
UML and the Intel VT extensions

Jeff Dike
Intel Corp.

jeffrey.g.dike@intel.com

Abstract

Intel has added virtualization extensions (VT)
to the x86 architecture. It adds a new set of
rings, guest rings 0 through 3, to the traditional
rings, which are now called the host rings.

User-mode Linux (UML) is in the process of
being enhanced to make use of these extensions
for greater performance. It will run in guest
ring 0, gaining the ability to directly receive
software interrupts. This will allow it to han-
dle process system calls without needing assis-
tance from the host kernel, which will let UML
handle system calls at hardware speed.

In spite of running in a ring 0, UML will appear
to remain in userspace, making system calls
to the host kernel and receiving signals from
it. So, it will retain its current manageability,
while getting a performance boost from its use
of the hardware.

1 Introduction

Intel’s new Vanderpool Technology1 (VT) adds
virtualization extensions to the IA architecture
which enable hardware support for virtual ma-
chines. A full set of “guest” rings are added to

1AMD subsequently introduced a compatible tech-
nology code-named Pacifica.

the current rings, which are now called “host”
rings. The guest OS will run in the guest ring
0 without perceiving any difference from run-
ning in the host rings 0 (or on a non-VT sys-
tem). The guest is controlled by the host re-
gaining control whenever one of a set of events
happens within the guest.

The architecture is fully virtualized within the
guest rings, so the guest can be an unmodified
OS. However, there is also support for paravir-
tualization in the form of aVMCALL instruc-
tion which may be executed by the guest, which
transers control to the host OS or hypervisor.

The hypervisor has fine-grained control over
when the guest traps out to it (aVMEXIT event
to the host) and over the state of the guest when
it is restarted. The hypervisor can cause the
guest to be re-entered at an arbitrary point, with
arbitrary state.

The paravirtualization support is key to sup-
porting environments other than unmodified
kernels. User-mode Linux (UML) is one such
environment. It is a userspace port of the Linux
kernel, and, as such, would be considered a
“modified” guest. It is heavily paravirtualized,
as it contains a complete reimplementation, in
terms of Linux system calls, of the architecture-
specific layer of the kernel.

The reason to consider making UML use this
support, when it is not obvious that it is use-
ful, is that there are performance benefits to be

• 127 •



128 • UML and the Intel VT extensions

realized by doing so. A sore spot in UML per-
formance is its system call speed. Currently,
UML must rely on ptrace in order to intercept
and handle its process system calls. The con-
text switching between the UML process and
the UML kernel and the host kernel entries and
exits when the process executes a system call
imposes an order of magnitude greater over-
head than a system call executing directly on
the host. As will be described later, the VT ar-
chitecture allows a guest to receive software in-
terrupts directly, without involving the host ker-
nel or hypervisor. This will allow UML/VT to
handle process system calls at hardware speed.

2 Overview of UML/VT support

The VT paravirtualization support can be used
to allow UML to run in a guest ring. For various
reasons that will be discussed later, UML will
be made to run as a real kernel, in guest ring 0.
This would seem to contradict the “user-mode”
part of UML’s name, but as we shall see, the
basic character of UML will remain the same,
and the fact that it’s running in a ring 0 can be
considered an implementation detail.

The essential characteristics of UML are

• It makes system calls to the host kernel.

• It receives signals from the host kernel.

• It resides in a normal, swappable, process
address space.

We are going to preserve the first by using the
VT paravirtualization support to make system
calls to the host kernel from the guest ring 0.
Signals from the host will be injected into the
guest by the host manipulating the guest state
appropriately, and VMENTERing the guest.

The third will be preserved as a side-effect of
the rest of the design. UML/VT will start in
a process address space, and the host will see
page faults in the form of VMEXITs when-
ever the guest causes an access violation. Thus,
the normal page fault mechanism will be used
to populate the UML/VT kernel address space,
and the normal swapping mechanism can be
used to swap it out if necessary.

The fact that UML will be running in kernel
mode means that it can’t make system calls in
the normal way, by calling the glibc system call
wrappers, which executeint 0x80 or sysenter
instructions. Since we can’t use glibc for sys-
tem calls any more, we must implement our
own system call layer in terms ofVMCALL.
glibc is UMLs interface to the host Linux ker-
nel, so replacing that with a different interface
to the underlying OS can be considered a port
of UML to a different OS. Another way of look-
ing at it is to observe that UML will now be a
true kernel, in the sense of running in ring 0,
and must be ported to that environment, mak-
ing this a kernel-mode port of UML.

There must be something in the host kernel to
receive those VMCALLs, interpret them as sys-
tem calls, and invoke the normal system call
mechanism. AVMCALL instruction invokes
the VMEXIT handler in the host kernel, as does
any event which causes a trap out of the guest
to the host. The VMEXIT handler will see all
such events, be they hardware interrupts, pro-
cessor exceptions caused by the guest, or an ex-
plicit VMCALL.

3 Porting UML to VT

The first step in porting UML to VT is to
make UML itself portable between host oper-
ating systems. To date, UML has run only on
Linux, so it is strongly tied to the Linux system



2005 Linux Symposium • 129

call interface. To fix this, we must first abstract
out the Linux-specific code and put it under an
interface which is somewhat OS-independent.
Total OS-independence is not possible with
only two examples which are very similar to
each other, and is a more of a process than a
goal in any case. What we are aiming for is
an interface which supports both Linux and VT,
and can be made to support other operating sys-
tems with modest changes.

To this end, we are moving all of the Linux-
specific code to its own directory within the
UML architecture (arch/um/os-Linux) and ex-
posing a somewhat OS-independent interface
to it. This task is simplified to some extent
by the fact that glibc-dependent code had to be
separated from kernel-dependent code anyway.
The reason is that the former needs to include
glibc headers and the latter needs to include
kernel headers. The two sets of headers are
very incompatible with each other—including
both glibc and kernel headers into the same file
will produce something that has no chance of
compiling. So, from the beginning, UML has
been structured such that glibc code and kernel
code have been in separate files.

So, to some extent, this part of the port has in-
volved simply moving those files from the main
UML source, where they are intermingled with
kernel source files, to the os-Linux directory.
There are functions which are neither glibc- or
kernel-dependent, so these need to be recog-
nized and moved to a kernel file.

Once this code movement has happened, and
the resulting interface has been cleaned up and
minimized, the next step is to actually imple-
ment the interface in terms of VT, usingVM-
CALL. So, we will create a new directory, pos-
sibly arch/um/os-vt, and implement this inter-
face there. To actually build a VT-enabled
UML, we will need to tell the kernel build pro-
cess (kbuild) to use the os-vt directory rather

than the os-Linux one. This is currently deter-
mined at runtime by setting a make variable to
the output ofuname -s , and forming the OS
directory from that. We can override this vari-
able on the command line by addingOS=vt to
it, forcing kbuild to use the OS interface imple-
mentation in os-vt rather than os-Linux.

4 Host kernel support

As previously mentioned, there will need to be
support added to the host kernel in order for it
to run UML as a VT guest. Linux currently has
no real support for being a hypervisor, and this
is what is needed for this project.

The host kernel will need to do the following
new things:

• Handle VMEXITs caused by the guest ex-
plicitly executingVMCALLinstructions in
order to make system calls.

• Handle hardware interrupts that happen
while the guest is running, but which the
guest doesn’t need to deal with.

• Handle processor faults caused by the
guest.

• Force the guest to handle whatever signals
it receives from elsewhere on the host.

• Launch the guest and handle its exit.

The design for this calls for a kernel thread in
the host to be created when a UML/VT instance
is launched. This thread will do the VT-specific
work in order to create the guest context and to
start UML within it.

Once the UML instance is launched and run-
ning, this thread will become the VMEXIT



130 • UML and the Intel VT extensions

handler for the instance. It will be invoked
whenever the CPU transfers control from the
guest to the host for any of a number of rea-
sons.

VMCALL The guest will invoke theVMCALL
whenever it wants to make a system call to
the host. The handler will need to interpret
the guest state in order to determine what
system call is requested and what its argu-
ments are. Then it will invoke the normal
system call mechanism. When the system
call returns, it will write the return value
into the guest state and resume it. The VT-
specific system call layer within the guest
will retrieve the return value and pass it
back to its caller within UML.

Hardware interrupts Whenever a hardware
interrupt, such as a timer tick or a device
interrupt, happens while the UML guest is
running, the host kernel will need to han-
dle it. So, the VMEXIT handler will need
to recognize that this was the cause of the
transfer back to the host and invoke the
IRQ system in the host.

Processor faults The guest will cause CPU
faults in the normal course of operation.
Most commonly, these will be page faults
on its own text and data due to the guest
either not having been fully faulted in or
having been swapped out. These inter-
rupts will be handled in the same way as
hardware interrupts—they will be passed
to the normal host interrupt mechanism for
processing.

This thread will be the guest’s representative
within the host kernel. As such, it will be the
target of any signals intended for the guest, and
it must ensure that these signals are passed to
the UML, or not, as appropriate.

In order to see that there is a signal that needs
handling, the thread must explicitly check for
pending signals queued against it. When a sig-
nal is queued to a process, that process is make
runnable, and scheduled. So, if the signal ar-
rives while the guest is not sleeping, then the
thread will see the signal as soon as it has been
scheduled, and deliver it at that point. If the sig-
nal is queued while the guest is running, then
delivery will wait until the next time the thread
regains control, which will be a hardware timer
interrupt, at the latest. This is exactly the same
as a signal being delivered to a normal process,
except that the wakeup and delivery mecha-
nisms are somewhat different.

If the signal is to be handled by the UML in-
stance, as with a timer or I/O interrupt, then the
thread must cause the signal to be delivered to
the guest. This is very similar to normal pro-
cess signal delivery. The existing guest CPU
state must be saved, and that state must be mod-
ified (by changing the IP and SP, among others)
so that when the guest resumes, it is execut-
ing the registered handler for that signal. When
the handler returns, there will be another exit to
the host kernel, analogous to sigreturn, at which
point the thread will restore the state it had pre-
viously saved and resume the guest at the point
at which the signal arrived.

If the signal is fatal, as when aSIGKILL is
sent to the guest, the thread will shut the guest
down. It will destroy the VT context associ-
ated with the guest and then callexit() on
its own behalf. The first step will release any
VT-specific resources held by the guest, and the
second will release any host kernel resources
held by the thread.

This is the same process that will happen on
a normal UML shutdown, when the UML in-
stance is halted, and it callsexit() after per-
forming its own cleanup.

The final thing that the thread must do is check



2005 Linux Symposium • 131

for rescheduling. Since it’s in the kernel, it
must do this explicitly. If the guest’s quantum
has expired, or a higher priority task can run,
then a flag will be set in the thread’s task struc-
ture indicating that it must callschedule() .
The thread must check this periodically and
schedule whenever the flag is set.

5 Guest setup

When it is launched, a UML/VT guest must do
some setup which is hardware-dependent since
it is running in ring 0. There are two princi-
pal things which must be initialized, system call
handling and kernel memory protection.

System call handling As mentioned earlier,
this is the area where we expect the great-
est performance benefit from using VT.
Before launching the guest, the host has
specified to the hardware that it does
not want a VMEXIT whenever a process
within the guest causes a soft interrupt, as
happens whenever it makes a system call.
The guest will handle these directly, and
the guest IDT must be initialized so that
the guest’s system call handler is invoked.

This will cause UML process system calls
to be handled by the guest kernel without
any involvement by the host. The host in-
volvement (throughptrace ) is what cur-
rently makes UML system calls so much
slower than host system calls. This VT
support will make UML process system
calls run at hardware speed.

Kernel memory protection Another benefit
of running in ring 0 is that UML gets to
use the same hardware mechanisms as the
host to protect itself from it processes.
This is not available to processes—they
cannot have two protection domains

with the higher one being inaccessible
by something running in the lower one.
However, by initializing the guest GDT
appropriately, UML/VT can install itself
as the kernel within the guest domain.

6 Current status

The port of UML to VT is ongoing, as a project
within Intel. All of the actual work is being
done by two Intel engineers in Moscow, Gen-
nady Sharapov and Mikhail Kharitonov. At this
writing, they have finished the OS abstraction
work, and I have that as patches in my devel-
opment tree. These patches have started to be
included in the mainline kernel.

The VT-specific work is now in progress. They
are making VT system calls to the host and
making the guest handle signals sent from the
host. The next steps are the hardware initial-
ization to handle system calls and to enable the
protection of the kernel.

Following that will be the actual port. The OS
abstraction work will be hooked up to the VT
system calls in the os-vt layer. The host kernel
thread will need to be fleshed out to handle all
of the events it will see. Once this is done, it
will be possible to start booting UML on VT
and to start debugging it.

7 Conclusion

This paper has described the changes needed
to make UML work in guest ring 0 with the
VT extensions. However, a great deal won’t
change, and will continue to work exactly as
it does today.

The UML address space will still be a com-
pletely normal process address space, under the



132 • UML and the Intel VT extensions

full control of the host kernel. In the host, the
address space will be associated with the ker-
nel thread that is standing in for the VT guest.
It will be swappable and demand paged just like
any other process address space.

Because of this, and because UML will create
its own processes as it does today, UML’s copy-
user mechanisms will work just as they do cur-
rently.

Resource accounting will similarly work ex-
actly as it does today. UML/VT will use the ad-
dress space occupied by its host kernel thread,
and its memory consumption will show up in
/proc as usual. Similarly, when the guest is
running, its kernel thread will be shown as run-
ning, and it will accrue time. Thus, CPU ac-
counting, scheduling priority, and other things
which depend on process CPU time will con-
tinue to work normally.

In spite of being run as a kernel, in a ring 0,
UML/VT will continue to maintain the char-
acteristics of a process running within the host
kernel. So, it will gain the performance advan-
tages of using the hardware support provided
by VT, while retaining all of the benefits of be-
ing a process.



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


