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Abstract

Linux multipathing provides io failover and
path load sharing for multipathed block de-
vices. In this paper, we provide an overview
of the current device mapper based multi-
pathing capability and describe Enterprise level
requirements for future multipathing enhance-
ments. We describe the interaction amongst
kernel multipathing modules, user mode mul-
tipathing tools, hotplug, udev, and kpartx com-
ponents when considering use cases. Use cases
include path and logical unit re-configuration,
partition management, and path failover for
both active-active and active-passive generic
storage systems. We also describe lessons
learned during testing the MD scheme on high-
end storage.

1 Introduction

Multipathing provides the host-side logic to
transparently utilize the multiple paths of a re-
dundant network to provide highly available
and higher bandwidth connectivity between
hosts and block level devices. Similar to how
TCP/IP re-routes network traffic between 2

hosts, multipathing re-routes block io to an al-
ternate path in the event of one or more path
connectivity failures. Multipathing also trans-
parently shares io load across the multiple paths
to the same block device.

The history of Linux multipathing goes back
at least 3 years and offers a variety of differ-
ent architectures. The multipathing personal-
ity of the multidisk driver first provided block
device multipathing in the 2.4.17 kernel. The
Qlogic FC HBA driver has provided multi-
pathing across Qlogic FC initiators since 2002.
Storage system OEM vendors like IBM, Hi-
tachi, HP, Fujitsu, and EMC have provided
multipathing solutions for Linux for several
years. Strictly software vendors like Veritas
also provide Linux multipathing solutions.

In this paper, we describe the current 2.6 Linux
kernel multipathing solution built around the
kernel’s device mapper block io framework and
consider possible enhancements. We first de-
scribe the high level architecture, focusing on
both control and data flows. We then de-
scribe the key components of the new archi-
tecture residing in both user and kernel space.
This is followed by a description of the in-
teraction amongst these components and other
user/kernel components when considering sev-

• 147 •



148 • Linux Multipathing

eral key use cases. We then describe several
outstanding architectural issues related to the
multipathing architecture.

2 Architecture Overview

This chapter describes the overall architecture
of Linux multipathing, focusing on the control
and data paths spanning both user and kernel
space multipathing components. Figure 1 is
a block diagram of the kernel and user com-
ponents that support volume management and
multipath management.

Linux multipathing provides path failover and
path load sharing amongst the set of redun-
dant physical paths between a Linux host and
a block device. Linux multipathing services
are applicable to all block type devices, (e.g.,
SCSI, IDE, USB, LOOP, NBD). While the no-
tion of what constitutes a path may vary signif-
icantly across block device types, for the pur-
pose of this paper, we consider only the SCSI
upper level protocol or session layer defini-
tion of a path—that is, one defined solely by
its endpoints and thereby indifferent to the ac-
tual transport and network routing utilized be-
tween endpoints. A SCSI physical path is de-
fined solely by the unique combination of a
SCSI initiator and a SCSI target, whether using
iSCSI, Fiber Channel transport, RDMA, or se-
rial/parallel SCSI. Furthermore, since SCSI tar-
gets typically support multiple devices, a logi-
cal path is defined as the physical path to a par-
ticular logical device managed by a particular
SCSI target. For SCSI, multiple logical paths,
one for each different SCSI logical unit, may
share the same physical path.

For the remainder of this paper, “physical path”
refers to the unique combination of a SCSI ini-
tiator and a SCSI target, “device” refers to a
SCSI logical unit, and a “path” or logical path

refers to the logical connection along a physical
path to a particular device.

The multipath architecture provides a clean
separation of policy and mechanism, a highly
modular design, a framework to accommodate
extending to new storage systems, and well de-
fined interfaces abstracting implementation de-
tails.

An overall philosophy of isolating mechanism
in kernel resident code has led to the creation
of several kernel resident frameworks utilized
by many products including multipathing. A
direct result of this approach has led to the
placement of a significant portion of the multi-
pathing code in user space and to the avoidance
of a monolithic kernel resident multipathing
implementation. For example, while actual
path failover and path load sharing take place
within kernel resident components, path dis-
covery, path configuration, and path testing are
done in user space.

Key multipathing components utilize frame-
works in order to benefit from code sharing
and to facilitate extendibility to new hardware.
Both kernel and user space multipathing frame-
works facilitate the extension of multipathing
services to new storage system types, storage
systems of currently supported types for new
vendors, and new storage system models for
currently supported vendor storage systems.

The device mapper is the foundation of the
multipathing architecture. The device map-
per provides a highly modular framework for
stacking block device filter drivers in the ker-
nel and communicating with these drivers from
user space through a well defined libdevmap-
per API. Automated user space resident de-
vice/path discovery and monitoring compo-
nents continually push configuration and pol-
icy information into the device mapper’s multi-
pathing filter driver and pull configuration and
path state information from this driver.
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Figure 1: Overall architecture

The primary goals of the multipathing driver
are to retry a failed block read/write io on
an alternate path in the event of an io failure
and to distribute io load across a set of paths.
How each goal is achieved is controllable from
user space by associating path failover and load
sharing policy information on a per device ba-
sis.

It should also be understood that the multipath
device mapper target driver and several mul-
tipathing sub-components are the only multi-
path cognizant kernel resident components in
the linux kernel.

3 Component Modules

The following sections describe the kernel and
user mode components of the Linux multi-
pathing implementation, and how those com-
ponents interact.

3.1 Kernel Modules

Figure 2 is a block diagram of the kernel device
mapper. Included in the diagram are compo-
nents used to support volume management as
well as the multipath system. The primary ker-
nel components of the multipathing subsystem
are

• the device mapper pseudo driver

• the multipathing device mapper target
driver

• multipathing storage system Device Spe-
cific Modules (DSMs),

• a multipathing subsystem responsible for
run time path selection.

3.1.1 Device Mapper

The device mapper provides a highly modular
kernel framework for stacking block device fil-
ter drivers. These filter drivers are referred to as
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Figure 2: device mapper kernel architecture

target drivers and are comparable to multidisk
personality drivers. Target drivers interact with
the device mapper framework through a well
defined kernel interface. Target drivers add
value by filtering and/or redirecting read and
write block io requests directed to a mapped de-
vice to one or more target devices. Numerous
target drivers already exist, among them ones
for logical volume striping, linear concatena-
tion, and mirroring; software encryption; soft-
ware raid; and various other debug and test ori-
ented drivers.

The device mapper framework promotes a
clean separation of policy and mechanism be-
tween user and kernel space respectively. Tak-
ing this concept even further, this framework
supports the creation of a variety of services
based on adding value to the dispatching and/or
completion handling of block io requests where
the bulk of the policy and control logic can re-
side in user space and only the code actually
required to effectively filter or redirect a block

io request must be kernel resident.

The interaction between user and kernel de-
vice mapper components takes place through
device mapper library interfaces. While the de-
vice mapper library currently utilizes a variety
of synchronous ioctl(2) interfaces for this pur-
pose, fully backward compatible migration to
using Sysfs or Configfs instead is certainly pos-
sible.

The device mapper provides the kernel resident
mechanisms which support the creation of dif-
ferent combinations of stacked target drivers
for different block devices. Each io stack is rep-
resented at the top by a single mapped device.
Mapped device configuration is initiated from
user space via device mapper library interfaces.
Configuration information for each mapped de-
vice is passed into the kernel within a map or ta-
ble containing one or more targets or segments.
Each map segment consists of a start sector and
length and a target driver specific number of
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target driver parameters. Each map segment
identifies one or more target devices. Since all
sectors of a mapped device must be mapped,
there are no mapping holes in a mapped device.

Device mapper io stacks are configured in
bottom-up fashion. Target driver devices are
stacked by referencing a lower level mapped
device as a target device of a higher level
mapped device. Since a single mapped device
may map to one or more target devices, each
of which may themselves be a mapped device,
a device mapper io stack may be more accu-
rately viewed as an inverted device tree with a
single mapped device as the top or root node
of the inverted tree. The leaf nodes of the tree
are the only target devices which are not de-
vice mapper managed devices. The root node
is only a mapped device. Every non-root, non-
leaf node is both a mapped and target device.
The minimum device tree consists of a single
mapped device and a single target device. A
device tree need not be balanced as there may
be device branches which are deeper than oth-
ers. The depth of the tree may be viewed as the
tree branch which has the maximum number of
transitions from the root mapped device to leaf
node target device. There are no design limits
on either the depth or breadth of a device tree.

Although each target device at each level of
a device mapper tree is visible and accessible
outside the scope of the device mapper frame-
work, concurrent open of a target device for
other purposes requiring its exclusive use such
as is required for partition management and
file system mounting is prohibited. Target de-
vices are exclusively recognized or claimed by
a mapped device by being referenced as a tar-
get of a mapped device. That is, a target de-
vice may only be used as a target of a single
mapped device. This restriction prohibits both
the inclusion of the same target device within
multiple device trees and multiple references to
the same target device within the same device

tree, that is, loops within a device tree are not
allowed.

It is strictly the responsibility of user space
components associated with each target driver
to

• discover the set of associated target de-
vices associated with each mapped device
managed by that driver

• create the mapping tables containing this
configuration information

• pass the mapping table information into
the kernel

• possibly save this mapping information in
persistent storage for later retrieval.

The multipath path configurator fulfills this
role for the multipathing target driver. The
lvm(8) , dmraid(8) , and dmsetup(8)
commands perform these tasks for the logical
volume management, software raid, and the de-
vice encryption target drivers respectively.

While the device mapper registers with the ker-
nel as a block device driver, target drivers in
turn register callbacks with the device map-
per for initializing and terminating target de-
vice metadata; suspending and resuming io on
a mapped device; filtering io dispatch and io
completion; and retrieving mapped device con-
figuration and status information. The device
mapper also provides key services, (e.g., io sus-
pension/resumption, bio cloning, and the prop-
agation of io resource restrictions), for use by
all target drivers to facilitate the flow of io dis-
patch and io completion events through the de-
vice mapper framework.

The device mapper framework is itself a com-
ponent driver within the outermostgeneric_
make_request framework for block de-
vices. The generic_make_request
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framework also provides for stacking block de-
vice filter drivers. Therefore, given this archi-
tecture, it should be at least architecturally pos-
sible to stack device mapper drivers both above
and below multidisk drivers for the same target
device.

The device mapper processes all read and write
block io requests which pass through the block
io subsystem’sgeneric_make_request
and/orsubmit_bio interfaces and is directed
to a mapped device. Architectural symmetry
is achieved for io dispatch and io completion
handling since io completion handling within
the device mapper framework is done in the
inverse order of io dispatch. All read/write
bios are treated as asynchronous io within all
portions of the block io subsystem. This de-
sign results in separate, asynchronous and in-
versely ordered code paths through both the
generic_make_request and the device
mapper frameworks for both io dispatch and
completion processing. A major impact of this
design is that it is not necessary to process ei-
ther an io dispatch or completion either imme-
diately or in the same context in which they are
first seen.

Bio movement through a device mapper de-
vice tree may involve fan-out on bio dispatch
and fan-in on bio completion. As a bio is dis-
patched down the device tree at each mapped
device, one or more cloned copies of the bio
are created and sent to target devices. The same
process is repeated at each level of the device
tree where a target device is also a mapped
device. Therefore, assuming a very wide and
deep device tree, a single bio dispatched to a
mapped device can branch out to spawn a prac-
tically unbounded number of bios to be sent
to a practically unbounded number of target
devices. Since bios are potentially coalesced
at the device at the bottom of thegeneric_
make_request framework, the io request(s)
actually queued to one or more target devices

at the bottom may bear little relationship to the
single bio initially sent to a mapped device at
the top. For bio completion, at each level of
the device tree, the target driver managing the
set of target devices at that level consumes the
completion for each bio dispatched to one of its
devices, and passes up a single bio completion
for the single bio dispatched to the mapped de-
vice. This process repeats until the original bio
submitted to the root mapped device is com-
pleted.

The device mapper dispatches bios recursively
from top (root node) to bottom (leaf node)
through the tree of device mapper mapped and
target devices in process context. Each level
of recursion moves down one level of the de-
vice tree from the root mapped device to one
or more leaf target nodes. At each level, the
device mapper clones a single bio to one or
more bios depending on target mapping infor-
mation previously pushed into the kernel for
each mapped device in the io stack since a
bio is not permitted to span multiple map tar-
gets/segments. Also at each level, each cloned
bio is passed to the map callout of the target
driver managing a mapped device. The target
driver has the option of

1. queuing the io internal to that driver to be
serviced at a later time by that driver,

2. redirecting the io to one or more different
target devices and possibly a different sec-
tor on each of those target devices, or

3. returning an error status for the bio to the
device mapper.

Both the first or third options stop the recursion
through the device tree and thegeneric_
make_request framework for that matter.
Otherwise, a bio being directed to the first tar-
get device which is not managed by the device
mapper causes the bio to exit the device mapper
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framework, although the bio continues recurs-
ing through thegeneric_make_request
framework until the bottom device is reached.

The device mapper processes bio completions
recursively from a leaf device to the root
mapped device in soft interrupt context. At
each level in a device tree, bio completions are
filtered by the device mapper as a result of redi-
recting the bio completion callback at that level
during bio dispatch. The device mapper callout
to the target driver responsible for servicing a
mapped device is enabled by associating a tar-
get_io structure with the bi_private field of a
bio, also during bio dispatch. In this fashion,
each bio completion is serviced by the target
driver which dispatched the bio.

The device mapper supports a variety of
push/pull interfaces to enhance communication
across the system call boundary. Each of these
interfaces is accessed from user space via the
device mapper library which currently issues
ioctls to the device mapper character interface.
The occurrence of target driver derived io re-
lated events can be passed to user space via the
device mapper event mechanism. Target driver
specific map contents and mapped device sta-
tus can be pulled from the kernel using device
mapper messages. Typed messages and status
information are encoded as ASCII strings and
decoded back to their original form according
dictated by their type.

3.1.2 Multipath Target Driver

A multipath target driver is a component driver
of the device mapper framework. Currently, the
multipath driver is position dependent within a
stack of device mapper target drivers: it must be
at the bottom of the stack. Furthermore, there
may not be other filter drivers, (e.g., multidisk),
stacked underneath it. It must be stacked im-

mediately atop driver which services a block
request queue, for example,/dev/sda .

The multipath target receives configuration in-
formation for multipath mapped devices in the
form of messages sent from user space through
device mapper library interfaces. Each message
is typed and may contain parameters in a po-
sition dependent format according to message
type. The information is transferred as a sin-
gle ASCII string which must be encoded by the
sender and decoded by the receiver.

The multipath target driver provides path
failover and path load sharing. Io failure on one
path to a device is captured and retried down an
alternate path to the same device. Only after
all paths to the same device have been tried and
failed is an io error actually returned to the io
initiator. Path load sharing enables the distri-
bution of bios amongst the paths to the same
device according to a path load sharing policy.

Abstractions are utilized to represent key en-
tities. A multipath corresponds to a device.
A logical path to a device is represented by a
path. A path group provides a way to associate
paths to the same device which have similar at-
tributes. There may be multiple path groups
associated with the same device. A path selec-
tor represents a path load sharing algorithm and
can be viewed as an attribute of a path group.
Round robin based path selection amongst the
set of paths in the same path group is currently
the only available path selector. Storage sys-
tem specific behavior can be localized within a
multipath hardware handler.

The multipath target driver utilizes two sub-
component frameworks to enable both storage
system specific behavior and path selection al-
gorithms to be localized in separate modules
which may be loaded and managed separately
from the multipath target driver itself.
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3.1.3 Device Specific Module

A storage system specific component can be as-
sociated with each target device type and is re-
ferred to as a hardware handler or Device Spe-
cific Module (DSM). A DSM allows for the
specification of kernel resident storage system
specific path group initialization, io completion
filtering, and message handling. Path group
initialization is used to utilize storage system
specific actions to activate the passive interface
of an active-passive storage system. Storage
system specific io completion filtering enables
storage system specific error handling. Storage
system specific message handling enables stor-
age system specific configuration.

DSM type is specified by name in the multi-
path target driver map configuration string and
must refer to a DSM pre-loaded into the kernel.
A DSM may be passed paramters in the con-
figuration string. A hardware context structure
passed to each DSM enables a DSM to track
state associated with a particular device.

Associating a DSM with a block device type
is optional. The EMC CLARiion DSM is cur-
rently the only DSM.

3.1.4 Path Selection Subsystem

A path selector enables the distribution of io
amongst the set of paths in a single path group.

Path selector type is specified by name in the
multipath target driver map configuration string
and must refer to a path selector pre-loaded
into the kernel. A path selector may be passed
paramters in the configuration string. The path
selector context structure enables a path selec-
tor type to track state across multiple ios to the
paths of a path group.

Each path group must be associated with a path
selector. A single round robin path selector ex-
ists today.

3.2 User Modules

Figure 3 outlines the architecture of the user-
mode multipath tools. Multipath user space
components perform path discovery, path pol-
icy management and configuration, and path
health testing. The multipath configurator is re-
sponsible for discovering the network topology
for multipathed block devices and for updating
kernel resident multipath target driver config-
uration and state information. The multipath
daemon monitors the usability of paths both in
response to actual errors occurring in the kernel
and proactively via periodic path health test-
ing. Both components share path discovery
and path health testing services. Furthermore,
these services are implemented using an exten-
sible framework to facilitate multipath support
for new block device types, block devices from
new vendors, and new models. The kpartx tool
creates mapped devices for partitions of multi-
path managed block devices.

3.2.1 Multipath Configurator

Path discovery involves determining the set of
routes from a host to a particular block device
which is configured for multipathing. Path dis-
covery is implemented by scanning Sysfs look-
ing for block device names from a multipath
configuration file which designate block device
types eligible for multipathing. Each entry in
/sys/block corresponds to the gendisk for a dif-
ferent block device. As such, path discov-
ery is independent of whatever path transport
is used between host and device. Since de-
vices are assumed to have an identifier attribute
which is unique in both time and space, the
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Figure 3: multipath tools architecture
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cumulative set of paths found from Sysfs are
coalesced based on device UID. Configuration
driven multipath attributes are setup for each of
these paths.

The multipath configurator synchronizes path
configuration and path state information across
both user and kernel multipath components.
The current configuration path state is com-
pared with the path state pulled from the mul-
tipath target driver. Most discrepancies are
dealt with by pushing the current configuration
and state information into the multipath target
driver. This includes creating a new multipath
map for a newly discovered device; changing
the contents of an existing multipath map for a
newly discovered path to a known device, for
a path to a known device which is no longer
visible, and for configuration driven multipath
attributes which may have changed; and for up-
dating the state of a path.

Configuration and state information are passed
between user and kernel space multipath com-
ponents as position dependent information as a
single string. The entire map for a mapped de-
vice is transferred as a single string and must be
encoded before and decoded after the transfer.

The multipath configurator can be invoked
manually at any time or automatically in reac-
tion to a hotplug event generated for a configu-
ration change for a block device type managed
by the multipathing subsystem. Configuration
changes involve either the creation of a new
path or removal of an existing path.

3.2.2 Multipath Daemon

The multipath daemon actively tests paths and
reacts to changes in the multipath configura-
tion.

Periodic path testing performed by the multi-
path daemon is responsible for both restoring

failed paths to an active state and proactively
failing active paths which fail a path test. Cur-
rently, while the default is to test all active and
failed paths for all devices every 5 seconds, this
interval can be changed via configuration direc-
tive in the multipath configuration file. The cur-
rent non-optimized design could be enhanced
to reduce path testing overhead by

• testing the physical transport components
instead of the logical ones

• varying the periodic testing interval.

An example of the former for SCSI block de-
vices is to

• associate across all devices those paths
which utilize common SCSI initiators and
targets and

• for each test interval test only one path for
every unique combination of initiator and
target.

An example of the latter is to vary the periodic
test interval in relationship to the recent past
history of the path or physical components, that
is, paths which fail often get tested more fre-
quently.

The multipath daemon learns of and reacts to
changes in both the current block device con-
figuration and the kernel resident multipathing
configuration. The addition of a new path or
the removal of an already existing path to an
already managed block device is detected over
a netlink socket as a uevent triggered callback
which adds or removes the path to or from
the set of paths which will be actively tested.
Changes to the kernel resident multipathing
state are detected as device-mapper generated
event callbacks. Events of this kind invole
block io errors, path state change, and changes
in the highest priority path group for a mapped
device.
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3.2.3 Multipath Framework

The multipath framework enables the use of
block device vendor specific algorithms for

1. deriving a UID for identifying the physical
device associated with a logical path

2. testing the health of a logical path

3. determining how to organize the logical
paths to the same device into separate sets,

4. assigning a priority to each path

5. determining how to select the next path
within the same path set

6. specifying any kernel resident device spe-
cific multipathing capabilities.

While the last two capabilities must be ker-
nel resident, the remaining user resident capa-
bilities are invoked either as functions or ex-
ecutables. All but item four and item six are
mandatory. A built-in table specifying each
of these capabilities for each supported block
device vendor and type may, but need not be,
overridden by configuration directives in a mul-
tipath configuration file. Block device vendor
and type are derived from attributes associated
with the Sysfs device file probed during device
discovery. Configuration file directives may
also be used to configure these capabilities for
a specific storage system instance.

A new storage system is plugged into this
user space multipath framework by specifying
a configuration table or configuration file en-
try for the storage system and providing any of
the necessary, but currently missing mechanism
needed to satisfy the six services mentioned
above for the storage system. The service selec-
tions are specified as string or integer constants.
In some cases, the selection is made from a re-
stricted domain of options. In other cases a new

mechanism can be utilized to provide the re-
quired service. Services which are invoked as
functions must be integrated into the multipath
component libraries while those invoked as ex-
ecutables are not so restricted. Default options
provided for each service may also be overrid-
den in the multipath configuration file.

Since the service which derives a UID for a
multipath device is currently invoked from the
multipath framework as an executable, the ser-
vice may be, and in fact is now external to the
multipath software. All supported storage sys-
tems (keep in mind they are all SCSI at the mo-
ment) utilizescsi_id(8) to derive a UID for
a SCSI logical unit. Almost all of these cases
obtain the UID directly from the Vendor Spec-
ified Identifier field of an extended SCSI in-
quiry command using vital product page 0x83.
This is indeed the default option. Although
scsi_id is invoked as an executable today,
a scsi_id service library appears to be in-
plan, thereby allowing in-context UID genera-
tion from this framework in the near future.

Path health testing is invoked as a service func-
tion built into the libcheckers multipath library.
While SCSI specific path testing functions al-
ready exist in this library based on reading sec-
tor 0 (this is the default) and issuing a TUR,
path health testing can be specified to be stor-
age system specific but must be included within
libcheckers.

The selection of how to divide up the paths to
the same device into groups is restricted to a set
of five options:

• failover

• multibus

• group-by-priority

• group-by-serial
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• group-by-node-name.

Failover, the default policy, implies one path
per path group and can be used to disallow path
load sharing while still providing path failover.
Multibus, by far the most commonly selected
option, implies one path group for all paths and
is used in most cases when access is symmet-
ric across all paths, e.g., active-active storage
systems. Group-by-priority implies a group-
ing of paths with the same priority. This op-
tion is currently used only by the active-passive
EMC CLARiion storage array and provides the
capability to assign a higher priority to paths
connecting to the portion of the storage sys-
tem which has previously been assigned to be
the default owner of the SCSI logical unit.
Group-by-serial implies a grouping based on
the Vendor Specified Identifier returned by a
VPD page 0x80 extended SCSI inquiry com-
mand. This is a good way to group paths for an
active-passive storage system based on which
paths are currently connected to the active por-
tion of the storage system for the SCSI logical
unit. Group-by-node-name currently implies a
grouping by by SCSI target.

Paths to the same device can be assigned
priorities in order to both enable the group-
by-priority path grouping policy and to af-
fect path load sharing. Path group priority
is a summation of the priority for each ac-
tive path in the group. An io is always di-
rected to a path in the highest priority path
group. Theget_priority service is cur-
rently invoked as an executable. The de-
fault option is to not assign a priority to any
path, which leads to all path groups being
treated equally. Thepp_balance_paths
executable assigns path priority in order to at-
tempt to balance path usage for all multipath
devices across the SCSI targets to the same
storage system. Several storage system specific
path priority services are also provided.

Path selectors and hardware contexts are spec-
ified by name and must refer to specific kernel
resident services. A path selector is mandatory
and currently the only option is round-robin. A
hardware context is by definition storage sys-
tem specific. Selection of hardware context is
optional and only the EMC CLARiion storage
system currently utilizes a hardware context.
Each may be passed parameters, specified as a
count followed by each parameter.

3.2.4 Kpartx

The kpartx utility creates device-mapper
mapped devices for the partitions of multipath
managed block devices. Doing so allows a
block device partition to be managed within
the device mapper framework as would be
any whole device. This is accomplished by
reading and parsing a target device’s partition
table and setting up the device-mapper table
for the mapped device from the start address
and length fields of the paritition table entry
for the partition in question. Kpartx uses the
same devmapper library interfaces as does the
multipath configurator in order to create and
initialize the mapped device.

4 Interaction Amongst Key Kernel
and User Components

The interaction between key user and kernel
multipath components will be examined while
considering several use cases. Device and
path configuration will be considered first. Io
scheduling and io failover will then be exam-
ined in detail.
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4.1 Block Device and Path Discovery

Device discovery consists of obtaining infor-
mation about both the current and previous
multipath device configurations, resolving any
differences, and pushing the resultant updates
into the multipath target driver. While these
tasks are primarily the responsibility of the
multipath configurator, many of the device dis-
covery services are in fact shared with the mul-
tipath daemon.

The device discovery process utilizes the com-
mon services of the user space multipath frame-
work. Framework components to identify,
test, and prioritize paths are selected from pre-
established table or config driven policy options
based on device attributes obtained from prob-
ing the device’s Sysfs device file.

The discovery of the current configuration is
done by probing block device nodes created
in Sysfs. A block device node is created by
udev in reaction to a hotplug event generated
when a block device’s request queue is regis-
tered with the kernel’s block subsystem. Each
device node corresponds to a logical path to a
block device since no kernel resident compo-
nent other than the multipath target driver is
multipath cognizant.

The set of paths for the current configuration
are coalesced amongst the set of multipath
managed block devices. Current path and de-
vice configuration attributes are retrieved con-
figuration file and/or table entries.

The previous device configuration stored in the
collective set of multipath mapped device maps
is pulled from the multipath target driver using
target driver specific message ioctls issued by
the device-mapper library.

Discrepancies between the old and new device
configuration are settled and the updated device

configuration and state information is pushed
into the multipath target driver one device at a
time. Several use cases are enumerated below.

• A new mapped device is created for a mul-
tipath managed device from the new con-
figuration which does not exist in the old
configuration.

• The contents of an existing multipath map
are updated for a newly discovered path
to a known device, for a path to a known
device which is no longer visible and
for multipath attributes which may have
changed. Examples of multipath attributes
which can initiate an update of the kernel
multipath device configuration are enu-
merated below.

– device size

– hardware handler

– path selector

– multipath feature parameters

– number of path groups

– assignment of paths to path groups

– highest priority path group

• Path state is updated based on path testing
done during device discovery.

Configuration updates to an existing multipath
mapped device involve the suspension and sub-
sequent resumption of io around the complete
replacement of the mapped device’s device-
mapper map. Io suspension both blocks all new
io to the mapped device and flushes all io from
the mapped device’s device tree. Path state up-
dates are done without requiring map replace-
ment.

Hotplug initiated invocation of the multipath
configurator leads to semi-automated multipath
response to post-boot time changes in the block
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device configuration. For SCSI target devices,
a hotplug event is generated for a SCSI target
device when the device’s gendisk is registered
after the host attach of a SCSI logical unit and
unregistered after the host detach of a SCSI log-
ical unit.

4.2 Io Scheduling

The scheduling of bios amongst the multiple
multipath target devices for the same multi-
path mapped device is controlled by both a
path grouping policy and a path selection pol-
icy. While both path group membership and
path selection policy assignment tasks are per-
formed in user space, actual io scheduling is
implemented via kernel resident mechanism.

Paths to the same device can be separated into
path groups, where all paths in the same group
have similar path attributes. Both the number
of path groups and path membership within a
group are controlled by the multipath configu-
rator based on one of five possible path group-
ing policies. Each path grouping policy uses
different means to assign a path to a path group
in order to model the different behavior in the
physical configuration. Each path is assigned
a priority via a designated path priority callout.
Path group priority is the summation of the path
priorities for each path in the group. Each path
group is assigned a path selection policy gov-
erning the selection of the next path to use when
scheduling io to a path within that group.

Path group membership and path selection in-
formation are pushed into the kernel where it is
then utilized by multipath kernel resident com-
ponents to schedule each bio on one of mul-
tipath paths. This information consists of the
number of path groups, the highest priority path
group, the path membership for each group
(target devices specified bydev_t ), the name
of the path selection policy for each group, a

count of optional path selection policy param-
eters, and the actually path selection policy pa-
rameters if the count value is not zero. As is
the case for all device mapper map contents
passed between user and kernel space, the col-
lective contents is encoded and passed as a sin-
gle string, and decoded on the other side ac-
cording to its position dependent context.

Path group membership and path selection in-
formation is pushed into the kernel both when a
multipath mapped device is first discovered and
configured and later when the multipath config-
urator detects that any of this information has
changed. Both cases involve pushing the infor-
mation into the multipath target driver within
a device mapper map or table. The latter case
also involves suspending and resuming io to the
mapped device during the time the map is up-
dated.

Path group and path state are also pushed into
the kernel by the multipath configurator inde-
pendently of a multipath mapped device’s map.
A path’s state can be either active or failed. Io
is only directed by the multipath target driver
to a path with an active path state. Currently
a path’s state is set to failed either by the mul-
tipath target driver after a single io failure on
the path or by the multipath configurator after
a path test failure. A path’s state is restored
to active only in user space after a multipath
configurator initiated path test succeeds for that
path. A path group can be placed into bypass
mode, removed from bypass mode, or made the
highest priority path group for a mapped de-
vice. When searching for the next path group to
use when there are no active paths in the highest
priority path group, unless a new path group has
been designated as the highest priority group,
all path groups are searched. Otherwise, path
groups in bypass mode are first skipped over
and selected only if there are no path groups
for the mapped device which are not in bypass
mode.
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The path selection policy name must refer to
an already kernel resident path selection policy
module. Path selection policy modules register
half dozen callbacks with the multipath target
driver’s path selection framework, the most im-
portant of which is invoked in the dispatch path
of a bio by the multipath target driver to select
the next path to use for the bio.

Io scheduling triggered during the multipath
target driver’s bio dispatch callout from the
device mapper framework consists of first se-
lecting a path group for the mapped device in
question, then selecting the active path to use
within that group, followed by redirecting the
bio to the selected path. A cached value of the
path group to use is saved with each multipath
mapped device in order to avoid its recalcula-
tion for each bio redirection to that device. This
cached value is initially set from to the highest
priority path group and is recalculated if either

• the highest priority path group for a
mapped device is changed from user space
or

• the highest priority path group is put into
bypassed mode either from kernel or user
space multipathing components.

A cached value of the path to use within the
highest priority group is recalculated by invok-
ing the path selection callout of a path selection
policy whenever

• a configurable number of bios have al-
ready been redirected on the current path,

• a failure occurs on the current path,

• any other path gets restored to a usable
state, or

• the highest priority path group is changed
via either of the two methods discussed
earlier.

Due to architectural restrictions and the rela-
tively (compared with physical drivers) high
positioning of the multipath target driver in the
block io stack, it is difficult to implement path
selection policies which take into account the
state of shared physical path resources without
implementing significant new kernel resident
mechanism. Path selection policies are limited
in scope to the path members of a particular
path group for a particular multipath mapped
device. This multipath architectural restriction
together with the difficulty in tracking resource
utilization for physical path resources from a
block level filter driver makes it difficult to im-
plement path selection policies which could at-
tempt to minimize the depth of target device re-
quest queues or the utilization of SCSI initia-
tors. Path selectors tracking physical resources
possibly shared amongst multiple hosts, (e.g.,
SCSI targets), face even more difficulties.

The path selection algorithms are also impacted
architecturally by being positioned above the
point at the bottom of the block io layer where
bios are coalesced into io requests. To help
deal with this impact, path reselection within
a priority group is done only for every n bios,
where n is a configurable repeat count value as-
sociated with each use of a path selection pol-
icy for a priority group. Currently the repeat
count value is set to 1000 for all cases in or-
der to limit the adverse throughput effects of
dispersing bios amongst multiple paths to the
same device, thereby negating the ability of the
block io layer to coalesce these bios into larger
io requests submitted to the request queue of
bottom level target devices.

A single round-robin path selection policy ex-
ists today. This policy selects the least recently
used active path in the current path group for
the particular mapped device.
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4.3 Io Failover

While actual failover of io to alternate paths is
performed in the kernel, path failover is con-
trolled via configuration and policy information
pushed into the kernel multipath components
from user space multipath components.

While the multipath target driver filters both
io dispatch and completion for all bios sent to
a multipath mapped device, io failover is trig-
gered when an error is detected while filtering
io completion. An understanding of the error
handling taking place underneath the multipath
target driver is useful at this point. Assuming
SCSI target devices as leaf nodes of the device
mapper device tree, the SCSI mid-layer fol-
lowed by the SCSI disk class driver each parse
the result field of thescsi_cmd structure set
by the SCSI LLDD. While parsing by the SCSI
mid-layer and class driver filter code filter out
some error states as being benign, all other
cases lead to failing all bios associated with the
io request corresponding to the SCSI command
with -EIO. For those SCSI errors which pro-
vide sense information, SCSI sense key, Addi-
tional Sense Code (ASC), and Additional Sense
Code Qualifier (ASCQ) byte values are set in
the bi_error field of each bio. The -EIO,
SCSI sense key, ASC, and ASCQ are propa-
gated to all parent cloned bios and are available
for access by the any target driver managing tar-
get devices as the bio completions recurse back
up to the top of the device tree.

Io failures are first seen as a non-zero error sta-
tus, (i.e., -EIO), in the error parameter passed to
the multipath target driver’s io completion fil-
ter. This filter is called as a callout from the
device mapper’s bio completion callback asso-
ciated with the leaf node bios. Assuming one
exists, all io failures are first parsed by the stor-
age system’s hardware context’s error handler.
Error parsing drives what happens next for the
path, path group, and bio associated with the io

failure. The path can be put into a failed state or
left unaffected. The path group can be placed
into a bypassed state or left unaffected. The
bio can be queued for retry internally within
the multipath target driver or failed. The ac-
tions on the path, the path group, and the bio
are independent of each other. A failed path is
unusable until restored to a usable state from
the user space multipath configurator. A by-
passed path group is skipped over when search-
ing for a usable path, unless there are no usable
paths found in other non-bypassed path groups.
A failed bio leads to the failure of all parent
cloned bios at higher levels in the device tree.

Io retry is done exclusively in a dedicated mul-
tipath worker thread context. Using a worker
thread context allows for blocking in the code
path of an io retry which requires a path
group initialization or which gets dispatched
back to generic_make_request —either
of which may block. This is necessary since
the bio completion code path through the de-
vice mapper is usually done within a soft in-
terrupt context. Using a dedicated multipath
worker thread avoids delaying the servicing of
non-multipath related work queue requests as
would occur by using the kernel’s default work
queue.

Io scheduling for path failover follows basically
the same path selection algorithm as that for an
initial io dispatch which has exhausted its path
repeat count and must select an alternate path.
The path selector for the current path group se-
lects the best alternative path within that path
group. If none are available, the next highest
priority path group is made current and its path
selector selects the best available path. This al-
gorithm iterates until all paths of all path groups
have been tried.

The device mapper’s kernel resident event
mechanism enables user space applications to
determine when io related events occur in the



2005 Linux Symposium • 163

kernel for a mapped device. Events are gener-
ated by the target driver managing a particular
mapped device. The event mechanism is ac-
cessed via a synchronous device mapper library
interface which blocks a thread in the kernel in
order to wait for an event associated with a par-
ticular mapped device. Only the event occur-
rence is passed to user space. No other attribute
information of the event is communicated.

The occurrence of a path failure event (along
with path reinstatement and a change in the
highest priority path group) is communicated
from the multipath target driver to the multipath
daemon via this event mechanism. A separate
multipath daemon thread is allocated to wait for
all multipath events associated with each mul-
tipath mapped device. The detection of any
multipath event causes the multipath daemon to
rediscover its path configuration and synchro-
nize its path configuration, path state, and path
group state information with the multipath tar-
get driver’s view of the same.

A previously failed path is restored to an active
state only as a result of passing a periodically
issued path health test issued by the multipath
daemon for all paths, failed or active. This path
state transition is currently enacted by the mul-
tipath daemon invoking the multipath configu-
rator as an executable.

A io failure is visible above the multipathing
mapped device only when all paths to the same
device have been tried once. Even then, it is
possible to configure a mapped device to queue
for an indefinite amount of time such bios on a
queue specific to the multipath mapped device.
This feature is useful for those storage systems
which can possibly enter a transient all-paths-
down state which must be ridden through by
the multipath software. These bios will remain
where they are until the mapped device is sus-
pended, possibly done when the mapped de-
vice’s map is updated, or when a previously
failed path is reinstated. There are no practical

limits on either the amount of bios which may
be queued in this manner nor on the amount
of time which these bios remain queued. Fur-
thermore, there is no congestion control mech-
anism which will limit the number of bios actu-
ally sent to any device. These facts can lead
to a significant amount of dirty pages being
stranded in the page cache thereby setting the
stage for potential system deadlock if memory
resources must be dynamically allocated from
the kernel heap anywhere in the code path of
reinstating either the map or a usable path for
the mapped device.

5 Future Enhancements

This section enumerates some possible en-
hancements to the multipath implementation.

5.1 Persistent Device Naming

The cryptic name used for the device file as-
sociated with a device mapper mapped de-
vice is often renamed by a user space compo-
nent associated with the device mapper target
driver managing the mapped device. The mul-
tipathing subsystem sets up udev configuration
directives to automatically rename this name
when a device mapper device file is first cre-
ated. The dm-<minor #> name is changed to
the ASCII representation of the hexi-decimal
values for each 4-bit nibble of the device’s UID
utilized by multipath. Yet, the resultant multi-
path device names are still cryptic, unwieldly,
and their use is prone to error. Although an
alias name may be linked to each multipath de-
vice, the setup requires manipulcation of the
multipath configuration file for each device.
The automated management of multipath alias
names by both udev and multipath components
seems a reasonable next step.
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It should be noted that the Persistent Storage
Device Naming specification from the Stor-
age Networking SIG of OSDL is attempting to
achieve consistent naming across all block de-
vices.

5.2 Event Mechanism

The device mapper’s event mechanism enables
user space applications to determine when io
related events occur in the kernel for a mapped
device. Events are generated by the target
driver managing a particular mapped device.
The event mechanism is currently accessed via
a synchronous device mapper library interface
which blocks a thread in the kernel in order to
wait for an event associated with a particular
mapped device. Only the event occurrence is
passed back to user space. No other attribute
information of the event is communicated.

Potential enhancements to the device mapper
event mechanism are enumerated below.

1. Associating attributes with an event and
providing an interface for communicating
these attributes to user space will improve
the effectiveness of the event mechanism.
Possible attributes for multipath events in-
clude (1) the cause of the event, (e.g., path
failure or other), (2) error or status in-
formation associated with the event, (e.g.,
SCSI sense key/ASC/ASCQ for a SCSI er-
ror), and (3) an indication of the target de-
vice on which the error occurred.

2. Providing a multi-event wait synchronous
interface similar to select(2) or poll(2) will
significantly reduce the thread and mem-
ory resources required to use the event
mechanism. This enhancement will allow
a single user thread to wait on events for
multiple mapped devices.

3. A more radical change would be to inte-
greate the device-mappers event mecha-
nism with the kernel’s kobject subsystem.
Events could be send as uevents to be re-
ceived over anAF_NETLINK socket.

5.3 Monitoring of io via Iostat(1)

Block io to device mapper mapped devices can-
not currently be monitored viaiostat(1)
or /proc/diskstats . Although an io to
a mapped device is tracked on the actual tar-
get device(s) at the bottom of thegeneric_
make_request device tree, io statistics are
not tracked for any device mapper mapped de-
vices positioned within the device tree.

Io statistics should be tracked for each device
mapper mapped device positioned on an io
stack. Multipathing must account for possibly
multiple io failures and subsequent io retry.

5.4 IO Load Sharing

Additional path selectors will be implemented.
These will likely include state based ones
which select a path based on the minimum
number of outstanding bios or minimum round
trip latency. While the domain for this criteria
is likely a path group for one mapped device, it
may be worth looking sharing io load across ac-
tual physical components, (e.g., SCSI initiator
or target), instead.

5.5 Protocol Agnostic Multipathing

Achieving protocol agnostic multipathing will
require the removal of some SCSI specific
affinity in the kernel, (e.g., SCSI-specific error
information in the bio), and user, (e.g., path dis-
covery), multipath components.
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5.6 Scalable Path Testing

Proactive path testing could be enhanced to
support multiple path testing policies and new
policies created which provide improved re-
source scalability and improve the predictabil-
ity of path failures. Path testing could empha-
size the testing of the physical components uti-
lized by paths instead of simply exhaustively
testing every logical path. For example, the
availability through Sysfs of path transport spe-
cific attributes for SCSI paths could will make
it easier to group paths which utilize common
physical components. Additionally, the fre-
quency of path testing can be based on the re-
cent reliability of a path, that is, frequently and
recently failed paths are more often.

6 Architectural Issues

This section describes several critical architec-
tural issues.

6.1 Elevator Function Location

The linux block layer performs the sorting and
merging of IO requests (elevator modules) in
a layer just above the device driver. The dm
device mapper supports the modular stacking
of multipath and RAID functionality above this
layer.

At least for the device mapper multipath mod-
ule, it is desirable to either relocate the elevator
functionality to a layer above the device map-
per in the IO stack, or at least to add an elevator
at that level.

An example of this need can be seen with a
multipath configuration where there are four

equivalent paths between the host and each tar-
get. Assume also there is no penalty for switch-
ing paths. In this case, the multipath module
wants to spread IO evenly across the four paths.
For each IO, it may choose a path based on
which path is most lightly loaded.

With the current placement of the elevator then,
IO requests for a given target tend to be spread
evenly across each of the four paths to that tar-
get. This reduces the chances for request sort-
ing and merging.

If an elevator were placed in the IO stack above
the multipath layer, the IO requests coming
into the multipath would already be sorted and
merged. IO requests on each path would at least
have been merged. When IO requests on differ-
ent paths reach their common target, the IO’s
will may nolonger be in perfect sorted order.
But they will tend to be near each other. This
should reduce seeking at the target.

At this point, there doesn’t seem to be any
advantage to retaining the elevator above the
device driver, on each path in the multi-
path. Aside from the additional overhead
(more memory occupied by the queue, more
plug/unplug delay, additional cpu cycles) there
doesn’t seem to be any harm from invoking the
elevator at this level either. So it may be sat-
isfactory to just allow multiple elevators in the
IO stack.

Regarding other device mapper targets, it is not
yet clear whether software RAID would benefit
from having elevators higher in the IO stack, in-
terspersed between RAID levels. So, it maybe
be sufficient to just adapt the multipath layer to
incorporate an elevator interface.

Further investigation is needed to determine
what elevator algorithms are best for multi-
path. At first glance, the Anticipatory sched-
uler seems inappropriate. It’s less clear how
the deadline scheduler of CFQ scheduler would
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perform in conjunction with multipath. Con-
sideration should be given to whether a new IO
scheduler type could produce benefits to multi-
path IO performance.

6.2 Memory Pressure

There are scenarios where all paths to a logical
unit on a SCSI storage system will appear to be
failed for a transient period of time. One such
expected and transient all paths down use case
involves an application transparent upgrade of
the micro-code of a SCSI storage system. Dur-
ing this operation, it is expected that for a rea-
sonably short period of time likely bounded by
a few minutes, all paths to a logical unit on the
storage system in question will appear to a host
to be failed. It is expected that a multipathing
product will be capable of riding through this
scenario without failing ios back to applica-
tions. It is expected that the multipathing soft-
ware will both detect when one or more of the
paths to such a device become physically us-
able again, do what it takes to make the paths
usable, and retry ios which failed during the all
paths down time period.

If this period coincides with a period of ex-
treme physical memory congestion it must still
be possible for multipath components to enable
the use of these paths as they become physi-
cally usable. While a kernel resident conges-
tion control mechanism based on block request
allocation exists to ward off the over commit-
tal of page cache memory to any one target
device, there are no congestion control mech-
anisms that take into account either the use of
multiple target devices for the same mapped de-
vice or the internal queuing of bios within de-
vice mapper target drivers.

The multipath configuration for several stor-
age systems must include the multipath feature
queue_if_no_path in order to not imme-
diately return to an application an io request

whose transfer has failed on every path to its
device. Yet, the use of this configuration direc-
tive can result in the queuing of an indefinite
number of bios each for an indefinite period of
time when there are no usable paths to a de-
vice. When coincident with a period of heavy
asynchronous write-behind in the page cache,
this can lead to lots of dirty page cache pages
for the duration of the transient all paths down
period.

Since memory congestion states like this can-
not be detected accurately, the kernel and user
code paths involved with restoring a path to
a device must not ever execute code which
could result in blocking while an io is issued to
this device. A blockable (i.e.,__GFP_WAIT)
memory allocation request in this code path
could block for write-out of dirty pages to this
device from the synchronous page reclaim al-
gorithm of__alloc_pages . Any modifica-
tion to file system metadata or data could block
flushing modified pages to this device. Any of
these actions have the potential of deadlocking
the multipathing software.

These requirements are difficult to satisfy for
multipathing software since user space inter-
vention is required to restore a path to a usable
state. These requirements apply to all user and
kernel space multipathing code (and code in-
voked by this code) which is involved in testing
a path and restoring it to a usable state. This
precludes the use of fork, clone, or exec in the
user portion of this code path. Path testing ini-
tiated from user space and performed via ioctl
entry to the block scsi ioctl code must also con-
form to these requirements.

The pre-allocation of memory resources in or-
der to make progress for a single device at a
time is a common solution to this problem.
This approach may require special case code
for tasks such as the kernel resident path test-
ing. Furthermore, in addition to being “locked
to core,” the user space components must only
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invoke system calls and library functions which
also abide by these requirements. Possibly
combining these approaches with a bit of con-
gestion control applied against bios (to account
for the ones internally queued in device-mapper
target drivers) instead of or in addition to block
io requests and/or a mechanism for timing out
bios queued within the multipath target driver
as a result of thequeue_if_no_path mul-
tipath feature is a reasonable starting point.

7 Conclusion

This paper has analyzed both architecture and
design of the block device multipathing indige-
nous to linux. Several architectural issues and
potential enhancements have been discussed.

The multipathing architecture described in this
paper is actually implemented in several linux
distributions to be released around the time this
paper is being written. For example, SuSE
SLES 9 service pack 2 and Red Hat AS 4 up-
date 1 each support Linux multipathing. Fur-
thermore, several enhancements described in
this paper are actively being pursued.

Please referencehttp://christophe.
varoqui.free.fr and http:
//sources.redhat.com/dm for the
most up-to-date development versions of the
user- and kernel-space resident multipathing
software respectively. The first web site listed
also provides a detailed description of the
syntax for a multipathing device-mapper map.
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