
SNAP Computing and the X Window System

James Gettys
Hewlett-Packard Company

jim.gettys@hp.com

Abstract

Today’s computing mantra is “One keyboard,
one mouse, one display, one computer, one
user, one role, one administration”; in short,
one of everything. However, if several people
try to use the same computer today, or cross
adminstrative boundaries, or change roles from
work to home life, chaos generally ensues.

Several hardware technologies will soon push
this limited model of computing beyond the
breaking point. Projectors and physically large
flat panel displays have become affordable and
are about to take a leap in resolution[12]. Cell-
phone-size devices can now store many giga-
bytes of information, take high resolution pho-
tographs, have significant computation capabil-
ity, and are small enough toalwaysbe with you.

Ask yourself “Why can’t we sit with friends,
family, or coworkers in front of a large display
with audio system, and all use it at once?”

You should be able change roles or move lo-
cations, and reassociate with the local comput-
ing environment. The new mantra must become
‘many’ and ‘mobile’ everywhere ‘one’ has suf-
ficed in the past.

Change will be required in many areas from
base system, through the window system and
toolkits, and in applications to fully capitalize
on this vision.

1 Introduction

As much as three quarters of the cost of com-
puting in enterprise environments now goes to
system management and support; the hardware
and software purchase cost is well under half
of the total expense. In the some parts of the
developing world, expertise may be in shorter
supply than computers. Personally, I now man-
age three systems at home, in addition to three
for work. Clearly something needs to be done.

Project Athena[13], a joint project of Digital,
MIT, and IBM in the mid 1980’s, had the vi-
sion of centrally administrated, personal com-
puting, in which mobile students and faculty
could use whichever computer was most con-
venient or appropriate for their work. Out of
this project was born a number of technolo-
gies that we take for granted today, including
Kerberos[24], the X Window System[31], cen-
tral administration of configuration information
using Hesiod[18] (now mostly supplanted by
LDAP), and Zephyr[17], the first instant mes-
sage system.

Due to the lack of a critical mass of applica-
tions, UNIX divisions, and UNIX workstations
costing more than PC’s, the Athena environ-
ment did not reach critical mass in the market-
place, despite demonstrating much lower cost
of ownership, due to much easier system man-
agement. The Wintel environment has caused
almost everyone to become poor system man-

• 133 •



134 • SNAP Computing and the X Window System

agers of an ever-increasing number of comput-
ers, and it is now clear that Athena had more
right than wrong about it. The “solution” of
having to carry laptops everywhere is poor, at
best. Some of Athena’s technologies escaped
and became significant parts of our computing
environment as individual components, but the
overall vision was lost.

Athena’s vision was right on many points:

• People are mobile, the computing infras-
tructure is not.

• People should be able to use any comput-
ing system in the environment so long as
they are authorized.

• There is a mixture of personally owned
and organizationally owned equipment
and facilities.

• Authentication enables an organization to
control its resources.

• Collaborative tools, either realtime or non-
realtime, are central to everyone’s lives.

• Your information should be available to
you wherever you go.

The Fedora Stateless Project[11] is resurrecting
most aspects of the Athena environment and
extending it to the often connected laptop; and
the LTSP project[6] uses X terminal technol-
ogy for low system management overhead, thin
client computing. These technologies reduce
cost of ownership due to system management
to something much closer to proportional to the
number of people served rather than the number
of computers. Deployment of systems based
on these technologies, the continuing declin-
ing cost of hardware, and open source systems’
zero software cost, will enable computers to be
located wherever may be convenient. We need

to go beyond the Athena vision, however, good
as it is for centralized system management.

History also shows Athena’s presumptions in-
correct or insufficient:

• We presumed display technology limited
to one individual at a time, possibly with
someone looking over the shoulder.

• That users play a single role, where in
the adult world we play many roles: job,
home life, church, schools, clubs, and of-
ten more. Computer systems must enable
people to play multiple roles simultane-
ously.

• That universal authentication was pos-
sible. This is probably a chimera
despite efforts of Microsoft and Sun
Microsystems—it implies universal trust,
unlikely between organizations. At best,
you may have a single USB fob or wire-
less device with many keys that authen-
ticate you for your many roles in life; at
worst, many such devices, attached to your
physical keyring.

• That there would be very small wearable
devices, with significant storage and com-
puting power (soon sufficient for most
user’s entire computing environment).

• That wireless networking would become
very cheap and commonplace.

• That the computing environment is a PC,
file, compute and print services: today’s
environments include projectors and large
format displays, (spatial) audio systems,
display walls, and so on.

So long as large displays are few and far be-
tween, and limited in resolution, the pseudo-
solution of the laptop VGA connector attached
to a projector has been a poor but adequate



2005 Linux Symposium • 135

solution. Projectors are now cheap and com-
monplace, but with the imminent advent of
1080i and 1080p large screen HDTV displays
and projectors (1080p is 1920x1080 resolu-
tion in computer-speak), we face a near fu-
ture in which we will finally have displays with
enough pixels that sharing of the display makes
sense. We will soon be asking: “Why can’t I
use the environment easily? Why can’t I com-
bine my 100 gig cell phone with the surround-
ing environment to always be able to have my
computing environment with me? Why can’t I
easily shift from work, to home, to school, to
church, to hobby?”

Computing systems should enable the reasso-
ciation of people, any computing devices they
have with them, and the computing infrastruc-
ture available wherever they meet, work, and
play. While many devices can be used by only
one person at a time (e.g. keyboards, mice,
etc.), others, such as large screens and audio
systems can and should be usable by multiple
people simultaneously. It is time we make this
possible.

2 User Scenarios

My great thanks to my colleagues Andrew
Christian et al. for exploring wider insights into
SNAP Computing[15]. Some of the scenarios
below are excerpted from that paper. This pa-
per will provide a concrete proposal for work
on the X Window System, but without provid-
ing background material explaining the SNAP
vision, it would be impossible to understand the
rationale of the design changes proposed.

2.1 Office

You are sitting in your office. Your incoming
frantic call is from your spouse, who is having

problems with a complicated formatting prob-
lem in the word processor of a document that
must be sent before you get home that evening.
You ask that the window be cloned to your dis-
play, so you can help solve the problem to-
gether. When finished, you close the cloned
window and the document is finished by the
deadline.

2.2 Home

In this example Nikki and her friend Chris are
sitting in Nikki’s living room watching tele-
vision on a big, high-resolution video screen,
but also doing a little work and web browsing
(see below). The living room’s personal video
recorder (PVR) is playing a movie on the video
screen and sending audio to the living room au-
dio system. Nikki has pulled out a portable
keyboard, connected to the home office CPU,
and pulled up her e-mail on a corner of the liv-
ing room video screen. As she browses her re-
mote mail store, audio attachments are routed
and mixed in the local audio system and played
through the living room speakers so that they
appear on her side of the room (spatially lo-
cated so as to not distract Chris).



136 • SNAP Computing and the X Window System

Meanwhile, Chris has pulled out a wireless
handheld computer. Nikki has previously
granted Chris some access rights for using the
home’s broadband connection and living room
equipment, so Chris grabs a section of the
big video screen and displays output from a
web browser running on the handheld com-
puter. Audio output from Chris’s web browser
is spatially located to help disambiguate it from
Nikki’s e-mail. Without a keyboard Chris
must use the handheld computer for handwrit-
ing recognition and cursor control. To speed
things up, Chris borrows a wireless keyboard
from Nikki’s home office. The keyboard de-
tects it is in the living room and bonds automat-
ically to the big screen. Through the handheld
computer, Chris assigns the keyboard to work
with the web browser and goes back to surfing.

Most of the time Chris and Nikki are working
within the confines of the big video screen. For
example, both may be driving their own private
pointing cursor on the screen. Security poli-
cies prevent them from controlling each others’
applications; Nikki typing at her e-mail is kept
separate from Chris’s web browsing. However,
the big screen also provides high level services
that both can request and access. For example,
a screen window manager service positions the
individual windows and a screen cut-and-paste
service allows data to be shared across users.
Should Chris or Nikki wish to change chan-
nels or control audio volume in the room, ei-
ther can ask for video screen control and use
the shared, built-in video browser to access the
audio volume control or bind it to their local
device (Chris’ handheld or Nikki’s keyboard).

2.3 Conference Room

Functionally, a conference room is not greatly
dissimilar from Nikki’s living room. The con-
ference room provides shared video screens

that multiple users can access from their lap-
top/handheld computers, or via broadband con-
nections back to their desktop machines.

The conference room provides several
business-specific services. First, the room
itself can provide scheduling and journaling
functions. Because the conference room dis-
play screens are intelligent—rather than simple
projectors—it is easy to allow them to record
and store information about what was done in
the room. Each user provides authentication
before accessing services, so a clean record of
users and activities can be journalled and made
available to participants later.

Adding video conferencing introduces a second
interesting feature: virtual proximity. A video
conference establishes a virtual location rela-
tionship between people and devices. For ex-
ample, the remote user may wish to print a file
in the conference room, display and control a
presentation on the video screen, and play au-
dio through the local speakers.

To make this more concrete, imagine you are
at a meeting of a industry working group with
representatives from competitors, to work on
a standards document. Several of you put up
drafts on the conference room display screens
to work on from the laptops you brought with
you. The computer of one of your working
group members has failed entirely, but he has
the information cached in his cellphone, so us-
ing a spare keyboard in the conference room,
he is able to find the needed information using
a corner of the screen for the group.

Such conference rooms were described by
Isaac Asimov in hisFoundationseries, in which
his First Foundation mathematicians work to-
gether in rooms whose wallsaredisplays. Such
conference rooms are no longer science fic-
tion; display wall systems are already being
built[9][2], and their cost will continue to fall.



2005 Linux Symposium • 137

3 Design Requirements of the
SNAP Vision

If we are to disassemble, or unsnap, the com-
ponents of the classic computer and allow the
flexible reassociation (or snapping together) of
components, while enabling people to reasso-
ciate with the computing environment as they
move, we require some networking connectors
to snap the components back together. I ar-
gue that the networking connectors now exist,
and if we disassemble our systems and combine
the pieces using these connectors, we can then
easily snap them back together dynamically at
will. I will touch on some of the resulting top-
ics in this section, before diving into X Window
System-specific issues.

These software components include:

• distributed caching file systems (e.g.
Coda[23])

• encryption of all network communication

• roaming between networks

• software which can easily roam among
multiple differing authentication systems

• discovery of network services

• network connectors replacing hard wires
to snap the computing components back
together

• network audio, so that you can easily use
audio facilities in the environment

• the window system that supports multiple
people collaborating, and helps protects
you from other malicious people

3.1 Service Discovery

People need to be able to discover that fa-
cilities are available and take advantage of
them. Open source implementations of the
IETF Zeroconf[10] protocols are now available
such as Howl[4]); zeroconf is also used to good
effect as Apple’s Bonjour[1] in OSX. We can
leverage such protocols to discover file sys-
tems, X Window System servers for large dis-
plays, scanners, printers, and other services that
may be interesting to mobile users in the envi-
ronment; and zeroconf support is beginning to
appear in open source desktop projects.

3.2 Localization

For ease of use, you need to know what de-
vices are in a given physical location. Present-
ing a user with a long list of devices present in
many work environments, even just a local sub-
net, would result in confusion. Research shows
that it may be feasible to localize 802.11[abg]
to roughly the granularity of an office or a con-
ference room, but such systems are not gener-
ally available at this date. Given these results
it is clear that location tracking systems will
become available in the near-term future, and
there are startup companies working actively to
bring them to market.

Bluetooth was intended as a cable replacement,
but experience with it has not been very favor-
able in a SNAP system application. Introduc-
ing a new bluetooth device to its controller is
involved and time-consuming, not something
that is done casually, at least as cumbersome
as dragging a cable across a room and plugging
it in.

The 801.15.4 ZigBee local wireless technology,
just becoming available, does not suffer from
these limitations that make Bluetooth so cum-
bersome. Additionally, IR is ubiquitous can



138 • SNAP Computing and the X Window System

be used for local line of sight localization, and
handheld devices often have consumer IR (in-
tended for remote control use), which has much
longer range than that found in laptops.

There are multiple efforts in the research com-
munity to provide location based lookup of re-
sources, and this work and expertise should be
leveraged.

3.3 Audio

There is a long history of inadequate audio
servers on UNIX and Linux.

ESD and NAS are inadequate even for local
multimedia use (lacking any provision for tight
time synchronization), much less low-latency
applications like teleconferencing.

There are a number of possible paths:

• The Media Application Server (MAS)[7]
may be adequate.

• We can build a network layer for the
JACK[5] audio system.

These possibilities are not mutually exclusive
(Jack and MAS could be used in concert), and
we can start from scratch, if they will not serve.

Detailed discussion of the need/requirements
for network audio, needed to complement our
network transparent window system are beyond
the overall scope of this paper. The AF au-
dio server[25] on UNIX of the early 1990’s
showed that both very low latency and tight
synchronization is in fact possible in a network-
transparent audio server.

3.4 Network Roaming

There is much work to be done to take what
is possible and reduce it to practice. Real-time
roaming between networks can be as short as
fractions of a second; we should not accept the
current delays or manual nature we find today
as we DHCP and manually suspend/resume as
we transition between networks. Handoff be-
tween networks can and should be similar in
duration to the cellphone network, so short as
to be effectively unnoticed.

4 X Window System

The ‘One’ mantra is most clearly ingrained in
all of today’s window systems, where one key-
board, one mouse, one user is the norm. Our
base operating system, however, was designed
as a multi-user system, with the operating sys-
tem providing protection between users. The
X Window System has at least been, since its
inception, network transparent, allowing appli-
cations to run on multiple displays, potentially
including displays in our environment.

4.1 Multiple People Systems

X’s current design presumes a single person us-
ing the window system server, and therefore
only provided access control. To allow multi-
ple people, particularly in open environments
where people cannot trust each other, to use a
common screen means that privacy and security
problems must be solved.

The core X protocol allows applications to
spy on input. Furthermore, cut-and-paste can
quickly transfer megabytes of data between ap-
plications. Multiple simultaneous users there-
fore pose a serious security challenge. X needs



2005 Linux Symposium • 139

better access control to input events, pixmap
data, X properties, and other X resources.

During the mid 1990’s, there was work to ex-
tend X for the requirements posed by military
multi-level ‘orange book’ security. The result-
ing extension provided no policy flexibility, and
still presumed a single user. The resulting X Se-
curity extension[35] has remained entirely un-
used, as far as can be determined.

Recently, Eamon Walsh, an intern at the NSA,
implemented an SELinux-style X extension
[34] with the explicit goal of enabling multi-
ple possible security policies, that might pro-
vide the kinds of policy flexibility. Differing
environments, in which different levels of trust
between users exist and different sensitivities
of information displayed on the screen simul-
taneously, will clearly need different policies.
One policy can clearly not fit all needs. Ea-
mon’s work was updated this spring by Bryan
Ericson, Chad Hanson, and others at Trusted
Computing Solutions, Inc., and provides a gen-
eral framework that may be sufficient to explore
the policies required for this use of the window
system.

X has internally noexplicit concept of a ‘user,’
without which it is impossible to devise any se-
curity policy for systems being used by multi-
ple people. Given good security policies and
enforcement, in many environments even un-
known people should have unprivileged access
to a display. An explicit concept of a user, and
the window resources they are using, is clearly
needed in X, and once present, policy develop-
ment using this framework should become fea-
sible. X also lack explicit knowledge of a peo-
ple’s sessions, and since several sessions may
be going on simultaneously, I also expect X will
require this concept as well.

On Linux and some UNIX systems you can de-
termine the person’s identity on the other end
of a local socket. We also need the identity of

the person’s application on the far end of a net-
work connection. In a corporate environment,
this might best be served by the person’s Ker-
beros credentials. In other environments, ssh
keys or certificate-based authentication systems
may be more appropriate. Fortunately, it ap-
pears that Cyrus SASL[19] may fill the authen-
tication bill, as it supports multiple authentica-
tion families.

Even with this work, there is work remaining to
do to define usable security profiles, and work
that should take place in toolkits rather than re-
lying solely in the window system. For exam-
ple, a person cutting from their application and
pasting into another person’s application does
not have the same security consequence as the
opposite situation, of others being able to cut
from your application into their application: in
this case, the person is giving away information
explicitly that they already control. It is easier
to trust the implementation of the toolkit you
are using, than the implementation of a remote
X server that you may have much less reason to
trust.

More subtle questions arise for which there are
not yet obvious answers: How do you know
what security profile is currently in force in
the X server you are using? Why should you
trust that that profile is actually being enforced?
These class of problems are not unique to X, of
course.

Distinguishing different pointing devices ac-
cording to the people using them will require
an extension to X to support multiple mouse
cursors that can be visually distinguished from
each other. Since hardware supports a single
cursor at most, X already commonly uses soft-
ware cursors, and by compositing another im-
age with the cursor shape, we can easily indi-
cate whose cursor it is.



140 • SNAP Computing and the X Window System

4.2 Securing the wire and the SSH trap

At the time of X11’s design (1987), and until
just a few years ago, the U.S. government ac-
tively discouraged the use of encryption; the
best we could do was to leave minimal hooks
in the wire protocol to enable a later retrofit.
Even pluggable architectures allowing the easy
addition of encryption were actively opposed
and might cause the U.S. Government to forbid
export of software. Export of encryption with-
out export control only became feasible in open
source projects in the last several years.

In the era of little or no security problems of
the 1980’s and early 1990’s, X was for a time
routinely used unencrypted over the network.
With network sniffers on insecure systems ev-
erywhere today, this usage today is clearly in-
sane.

The Swiss army knife of encryption and au-
thentication, “ssh”[14], appeared as a solution,
which provides authentication, encryption, and
compression by allowing tunneling of arbitrary
streams (including X traffic). While it has been
a wonderful crutch for which we are very grate-
ful, a crutch it is, for the following reasons:

• SSH requires you to have an account on a
machine before tunneling is possible. This
prevents the casual use of remote displays,
even those we might intend for such use.

• SSH requires extra context switches be-
tween the ssh daemon, costing perfor-
mance, memory, latency, and latency vari-
ation, likely an issue on LTSP servers.

• A remote person’s identity cannot be de-
termined; only the identity of their local
account.

IPSEC might seem to be the easiest solution,
and may be necessary to implement as a ‘check

off’ marketing item: however, it does not en-
sure end-to-end encryption of traffic, and even
worse, does not provide user authentication. In
IPSEC’s use in VPN software, the data is of-
ten unencrypted at corporate firewalls and de-
livered unencrypted, unacceptable for use that
involves user keyboard input. It is therefore at
a minimum insufficient for SNAP computing,
and in some uses, in fact completely insecure.

Therefore authentication, encryption, and com-
pression must be integrated into the X Win-
dow System transport to allow for a wider range
of authentication and encryption options, to be
proxyable to enable secure traversal of admin-
istrative boundaries, and to enable use of dis-
play resources on displays where you cannot
be authenticated. Compression can provide a
huge performance benefit over low bandwidth
links[27].

4.3 Remote Devices

It has always been trivial for an X application to
use a remote display, but when the application
is running to a remote X server, there has been
a presumption that the input devices are also at-
tached to the remote machine. Having to drape
input device cables across the room to plug into
the computer driving the display, is clearly lu-
dicrous. We therefore need network transparent
input devices.

People may want to use either spare keyboards,
a laptop they brought with them, their PDA, or
other input devices available in the room to in-
teract with that application. In any case, input
events must be routed from the input device to
the appropriate X server, whether connected via
wires or wireless.

Input devices present security challenges, along
with a further issue: we need some way to asso-
ciate an input device with a particular user. As-
sociation setup needs to be both secure and easy



2005 Linux Symposium • 141

to use, which may present the largest single re-
search challenge; most of the other tasks de-
scribed in this paper are simple engineering ef-
forts, applying existing technology in obvious
ways. One might have hoped that USB’s HID
serial numbers on devices would help; how-
ever, due to the very low cost of many input
devices, most manufacturers do not provide ac-
tual serial numbers in their hardware.

4.4 Who is in Control?

The X server implementation has presumed
that it is in control of all of its input devices,
and worse yet, that these do not change during
an X session. It uses a static configuration file,
only read during server reset (which only oc-
curs when a user logs out). This static model of
configuration is clearly wrong, and hotplug is a
necessary. The X server needs (as in all good
server processes) to react to changes in the en-
vironment.

Over the last two years, open source systems
have developed extensive infrastructure to sup-
port hotplug, with kernel facilities, and the D-
BUS[29] and HAL[36] facilities. These should
greatly simplify the problem, and allow the pol-
icy decisions of whether an input device (local
or remote) is connected to a particular X server.

D-BUS can inform the X server of the changes
in configuration of input devices. This itself
poses a further challenge, as the X server must
be able to become a client of the D-BUS dae-
mon. To avoid possible dead-lock situations be-
tween X and the D-BUS daemon, some of the
internal X infrastructure needs updating.

With only slight care, an interface can be de-
signed that will allow input devices to either use
local or remote input devices. Input device as-
sociation policy should be kept outside of the X
server.

4.5 X Input Extension

The X Input Extension[28] provides support
for additional input devices beyond the ‘core’
pointing device (typically mouse) and key-
board. It has a competent design, though it
shows its age. XInput lacks:

• Hotplug notification of devices being con-
nected or disconnected.

• The valuator axes should have abstract
names (e.g. you would like to know that
valuator 0 is the X coordinate, valuator 1
is the Y coordinate, valuator 2 is pressure,
and so on).

• Support for multiple users and devices that
all users might share.

• A modern reimplementation exploiting
the standardization of USB HID (and
the /dev/input abstraction on Linux);
most of the current implementation is
supporting old serial devices with many
strange proprietary protocols.

• A limit on 255 input devices in the wire
encoding (which might become an issue in
an auditorium setting); however, if input
events are augmented by a identity infor-
mation, this should be sufficient.

Whether a upward compatible wire protocol
version is possible or a new major version of the
X Input extension is not yet completely clear,
though an upward compatible API looks very
likely.

4.6 Toolkits

Replication and migration of running applica-
tions has in fact been possible from X’s incep-
tion: GNU emacs has had the capability to both



142 • SNAP Computing and the X Window System

share buffers on different X servers, allowing
for shared editing of text, and therefore migra-
tion of emacs from X server to X server for
more than 15 years.

In practice, due to the level of abstraction of
the most commonly used toolkit of X’s first era
(Xt/Motif[22]), migration and/or replication of
windows has been very difficult, as such appli-
cations initially adjust themselves to the visual
types available on the X server and then draw
for the rest of their execution with the same
pixel values.

Modern toolkits (e.g. GTK[21] and Qt[16]) op-
erate at a higher level of abstraction, where
pixel values are typically hidden from appli-
cations, and migration of most applications is
feasible[20]: a prototype of migration capabil-
ity first appeared in GTK+ 2.2.

One to one replication of information is the
wrong level of abstraction, since not only is the
resolution of different screens extremely wide,
but different users on different displays should
be able to control the allocation of the screen
real-estate. A multi-view approach is clearly
correct and to be preferred over the existing
server based pixel sharing solutions such as
xmove[32], useful though such tools are, par-
ticularly for migration of old X applications
that are unlikely to be updated to modern toolk-
its. Work to ease replication of windows for ap-
plication developers awaits suitably motivated
contributors.

Since the resolution between a handheld device
and a display wall is over an order of mag-
nitude, applications often need to be able to
reload their UI layout on the fly for migration
to work really well; again, using the Glade user
interface builder[3], libglade and GTK+, this
capability is already demonstrable for a few ap-
plications.

In the face of unreliable wireless connections,

the X library needs minor additions to allow
toolkits to recover from connection failures.
This work is on hold pending completion of
a new implementation of Xlib called Xcb[26],
which is well underway and now able to run al-
most all applications. Testing connection loss
recovery may be more of a challenge than its
implementation.

Lest you think these facilities are interesting
only to SNAP computing, it also aids migration
of X sessions from one display (say work) to
another (e.g. home). As always, security must
be kept in mind: it would not be good for some-
one to be able to steal one or all of your running
applications.

4.7 Window Management and Applica-
tions

Besides the infrastructure modifications out-
lined above, window managers need some
modification to support a collaborative environ-
ment.

Certain applications may want to be fully aware
of multiple users: a good example is an editor
that keeps changes that each person applies to
a document.

Existing applications can run in such a col-
laborative environment unchanged. Wallace
et al.[33] recently reported experience in a
deployed system using somewhat jury-rigged
support for multiple cursors and using a modi-
fied X window manager on a large shared dis-
play at Princeton’s Plasma Physics Lab’s con-
trol room. They report easier simultaneous
use of existing applications such as GNU Im-
age Manipulation Program (gimp). They also
confirm, as hypothesized above, multiple peo-
ple working independently side-by-side require
sufficient display real-estate to be effective;
here they may be looking at different views of



2005 Linux Symposium • 143

the same dataset using separate application in-
stances. And finally, they report that even se-
quential use of the display was improved due
to less dragging of the mouse back and forth.

5 Summary

Most of the problems SNAP computing pose
have obvious solutions; in a few areas, further
research is required, but none of the research
topics appear intractable.

Network display software systems such as Mi-
crosoft’s RDP[8] and Citrix and VNC[30] are
popular, though by operating at a very low
level of abstraction, badly compromise full ap-
plication integration (e.g. cut and paste, selec-
tions, window management meta information)
between applications sharing a display from
many remote systems. They do, however, do
a fine job of simple access to remote applica-
tions, but arefatally flawedif full collaboration
among multiple users is desired.

Open source systems SNAP systems should be
able to exist quickly, not only since our tech-
nology starts off close to the desired end-state,
is more malleable, but also that it does not
threaten our business model in the same way
that such a shift might to commercial systems.

While this paper has primarily explored X Win-
dow System design issues, there is obviously
plenty of work elsewhere to fully exploit the vi-
sion of SNAP Computing.

References

[1] Bonjour. http://developer.
apple.com/darwin/projects/
bonjour/index.html/ .

[2] Distributed Multihead X Project.
http://dmx.sourceforge.net/ .

[3] Glade - a User Interface Builder for
GTK+ and GNOME.
http://glade.gnome.org/ .

[4] Howl: Man’s new best friend.
http://www.porchdogsoft.
com/products/howl/ .

[5] Jack audio connection kit.http:
//jackit.sourceforge.net/ .

[6] Linux Terminal Server Project.
http://www.ltsp.org/ .

[7] Media Applications Server.
http://www.
mediaapplicationserver.net/ .

[8] RDP Protocol Documentation.http:
//www.rdesktop.org/#docs .

[9] Scalable Display Wall.
http://www.cs.princeton.
edu/omnimedia/index.html .

[10] Zero Configuration Networking
(Zeroconf).
http://www.zeroconf.org/ .

[11] Stateless Linux, 2004.
http://fedora.redhat.com/
projects/stateless/ .

[12] Will Allen and Robert Ulichney.
Wobulation: Doubling the addressed
resolution of projection displays. InSID
2005, volume 47.4. The Society for
Information Display, 2005.
http://sid.aip.org/digest .

[13] Edward Balkovich, Steven Lerman, and
Richard P. Parmelee. Computing in
higher education: the athena experience.
Commun. ACM, 28(11):1214–1224,
1985.



144 • SNAP Computing and the X Window System

[14] Daniel J. Barrett and Richard Silverman.
SSH, The Secure Shell: The Definitive
Guide. O’Reilly & Associates, Inc.,
2001.

[15] Andrew Christian, Brian Avery, Steven
Ayer, Frank Bomba, and Jamey Hicks.
Snap computing: Shared wireless plug
and play. 2005.http://www.hpl.
hp.com/techreports/2005/ .

[16] Matthias Kalle Dalheimer.Programming
with Qt. O’Reilly & Associates, Inc.,
second edition, May 2001.

[17] C. Anthony DellaFera, Mark W. Eichin,
Robert S. French, David C. Jedlinsky,
John T. Kohl, and William E.
Sommerfeld. The zephyr notification
service. InUSENIX Winter, pages
213–219, 1988.

[18] S. P. Dyer. The hesiod name server. In
Proceedings of the USENIX Winter 1988
Technical Conference, pages 183–190,
Berkeley, CA, 1988. USENIX
Association.

[19] Rob Earhart, Tim Martin, Larry
Greenfield, and Rob Siemborski. Simple
Autentication and Security Layer.
http:
//asg.web.cmu.edu/sasl/ .

[20] James Gettys. The Future is Coming,
Where the X Window System Should
Go. InFREENIX Track, 2002 Usenix
Annual Technical Conference, Monterey,
CA, June 2002. USENIX.

[21] Eric Harlow. Developing Linux
Applications with GTK+ and GDK.
MacMillan Publishing Company, 1999.

[22] Dan Heller.Motif Programming Manual
for OSF/Motif Version 1.1, volume 6.
O’Reilly & Associates, Inc., 981

Chestnut Street, Newton, MA 02164,
USA, 1991.

[23] J. J. Kistler and M. Satyanarayanan.
Disconnected operation in the coda file
system. InThirteenth ACM Symposium
on Operating Systems Principles,
volume 25, pages 213–225, Asilomar
Conference Center, Pacific Grove, U.S.,
1991. ACM Press.

[24] J. Kohl and B. Neuman. The kerberos
network authentication service.
Technical report, 1991.

[25] T. Levergood, A. Payne, J. Gettys,
G. Treese, and L. Stewart. Audiofile: A
network-transparent system for
distributed audio applications, 1993.

[26] Bart Massey and Jamey Sharp. XCB: An
X protocol c binding. InXFree86
Technical Conference, Oakland, CA,
November 2001. USENIX.

[27] Keith Packard and James Gettys. X
Window System Network Performance.
In FREENIX Track, 2003 Usenix Annual
Technical Conference, San Antonio, TX,
June 2003. USENIX.

[28] Mark Patrick and George Sachs. X11
Input Extension Protocol Specification,
Version 1.0. X consortium standard, X
Consortium, Inc., 1991.

[29] Havoc Pennington, Anders Carlsson, and
Alexander Larsson. D-BUS
Specification.http:
//dbus.freedesktop.org/doc/
dbus-specification.html .

[30] Tristan Richardson, Quentin
Stafford-Fraser, Kenneth R. Wood, and
Andy Hopper. Virtual network
computing.IEEE Internet Computing,
2(1):33–38, 1998.



2005 Linux Symposium • 145

[31] Robert W. Scheifler and James Gettys.X
Window System. Digital Press, fourth
edition, 1996.

[32] Ethan Solomita, James Kempf, and Dan
Duchamp. XMOVE: A pseudoserver for
X window movement.The X Resource,
11(1):143–170, 1994.

[33] Grant Wallace, Peng Bi, Kai Li, and Otto
Anshus. A MultiCursor X Window
Manager Supporting Control Room
Collaboration. Technical report
tr-707-04, Princeton University
Computer Science, July 2004.

[34] Eamon Walsh. Integrating XFree86 With
Security-Enhanced Linux. InX
Developers Conference, Cambridge, MA,
April 2004. http://freedesktop.
org/Software/XDevConf/
x-security-walsh.pdf .

[35] David P. Wiggins. Security Extension
Specification, Version 7.0. X consortium
standard, X Consortium, Inc., 1996.

[36] David Zeuthen. HAL Specification 0.2.
http:
//freedesktop.org/~david/
hal-0.2/spec/hal-spec.html .



146 • SNAP Computing and the X Window System



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


