-
vironment.

We learn from this particular application that
environments that embody strong hierarchical
structures can more easily provide the infras-
tructure necessary to facilitate an easy-to-use
and effective organization-wide cryptographic
solution. Wherever possible, systems should
leverage this infrastructure to protect sensitive
information. Furthermore, when organizations
with differing key management infrastructures
exchange data, the cryptographic application
should be flexible enough to support alternate
forms of key management.

Current cryptographic solutions that ship with
Linux distributions do not fully leverage ex-
isting Linux security technologies to make the
process seamless and transparent. Surprisingly
few filesystem-level solutions utilize public key
cryptography. eCryptfs brings together the
kernel cryptographic API, the kernel keyring,
PAM, the TPM, and GnuPG in such a way so
as to fill many of the gaps[3] that exist with cur-
rent popular cryptographic technologies.

1.2 Universal Applicability

Although eCryptfs is geared toward securing
data in enterprise environments, we explored
how eCryptfs can be flexible for use in a wide
variety of circumstances. The basic passphrase
mode of operation provides equivalent func-
tionality to that of EncFS[23] or CFS[20], with
the added advantage of the ability to copy an

2005 Linux Symposium • 203

encrypted file, as an autonomic unit, between
hosts while preserving the associated crypto-
graphic contexts. eCryptfs includes a pluggable
Public Key Infrastructure API through which
it can utilize arbitrary sources for public key
management. One such plugin interfaces with
GnuPG (see Section 5.7) in order to leverage
the web-of-trust mechanism already in wide
use among participants on the Internet.

1.3 Enterprise-class

We designed and implemented eCryptfs with
the enterprise environment in mind. These en-
vironments entail a host of unique opportunities
and requirements.

1.3.1 Ease of Deployment

eCryptfs does not require any modifications to
the Linux kernel itself.1 It is deployable as
a stand-alone kernel module that utilizes a set
of userspace tools to perform key management
functions.

Many other cryptographic filesystem solutions,
such as dm-crypt, require that a fixed partition
(or image) be established upon which to write
the encrypted data. This provides the flexi-
bility of block-layer encryption; any applica-
tion, such as swap, a database application, or
a filesystem, can use it without any modifica-
tion to the application itself. However, it is lim-
ited in that the amount of space allocated for
the encrypted data is fixed. It is an inconve-
nient task to increase or decrease the amount of
space available on the encrypted partition.

Cryptographic filesystems like EncFS[23] and
CFS[20] are more easily deployable, as they

1Note that thekey_type_usersymbol must be ex-
ported by the kernel keyring module, which may require
a one-line patch for older versions of the module.

operate at the VFS layer and can mount on
top of any previously existing directory. These
filesystems store cryptographic metadata in
special files stored in the location mounted.
Thus, the files themselves cannot be decrypted
unless the user copies that metadata along with
the encrypted files.

eCryptfs goes one step beyond other filesys-
tems by storing cryptographic metadata di-
rectly in the files. This information is associ-
ated on a per-file basis, in a manner dictated
by policies that are contained in special files on
the target. These policies specify the behavior
of eCryptfs as it works with individual files at
the target. These policies are not required in or-
der for the user to work with the files, but the
policies can provide enhanced transparency of
operation. Planned enhancements include utili-
ties to aid in policy generation (see Section 7).

1.3.2 PKI Integration

Through its pluggable PKI interface (see Sec-
tion 5.7), eCryptfs aims to be integrable with
existing Public Key Infrastructures.

1.3.3 TPM Utilization

The Trusted Computing Group has published
an architecture standard for hardware support
for various secure operations.[7] Several ven-
dors, including IBM, implement this standard
in their products today. As an example, more
recent IBM Thinkpad and workstation prod-
ucts ship with an integrated Trusted Computing
Platform (TPM) chip.

The TPM can be configured to generate a pub-
lic/private keypair in which the private expo-
nent cannot be obtained from the chip. The ses-
sion key to be encrypted or decrypted with this

204 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

key must be passed to the chip itself, which will
then use the protected private key to perform
the operation. This hardware support provides
a strong level of protection for the key that is
beyond that which can be provided by a soft-
ware implementation alone.

Using a TPM, eCryptfs can essentially “bind”
a set of files to a particular host. Should the
media ever be separated from the host which
contains the TPM chip, the session keys (see
Section 5.1) of the file will be irretrievable. The
user can even configure the TPM in such a man-
ner so that the TPM will refuse to decrypt data
unless the machine is booted in a certain con-
figuration; this helps to address attacks that in-
volve booting the machine from untrusted me-
dia.

1.3.4 Key Escrow

Employees often forget or otherwise lose their
credentials, and it is subsequently necessary for
the administrator to reset or restore those cre-
dentials. Organizations expect this to happen
and have processes in place to rectify the sit-
uations with a minimal amount of overhead.
When strong cryptographic processes are in
place to enforce data integrity and confidential-
ity, however, the administrator is no more ca-
pable of retrieving the keys than anyone else is,
unless some steps are taken to store the key in
a trustworthy escrow.

1.3.5 Incremental Backups

Cryptographic filesystem solutions that oper-
ate at the block layer do not provide adequate
security when interoperating with incremental
backup utilities. Solutions that store crypto-
graphic contexts separately from the files to

which they apply, as EncFS or CFS do, al-
low for incremental backup utilities to oper-
ate while maintaining the security of the data,
but the administrator must take caution to as-
sure that the backup tools are also recording the
cryptographic metadata. Since eCryptfs stores
this data in the body of the files themselves, the
backup utilities do not need to take any addi-
tional measures to make a functional backup of
the encrypted files.

2 Related Work

eCryptfs extends cryptfs, which is one of
the filesystems instantiated by the stackable
filesystem framework FiST.[9] Erez Zadok
heads a research lab at Stony Brook University,
where FiST development takes place. Cryptfs
is an in-kernel implementation; another option
would be to extend EncFS, a userspace crypto-
graphic filesystem that utilizes FUSE to inter-
act with the kernel VFS, to behave in a similar
manner. Much of the functionality of eCryptfs
revolves around key management, which can
be integrated, without significant modification,
into a filesystem like EncFS.

Other cryptographic filesystem solutions
available under Linux include dm-crypt[18]
(preceded by Cryptoloop and Loop-AES),
CFS[20], BestCrypt[21], PPDD[19],
TCFS[22], and CryptoFS[24]. Reiser4[25]
provides a plugin framework whereby crypto-
graphic operations can be implemented.

3 Design Structure

eCryptfs is unique from most other crypto-
graphic filesystem solutions in that it stores
a complete set of cryptographic metadata to-
gether with each individual file, much like

2005 Linux Symposium • 205

Kernel User

eCryptfs layer

Filesystem

Additional layers
(optional)

Keystore

VFS syscall

Crypto Metadata

File Structure

Kernel
crypto API

Keystore
callout

PKI API

GnuPG
PKI Module openCryptoki

PKI Module

TrouSerS TPM
PKI Module

eCryptfs
Daemon

Crypto
Attribute

Editor
(KDE/GNOME)

Figure 1: Overview of eCryptfs architecture

PGP-encrypted files are formatted. This al-
lows for encrypted files to be transferred across
trusted domains while maintaining the ability
for those with the proper credentials to gain ac-
cess to those files. Because the encryption and
decryption takes place at the VFS layer, the
process is made transparent from the applica-
tion’s perspective.

eCryptfs is implemented as a kernel module
augmented with various userspace utilities for
performing key management functions. The
kernel module performs the bulk encryption of
the file contents via the kernel cryptographic
API. A keystore component extracts the header
information from individual files2 and forwards
this data to a callout application. The call-
out application evaluates the header informa-
tion against the target policy and performs var-
ious operations, such as prompting the user for
a passphrase or decrypting a session key with a

2Note that the initial prototype of eCryptfs, demon-
strated at OLS 2004, utilized Extended Attributes (EA)
to store the cryptographic context. Due to the fact that
EA’s are not ubiquitously and consistently supported,
this information was moved directly into the file con-
tents. eCryptfs now uses EA’s to cache cryptographic
contexts, but EA support is not required for correct oper-
ation.

private key.

eCryptfs performs key management operations
at the time that an application either opens or
closes a file (see Figure 2). Since these events
occur relatively infrequently in comparison to
page reads and writes, the overhead involved in
transferring data and control flow between the
kernel and userspace is relatively insignificant.
Furthermore, pushing key management func-
tions out into userspace reduces the amount and
the complexity of code that must run in kernel
space.

4 Cryptographic Operations

eCryptfs performs the bulk symmetric encryp-
tion of the file contents in the kernel module
portion itself. It utilizes the kernel crypto-
graphic API.

4.1 File Format

The underlying file format for eCryptfs is based
on the OpenPGP format described in RFC

206 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

vfs_open()

cryptfs_open()

Allocate new crypt_stats struct

Consult the cryptographic policy for this file

Is the file supposed to
be encrypted?

vfs ops passthrough

new_file_context()

Generate new session key

Generate callout string for
/sbin/request-key

Consult policy for
target location /.ecryptfsrc

Insert authentication token
structs into keyring

Construct set of valid authentication
token struct signatures

Associate authentication tokens
with crypt_stats via their signatures

Kernel User

Write the file headers

No

Yes

Figure 2: New file process

2440[2] (see Figure 3). In order to accommo-
date random access, eCryptfs necessarily de-
viates from that standard to some extent. The
OpenPGP standard assumes that the encryption
and decryption is done as an atomic operation
over the entire data contents of the file; there is
no concept of a partially encrypted or decrypted
file. Since the data is encrypted using a chained
block cipher, it would be impossible to read the
very last byte of a file without first decrypting
the entire contents of the file up to that point.
Likewise, writing the very first byte of the file

would require re-encrypting the entire contents
of the file from that point.

To compensate for this particular issue while
maintaining the security afforded by a cipher
operating in block chaining mode[6], eCryptfs
breaks the data into extents. These extents, by
default, span the page size (as specified for each
kernel build). Data is dealt with on a per-extent
basis; any data read from the middle of an ex-
tent causes that entire extent to be decrypted,
and any data written to that extent causes that

2005 Linux Symposium • 207

Data
Size

Crypto Context
Packet Set

Initialization
Vectors

Encrypted
Data Extent ...

Initialization
Vectors

Encrypted
Data Extent ...

Figure 3: Underlying file format

entire extent to be encrypted.

Each extent has a unique initialization vector
(IV) associated with it. One extent containing
IV’s precedes a group of extents to which those
IV’s apply. Whenever data is written to an ex-
tent, its associated IV is rotated and rewritten to
the IV extent before the associated data extent
is encrypted. The extents are encrypted with
the block cipher selected by policy for that file
and employ CBC mode to chain the blocks.

4.1.1 Sparse Files

Sparse files present a challenge for eCryptfs.
Under UNIX semantics, a file becomes sparse
when an application seeks past the end of a file.
The regions of the file where no data is written
representholes. No data is actually written to
the disk for these regions; the filesystem “fakes
it” by specially marking the regions and setting
the reported filesize accordingly. The space oc-
cupied on the disk winds up being less than the
size of the file as reported by the file’s inodes.
When sparse regions are read, the filesystem
simply pretends to be reading the data from the
disk by filling in zero’s for the data.

The underlying file structure for eCryptfs is
amenable to accommodating this behavior;
IV’s consisting of all zero’s can indicate that the
underlying region that corresponds is sparse.
The obvious problem with this approach is that
it is readily apparent to an attacker which re-
gions of the file consist of holes, and this may

constitute an unacceptable breach of confiden-
tiality. It makes sense to relegate eCryptfs’s be-
havior with respect to sparse files as something
that policy decides.

4.2 Kernel Crypto API

eCryptfs performs the bulk data encryption in
the kernel module, and hence it takes advantage
of the kernel cryptographic API to perform the
encryption and the decryption. One of the pri-
mary motivators in implementing eCryptfs in
the kernel is to avoid the overhead of context
switches between userspace and kernel space,
which is frequent when dealing with pages in
file I/O. Any symmetric ciphers supported by
the Linux kernel are candidates for usage as the
bulk data ciphers for the eCryptfs files.

4.3 Header Information

eCryptfs stores the cryptographic context for
each file as header information contained di-
rectly in the underlying file (see Figure 4).
Thus, all of the information necessary for users
with the appropriate credentials to access the
file is readily available. This makes files
amenable to transfer across untrusted domains
while preserving the information necessary to
decrypt and/or verify the contents of the file.
In this respect, eCryptfs operates much like an
OpenPGP application.

Most encrypted filesystem solutions either op-
erate on the entire block device or operate on

208 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

Generate key packet set:

Any crypt_stat auth tok
sigs left?

Request key for sig from keyring

Auth tok key found
on keyring?

No

Is it a
passphrase?

Is it a private
key?

Validate the signature;
if invalid, generate.

Is the token’s encrypted
session key valid?

Concatenate the passphrase with
the salt and recursively hash to

derive the session-key encryption key.

Encrypt the session key

Write the packet according
to RFC 2440 spec

Validate the signature;
if invalid, fail.

Does the token already contain
the encrypted session key?

Does the token already contain
the decrypted session key?

Copy the decrypted session key
from the crypt_stats struct

Set the decrypt request flag

Dump the auth tok into
the callout string

Userspace callout to process session key portions of authentication tokens

Yes

No

No

No

No

No

Yes Yes

Yes

Yes

Yes

Figure 4: Writing file headers

entire directories. There are several advantages
to implementing filesystem encryption at the
filesystem level and storing encryption meta-
data in the headers of each file:

• Granularity: Keys can be mapped to in-
dividual files, rather than entire block de-
vices or entire directories.

• Backup Utilities: Incremental backup
tools can correctly operate without having
to have access to the decrypted content of
the files it is backing up.

• Performance: In most cases, only certain
files need to be encrypted. System li-
braries and executables, in general, do not
need to be encrypted. By limiting the
actual encryption and decryption to only

those files that really need it, system re-
sources will not be taxed as much.

• Transparent Operation: Individual en-
crypted files can be easily transferred off
of the block device without any extra
transformation, and others with authoriza-
tion will be able to decrypt those files. The
userspace applications and libraries do not
need to be modified and recompiled to
support this transparency.

4.4 Rotating Initialization Vectors

eCryptfs extents span page lengths. For most
architectures, this is 4096 bytes. Subsequent
writes within extents may provide information
to an attacker who aims to perform linear crypt-
analysis against the file. In order to mitigate

2005 Linux Symposium • 209

this risk, eCryptfs associates a unique Initial-
ization Vector with each extent. These IV’s are
interspersed throughout each file. In order to
simplify and streamline the mapping of the un-
derlying file data with the overlying file, IV’s
are currently grouped on a per-page basis.

4.5 HMAC’s Over Extents

Integrity verification can be accomplished via
sets of keyed hashes over extents within the
file. Keyed hashes are used to prove that
whoever modified the data had access to the
shared secret, which is, in this case, the session
key. Since hashes apply on a per-extent basis,
eCryptfs need not generate the hash over the
entire file before it can begin reading the file.
If, at any time in the process of reading the file,
eCryptfs detects a hash mismatch for an extent,
it can flag the read operation as failing in the
return code for the VFS syscall.

This technique can be applied to generate
a built-in digital signature structure for files
downloaded over the Internet. Given that an
eCryptfs key management module is able to as-
certain the trustworthiness of a particular key,
then that key can be used to encode a verifi-
cation packet into the file via HMAC’s. This
is accomplished by generating hashes over the
extents of the files, as eCryptfs normally does
when operating in integrity verification mode.
When the file is closed, an HMAC is gen-
erated by hashing the concatenation of all of
the hashes in the file, along with a secret key.
This HMAC is then encrypted with the distrib-
utor’s private key and written to an HMAC-
type packet. The recipients of the file can pro-
ceed then to retrieve the secret key by decrypt-
ing it with the distributor’s trusted public key
and performing the hash operations to gener-
ate the final HMAC, which can be compared
then against the HMAC that is stored in the file
header in order to verify the file’s integrity.

4.6 File Context

Each eCryptfs inode correlates with an inode
from the underlying filesystem and has a cryp-
tographic context associated with it. This con-
text contains, but is not limited to, the following
information:

• The session key for the file

• Whether the file is encrypted

• A pointer to the kernel crypto API context
for that file

• The signatures of the authentication to-
kens associated with that file

• The size of the extents

eCryptfs can cache each file’s cryptographic
context in the user’s session keyring in order to
facilitate faster repeat access by bypassing the
process of reading and interpreting of authenti-
cation token header information from the file.

4.7 Revocation

Since anyone with the proper credentials can
extract a file’s session key, revocation of access
for any given credential to future versions of
the file will necessitate regeneration of a ses-
sion key and re-encryption of the file data with
that key.

5 Key Management

eCryptfs aims to operate in a manner that is as
transparent as possible to the applications and
the end users of the system. Under most cir-
cumstances, when access control over the data

210 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

Userspace callout to process session key portions of authentication tokens

Have we added all the
authentication tokens

to the list?

Add another auth tok to
the list

Process the salt

No

Was a salt
found?

Generate a new salt

Replicate the salt across
all auth toks

Process public key operations

Process private key operation

Is the flag set requesting
the session key to be

encrypted?

Does the auth tok
contain a decrypted key?

Encrypt session key with public key

Is the flag set requesting
the session key to be

decrypted?

Does the auth tok
contain a encrypted key?

Decrypt with the private key
(possible hand-off to TPM)

Do we have any
auth toks left?

Do we have any
auth toks left?

Prompt for passphrase
procedure

No

No

No

No

No

According to the policy,
should we prompt for a

passphrase?

Write/update all authentication
tokens in the kernel keyring

Return set of valid authentication
token key signatures

No

No

No

Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes

Figure 5: Key management

cannot be provided at all times by the host, the
fact that the files are being encrypted should not
be a concern for the user. Encryption must pro-
tect the confidentiality and the integrity of the
files in these cases, and the system is config-
ured to do just that, using the user’s authentica-
tion credentials to generate or access the keys.

5.1 Session Keys

Every file receives a randomly generated ses-
sion key, which eCryptfs uses in the bulk data
encryption of the file contents. eCryptfs stores
this session key in the cryptographic metadata
for the file, which is in turn cached in the user’s

session keyring. When an application closes
a newly created file, the eCryptfs encrypts the
session key once for each authentication token
associated with that file, as dictated by policy,
then writes these encrypted session keys into
packets in the header of the underlying file.

When an application later opens the file,
eCryptfs reads in the encrypted session keys
and chains them off of the cryptographic meta-
data for the file. eCryptfs looks through the
user’s authentication tokens to attempt to find
a match with the encrypted session keys; it
uses the first one found to decrypt the session
key. In the event that no authentication tokens
in the user’s session keyring can decrypt any

2005 Linux Symposium • 211

of the encrypted session key packets, eCryptfs
falls back on policy. This policy can dictate ac-
tions such as querying PKI modules for the ex-
istence of private keys or prompting the user for
a passphrase.

5.2 Passphrase

Passwords just don’t work anymore.
– Bruce Schneier

Many cryptographic applications in Linux rely
too heavily on passphrases to protect data.
Technology that employs public key cryp-
tography provides stronger protection against
brute force attacks, given that the passphrase-
protected private keys are not as easily accessi-
ble as the encrypted data files themselves.

Passphrase authentication tokens in eCryptfs
exist in three forms: non-passphrased, salt-
less, and salted. In order to address the threat
of passphrase dictionary attacks, eCryptfs uti-
lizes the method whereby a salt value is con-
catenated with a passphrase to generate a
passphrase identifier. The concatenated value is
iteratively hashed (65,537 times by default) to
generate the identifying signature for the salted
authentication token.

On the other hand, saltless authentication to-
kens exist only in the kernel keyring and are not
at any time written out to disk. The userspace
callout application combines these saltless au-
thentication tokens with non-passphrased au-
thentication tokens to generate candidate salted
authentication tokens, whose signatures are
compared against those in file headers.

While eCryptfs supports passphrase-based pro-
tection of files, we do not recommend using
passphrases for relatively high-value data that
requires more than casual protection. Most

passphrases that people are capable of remem-
bering are becoming increasingly vulnerable to
brute force attacks. eCryptfs takes measures
to make such attacks more difficult, but these
measures can only be so effective against a de-
termined and properly equipped adversary.

Every effort should be made to employ the use
of a TPM and public key cryptography to pro-
vide strong protection of data. Keep in mind
that using a passphrase authentication token in
addition to a public key authentication token
does not in any way combine the security of
both; rather, it combines theinsecurityof both.
This is due to the fact that, given two authen-
tication tokens, eCryptfs will encrypt and store
two copies of the session key (see Section 5.1)
that can individually be attacked.

5.3 Kernel Keyring

David Howells recently authored the keyring
service, which kernel versions 2.6.10 and later
now include. This keyring provides a host of
features to manage and protect keys and au-
thentication tokens. eCryptfs takes advantage
of the kernel keyring, utilizing it to store au-
thentication tokens, inode cryptographic con-
texts, and keys.

5.4 Callout and Daemon

The primary contact between the eCryptfs ker-
nel module and the userspace key manage-
ment code is the request-key callout applica-
tion, which the kernel keyring invokes. This
callout application parses policy information
from the target, which it interprets in relation to
the header information in each file. It may then
make calls through the PKI API in order to sat-
isfy pending public key requests, or it may go
searching for a salted passphrase with a partic-
ular signature.

212 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

In order to be able to prompt the user for a
passphrase via a dialog box, eCryptfs must
have an avenue whereby it can get to the user’s
X session. The user can provide this means by
simply running a daemon. The eCryptfs dae-
mon listens to a socket (for which the location
is written to the user’s session keyring). When-
ever policy calls for the user to be prompted
for a passphrase, the callout application can re-
trieve the socket’s location and use it to request
the daemon to prompt the user; the daemon
then returns the user’s passphrase to the callout
application.

5.5 Userspace Utilities

To accommodate those who are not running the
eCryptfs layer on their systems, userspace util-
ities to handle the encrypted content comprise
part of the eCryptfs package. These utilities act
much like scaled-down versions of GnuPG.

5.6 Pluggable Authentication Module

Pluggable Authentication Modules (PAM) pro-
vide a Discretionary Access Control (DAC)[14]
mechanism whereby administrators can param-
eterize how a user is authenticated and what
happens at the time of authentication. eCryptfs
includes a module that captures the user’s lo-
gin passphrase and stores it in the user’s ses-
sion keyring. This passphrase is stored in the
user’s session keyring as a saltless passphrase
authentication token.

Future actions by eCryptfs, based on policy,
can then use this passphrase to perform cryp-
tographic operations. For example, the login
passphrase can be used to extract the user’s pri-
vate key from his GnuPG keyring. It could be
used to derive a key (via a string-to-key oper-
ation) that is directly used to protect a session
key for a set of files. Furthermore, this derived

key could be combined with a key stored in a
TPM in order to offer two-factor authentication
(i.e., in order to access a file, the user must have
(1) logged into a particular host (2) using a par-
ticular passphrase).

Due to PAM’s flexibility, these operations do
not need to be restricted to a passphrase. There
is no reason, for example, that a key contained
on a SmartCard or USB device could not be
used to help authenticate the user, after which
point that key is used in the above named cryp-
tographic operations.

5.7 PKI

eCryptfs offers a pluggable Public Key Infras-
tructure (PKI) interface. PKI modules accept
key identifiers and data, and they return en-
crypted or decrypted data. Whether any partic-
ular key associated with an identifier is avail-
able, trustworthy, etc., is up to the PKI module
to determine.

eCryptfs PKI modules need to implement a set
of functions that accept as input the key identi-
fier and a blob of data. The modules have the
responsibility to take whatever course of action
is necessary to retrieve the requisite key, evalu-
ate the trustworthiness of that key, and perform
the public key operation.

eCryptfs includes a PKI module that utilizes the
GnuPG Made Easy (GPGME) interface to ac-
cess and utilize the user’s GnuPG keyring. This
module can utilize the user’s login passphrase
credential, which is stored in the user’s ses-
sion keyring by the eCryptfs PAM (see Section
5.6), to decrypt and utilize the user’s private key
stored on the user’s keyring.

The eCryptfs TPM PKI module utilizes the
TrouSerS[26] interface to communicate with
the Trusted Platform Module. This allows for

2005 Linux Symposium • 213

the use of a private key that is locked in the
hardware, binding a file to a particular host.

The eCryptfs openCryptoki PKCS#11[15]
framework PKI provides a mechanism for per-
forming public key operations via various hard-
ware devices supported by openCryptoki, in-
cluding the IBM Cryptographic Accelerator
(ICA) Model 2058, the IBM 4758 PCI Cryp-
tographic Coprocessor, the Broadcom Crypto
Accelerator, the AEP Crypto Accelerator, and
the TPM.

It is easy to write additional PKI modules for
eCryptfs. Such modules can interface with
existing PKI’s that utilize x.509 certificates,
with certificate authorities, revocation lists, and
other elements that help manage keys within an
organization.

5.8 Key Escrow/Secret Sharing

In enterprise environments, it often makes
sense for data confidentiality and integrity to be
a shared responsibility. Just as prudent business
organizations entail backup plans in the event
of the sudden loss of any one employee, the
data associated with business operations must
survive any one individual in the company. In
the vast majority of the cases, it is acceptable
for all members of the business to have access
to a set of data, while it is not acceptable for
someone outside the company who steals a ma-
chine or a USB pen drive to have access to that
data. In such cases, some forms of key escrow
within the company are appropriate.

In enterprise environments where corporate and
customer data are being protected cryptograph-
ically, key management and key recovery is an
especially critical issue. Techniques such as se-
cret splitting or (m,n)-threshold schemes[4] can
be used within an organization to balance the
need for key secrecy with the need for key re-
covery.

5.9 Target-centric Policies

When an application creates a new file,
eCryptfs must make a number of decisions with
regard to that file. Should the file be encrypted
or unencrypted? If encrypted, which symmetric
block cipher should be used to encrypt the data?
Should the file contain HMAC’s in addition to
IV’s? What should the session key length be?
How should the session key be protected?

Protecting the session key on disk requires even
more policy decisions. Should a passphrase be
used? Which one, and how should it be re-
trieved? What should be the string-to-key pa-
rameters (i.e., which hash algorithm and the
number of hash iterations)? Should any pub-
lic keys be used? If so, which ones, and how
should they be retrieved?

eCryptfs currently supports Apache-like policy
definition files3 that contain the policies that ap-
ply to the target in which they exist. For exam-
ple, if the root directory on a USB pen drive
device contains a .ecryptfsrc file, then eCryptfs
will parse the policy from that file and apply
it to all files under the mount point associated
with that USB pen drive device.

Key definitions associate labels with(PKI, Id)
tuples (see Figure 6).

Application directive definitions override de-
fault policies for the target, dependent upon the
application performing the action and the type
of action the application is performing (see Fig-
ure 7).

The action definitions associate labels with
(Action,Cipher,SessionKeySize) tuples.
eCryptfs uses these directives to set crypto-
graphic context parameters for files (see Figure
8).

3XML formats are currently being worked on.

214 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

<ApplicationDirectiveDef mutt_prompt_on_read_encrypted>
Application /usr/bin/mutt
Scenario OPEN_FOR_READ
FileState ENCRYPTED
Action PROMPT

</ApplicationDirectiveDef>

<ApplicationDirectiveDef mutt_decrypt>
Application /usr/bin/mutt
Scenario ALL
FileState ENCRYPTED
Action DECRYPT

</ApplicationDirectiveDef>

<ApplicationDirectiveDef openoffice_strong_encrypt>
Application /usr/bin/ooffice
Scenario OPEN_FOR_CREATE
Action encrypt_strong

</ApplicationDirective>

Figure 7: Example policy: application directives

The directory policy definitions give default ac-
tions for files created under the specified direc-
tory location, along with application directives
that apply to the directory location (see Figure
9).

6 Additional Measures

eCryptfs concerns itself mainly with protect-
ing data that leaves trusted domains. Addi-
tional measures are necessary to address vari-
ous threats outside the scope of eCryptfs’s in-
fluence. For example, swap space should be
encrypted; this can be easily accomplished with
dm-crypt.[18]

Strong access control is outside the scope of
the eCryptfs project, yet it is absolutely neces-
sary to provide a comprehensive security solu-
tion for sensitive data. SE Linux[16] provides

a robust Mandatory Access Control framework
that can be leveraged with policies to protect
the user’s data and keys.

Furthermore, the system should judiciously
employ timeouts or periods of accessibil-
ity/applicability of credentials. The kernel
keyring provides a convenient and powerful
mechanism for handling key permissions and
expirations. These features must be used appro-
priately in order to address human oversight,
such as failing to lock down a terminal or other-
wise exit or invalidate a security context when
the user is finished with a task.

7 Future Work

eCryptfs is currently in an experimental stage
of development. While the majority of the VFS

2005 Linux Symposium • 215

<Directory />
DefaultAction blowfish_encrypt
DefaultState PROMPT
DefaultPublicKeys mhalcrow legal
DefaultPassphrase LOGIN
This directives for files under this location
that meet this criteria
<FilePattern \.mutt_.*>

ApplicationDirective mutt_decrypt
</FilePattern>
ApplicationDirective mutt_prompt_on_read_encrypted

</Directory>

Overrides the prior set of policies
<Directory /gnucash>

DefaultAction encrypt_strong
DefaultPublicKeys host_tpm

</Directory>

Figure 9: Example policy: directory policies

functionality is implemented and functioning,
eCryptfs requires testing and debugging across
a wide range of platforms under a variety of
workload conditions.

eCryptfs has the potential to provide weak file
size secrecy in that the size of the file would
only be determinable to the granularity of one
extent size, given that the file size field in
the header is encrypted with the session key.
Strong file size secrecy is much more easily ob-
tained through block device layer encryption,
where everything about the filesystem is en-
crypted. eCryptfs only encrypts the data con-
tents of the files; additional secrecy measures
must address dentry’s, filenames, and Extended
Attributes, which are all within the realm of
what eCryptfs can influence.

At this stage, eCryptfs requires extensive pro-
filing and streamlining in order to optimize
its performance. We need to investigate op-

portunities for caching cryptographic metadata,
and variations on such attributes as the size of
the extents could have a significant impact on
speed.

eCryptfs policy files are equivalent to the
Apache configuration files in form and com-
plexity. eCryptfs policy files are amenable to
guided generation via user utilities. Another
significant area of future development includes
the development of such utilities to aid in the
generation of these policy files.

Desktop environments such as GNOME or
KDE can provide users with a convenient in-
terface through which to work with the cryp-
tographic properties of the files. In one sce-
nario, by right-clicking on an icon represent-
ing the file and selecting “Security”, the user
will be presented with a window that can be
used to control the encryption status of the file.
Such options will include whether or not the

216 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

<Key mhalcrow>
PKI GPG
Id 3F5C22A9

</Key>

<Key legal>
PKI GPG
Id 7AB1FF25

</Key>

<Key host_tpm>
PKI TPM
Id DEFAULT

</Key>

Figure 6: Example policy: key defs

file is encrypted, which users should be able
to encrypt and decrypt the file (identified by
their public keys as reported by the PKI plugin
module), what cipher is used, what keylength
is used, an optional passphrase that is used to
encrypt the symmetric key, whether or not to
use keyed hashing over extents of the file for
integrity, the hash algorithms to use, whether
accesses to the file when no key is available
should result in an error or in the encrypted
blocks being returned (as dictated by target-
centric policies; see Section 5.9), and other
properties that are interpreted and used by the
eCryptfs layer.

8 Recognitions

We would like to express our appreciation for
the contributions and input on the part of all
those who have laid the groundwork for an ef-
fort toward transparent filesystem encryption.
This includes contributors to FiST and Cryptfs,
GnuPG, PAM, and many others from which

<ActionDef blowfish_encrypt>
Action ENCRYPT
Cipher blowfish
SessionKeySize 128

</ActionDef>

<ActionDef encrypt_strong>
Action ENCRYPT
Cipher aes
SessionKeySize 256

</ActionDef>

Figure 8: Example policy: action defs

we are basing our development efforts, as well
as several members of the kernel development
community.

9 Conclusion

eCryptfs is an effort to reduce the barriers that
stand in the way of the effective and ubiqui-
tous utilization of file encryption. This is es-
pecially relevant as physical media remains ex-
posed to theft and unauthorized access. When-
ever sensitive data is being handled, it should be
themodus operandithat the data be encrypted
at all times when it is not directly being ac-
cessed in an authorized manner by the appli-
cations. Through strong and transparent key
management that includes public key support,
key->file association, and target-centric poli-
cies, eCryptfs provides the means whereby a
cryptographic filesystem solution can be more
easily and effectively deployed.

2005 Linux Symposium • 217

10 Availability

eCryptfs is licensed under the GNU
General Public License (GPL). Source-
Forge is hosting the eCryptfs code base
at http://sourceforge.net/
projects/ecryptfs . We welcome
any interested parties to become involved in
the testing and development of eCryptfs.

11 Legal Statement

This work represents the view of the author and does
not necessarily represent the view of IBM.

IBM and Lotus Notes are registered trademarks of
International Business Machines Corporation in the
United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] M. Blaze. “Key Management in an
Encrypting File System”, Proc.Summer
’94 USENIX Tech. Conference, Boston,
MA, June 1994.

[2] J. Callas, L. Donnerhacke, H. Finney, and
R. Thayer. RFC 2440. November 1998.
Seeftp://ftp.rfc-editor.org/
in-notes/rfc2440.txt .

[3] M. Halcrow. “Demands, Solutions, and
Improvements for Linux Filesystem
Security.”Proceedings of the 2004 Ottawa
Linux Symposium, Ottawa, Canada, July
2004.

[4] S.C. Kothari. “Generalized Linear
Threshold Scheme.”Advances in
Cryptology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 231–241.

[5] M. Liedtke. “Stolen UC Berkeley laptop
exposes personal data of nearly 100,000.”
Associated Press. March 29, 2005. See
http:
//www.sfgate.com/cgi-bin/
article.cgi?f=/n/a/2005/03/
28/financial/f151143S80.DTL

[6] B. Schneier.Applied Cryptography. New
York: John Wiley & Sons, Inc., 1996. Pp.
193–197.

[7] The Trusted Computing Group. “TCG
Specification Architecture Overview
version 1.0.”https:
//www.trustedcomputinggroup.
org/downloads/TCG_1_0_
Architecture_Overview.pdf

[8] E. Zadok, L. Badulescu, and A. Shender.
“Cryptfs: A stackable vnode level
encryption file system.”Technical Report
CUCS-021-98, Computer Science
Department, Columbia University, 1998.

[9] E. Zadok and J. Nieh. “FiST: A Language
for Stackable File Systems.”Proceedings
of the Annual USENIX Technical
Conference, pp. 55–70, San Diego, June
2000.

[10] “Ameritrade addresses missing tape.”
United Press International. April 19, 2005.
Seehttp://washingtontimes.
com/upi-breaking/
20050419-110638-7335r.htm

[11] For more information on IBM Lotus
Notes, seehttp://www-306.ibm.
com/software/lotus/ . Information
on Notes security can be obtained from
http://www-10.lotus.com/ldd/

218 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

today.nsf/f01245ebfc115aaf
8525661a006b86b9/
232e604b847d2cad8825
6ab90074e298?OpenDocument

[12] For more information on Pluggable
Authentication Modules (PAM), see
http://www.kernel.org/pub/
linux/libs/pam/

[13] For more information on Mandatory
Access Control (MAC), seehttp://
csrc.nist.gov/publications/
nistpubs/800-7/node35.html

[14] For more information on Discretionary
Access Control (DAC), seehttp://
csrc.nist.gov/publications/
nistpubs/800-7/node25.html

[15] For more information on openCryptoki,
seehttp://sourceforge.net/
projects/opencryptoki

[16] For more information on
Security-Enhanced Linux (SE Linux), see
http://www.nsa.gov/selinux/
index.cfm

[17] For more information on Samhain, see
http://la-samhna.de/samhain/

[18] For more information on DM-crypt, see
http://www.saout.de/misc/
dm-crypt/

[19] For more information on PPDD, see
http://linux01.gwdg.de/
~alatham/ppdd.html

[20] For more information on CFS, see
http://sourceforge.net/
projects/cfsnfs/

[21] For more information on BestCrypt, see
http://www.jetico.com/index.
htm#/products.htm

[22] For more information on TCFS, see
http://www.tcfs.it/

[23] For more information on EncFS, see
http://arg0.net/users/
vgough/encfs.html

[24] For more information on CryptoFS, see
http://reboot.animeirc.de/
cryptofs/

[25] For more information on Reiser4, see
http:
//www.namesys.com/v4/v4.html

[26] For more information on TrouSerS, see
http://sourceforge.net/
projects/trousers/

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

