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Abstract

The Active Block I/O Scheduling System
(ABISS) is an extension of the storage subsys-
tem of Linux. It is designed to provide guar-
anteed reading and writing bit rates to applica-
tions, with minimal overhead and low latency.

In this paper, the various components of ABISS
as well as their actual implementation are de-
scribed. This includes work on the Linux ele-
vator and support for delayed allocation.

In a set of experimental runs with real-life data
we have measured great improvements of the
real-time response of read and write operations
under heavy system load.

1 Introduction

As storage space is getting cheaper, the use
of hard disk drives in home or mobile con-
sumer devices is becoming more and more
mainstream. As this class of devices like HDD
video recorders, media centers and personal au-
dio and video players were originally intended
to be used by one person at a time (or by mul-
tiple persons, but watching the same content),
performance of the hard disk drives was not a

real issue. Adding more video sources to such
a device (more tuners, for instance), however,
will strain the storage subsystem by demand-
ing the recording of multiple streams simulta-
neously. As these devices are being enabled
with connectivity options and become intercon-
nected through home networks or personal area
networks, a device should also be able to serve
a number of audio or video streams to multi-
ple clients. For example, a media center should
be able to provide a number of so-called me-
dia extenders or renderers throughout the house
with recorded content. Putting aside high bit
rate tasks, even simple low-end devices could
benefit from a very low latency storage system.

Consumer electronics (CE) equipment has to
consist of fairly low-cost hardware and often
has to meet a number of other constraints like
low power consumption and low-noise oper-
ation. Devices serving media content should
therefore do this in an efficient way, instead
of using performance overkill to provide their
soft-real-time services. To be able to accom-
plish this sharing of resources in an effective
way, either the applications have to be aware of
each other or the system has to be aware of the
applications.

In this paper we will present the results of work
done on the storage subsystem of Linux, re-
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sulting in theActive Block I/O Scheduling Sys-
tem (ABISS). The main purpose of ABISS is
to make the system application-aware by ei-
ther providing a guaranteed reading and writ-
ing bit rate to any application that asks for
it or denying access when the system is fully
committed. Apart from these guaranteed real-
time (RT) streams, our solution also introduces
priority-based best-effort (BE) disk traffic.

The system consists of a framework included in
the kernel, with a policy and coordination unit
implemented in user space as daemon. This ap-
proach ensures separation between the kernel
infrastructure (the framework) and the policies
(e.g. admission control) in user space.

The kernel part consists mainly of our ownel-
evator and the ABISSscheduler. The eleva-
tor implements I/O priorities to correctly dis-
tinguish between real-time guaranteed streams
and background best-effort requests. The
scheduler is responsible for timely preloading
and buffering of data. Furthermore, we have
introduced an alternative allocation mechanism
to be more effectively able to provide real-time
writing guarantees. Apart from these new fea-
tures, some minor modifications were made to
file system drivers to incorporate our frame-
work. ABISS supports the FAT, ext2, and ext3
filesystems.

ABISS works from similar premises as RTFS
[1], but puts less emphasis on tight control of
low-level operations, and more on convergence
with current Linux kernel development.

In Section 2 a general overview of the ABISS
architecture is given. Section 3 describes the
steps involved in reading and explains the solu-
tions incorporated in ABISS to control the in-
volved latencies. The same is done for the writ-
ing procedure in Section 4. Performance mea-
surements are presented in Section 5, followed
by future work in Section 6 and the conclusions
in Section 7.

The ABISS project is hosted athttp://
abiss.sourceforge.net .

2 Architecture

An application reading or writing data from
a hard drive in a streaming way needs timely
availability of data to avoid skipping of the
playback or recording. Disk reads or writes can
introduce long and hard-to-predict delays both
from the drive itself as well as from the vari-
ous operating system layers providing the data
to the application. Therefore, conventionally
a streaming application introduces a relatively
large buffer to bridge these delays. The prob-
lem however is that as the delays are theoreti-
cally unbounded and can be quite long in prac-
tice (especially on a system under heavy load),
the application cannot predict how much buffer
space will be needed. Worst-case buffering
while reading means loading the whole file into
memory, while a worst-case write buffer should
be large enough to hold all the data which is be-
ing written to disk.

2.1 Adaptive buffering

If I/O priorities are introduced and thus the
involved delays become more predictable, an
adaptive buffering scheme may be a useful ap-
proach. The adaptive algorithm can compen-
sate for disk latency, system speed and various
other variables. Still, an application will need
to know how much competition it will face and
what the initial parameters should be. Also, the
algorithm would need some way to correctly di-
mension the buffer to be able to sustain some
background activity.

Furthermore, some fairness against lower-
priority I/O should be maintained. If any appli-
cation can raise its priority uncontrolled, best-
effort traffic can be completely starved. Too



2005 Linux Symposium • 111

Hardware

User space

Kernel

etc.
MM,

Configuration interface (ioctl)

Page cache / Page I/O

ElevatorRequest queue(s) Block device layer

Block device driver

Scheduler API

Scheduler cores

Scheduler library

libabiss

Application Application

New

Changed

system
driver

File

POSIX API (VFS)

abissd

Figure 1: Global ABISS architecture layout.

many applications doing too much I/O at a high
priority can also result in unbounded delays for
those applications, simply because there are not
enough system resources available. Clearly, ad-
mission control is needed.

ABISS implements such an adaptive buffering
algorithm as a service for streaming applica-
tions on a relatively coarse time scale; buffer
sizes are determined when the file is opened
and may be adapted when the real-time load
changes (i.e., when other high-priority files are
opened). It makes use of elevated I/O prior-
ities to be able to guarantee bounded access
times and a real-time CPU priority to be able
to more effectively predict the various operat-
ing system related delays. Furthermore, the file

system meta-data is cached. All delays are thus
predictable in non-degenerate cases and can be
caught by a relatively small buffer on system
level, outside of the application.

Furthermore, an admission control system is
implemented in a user-space daemon to make
sure no more commitments are made than the
available resources allow. It should be noted
that although our daemon offers a framework
for extensive admission control, only a very ba-
sic system is available at the moment. The ar-
chitecture of our framework as incorporated in
the Linux kernel is shown in Figure 1.

Prior versions of ABISS used very fine-grained
administration and measurement instrumenta-
tion to have very narrowly defined performance
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Figure 2: Overview of the solutions incorporated in ABISS.

characteristics. With time, these demands
on the underlying layers have gotten “softer.”
Since we are covering larger parts of the sys-
tem, leading to influences beyond our full con-
trol like the allocation of disk space, we cannot
predict the involved delays with such precision
as before.

2.2 Service model

When an application requests the services of
ABISS (we call such an application anABISS
user, or, more specifically, anABISS readeror
writer), it informs the system about both the
bit rate as well as the maximum read or write
burst size it is planning to use. A function
which opens a file and sets these parameters
is available in the ABISSmiddleware library.
Given knowledge of the general system respon-
siveness (I/O latencies, system speed and back-
ground load), the buffer can be correctly dimen-
sioned using these variables. This information

is also used in the admission control scheme in
the daemon which oversees the available sys-
tem resources.

As the behavior of a streaming application is
highly predictable, a fairly simple prefetcher
can be used to determine which data should be
available in the buffer. The prefetching policy
is concentrated in the ABISS scheduler. A sep-
arate worker thread performs the actual read-
ing of the data asynchronously, to keep the re-
sponse time to the application to a minimum.

We use the prefetcher mechanism also when
writing, in which case it is not only responsi-
ble for the allocating and possibly loading of
new pages, but also for coordinating writeback.

To minimize the response time during writing
the operations which introduce delays are re-
moved from the calling path of the write opera-
tion of the application. This is done by postpon-
ing the allocation, to make sure this I/O inten-
sive task is done asynchronously at a moment
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the system has time to spare. In our “delayed
allocation” solution, space for new data in the
buffer does not get allocated until the moment
of writeback.

An overview of the above solutions is shown
graphically in Figure 2. The technical imple-
mentations will be elaborated below.

2.3 Formal service definition

The real-time service offered to an application
is characterized by a data rater and a maximum
burst read sizeb. The application sets theplay-
out point to mark the location in the file after
which it will perform accesses. As long as the
playout point moves at rater or less, accesses
to up tob bytes after the playout point will be
guaranteed to be served from memory.

If we consider reading a file as a sequence ofn
single-byte accesses with thei-th access at lo-
cationai at timeti and with the playout point set
to pi , the operating system then guarantees that
all accesses are served from memory as long as
the following conditions are met for alli, j in
1, . . . ,n with ti < t j :

pi ≤ p j < pi +b+ r(t j − ti)
p j ≤ a j < b+min(p j , pi + r(t j − ti))

The infrastructure can also be used to imple-
ment a prioritized best-effort service without
guarantees. Such a service would ensure that,
on average and when measured over a suffi-
ciently long interval, a reader that has always at
least one request pending, will experience bet-
ter latency and throughput, than any reader us-
ing a lower priority.

3 Reading

When reading a page of file data, the kernel first
allocates a free page. Then it determines the

location of the corresponding disk blocks, and
may create so-calledbuffer heads1 for them.
Next, it submits disk I/O requests for the buffer
heads, and waits for these requests to com-
plete. Finally, the data is copied to the appli-
cation’s buffer, theaccess timeis updated, and
the read system call returns. This procedure
is illustrated in Figure 3.

Guaranteed slots

Marginal delay

I/O request enqueuing

Page allocation

Y N
?

P
refetching

Page is already in the page cache ?

Buffer head allocation

Location lookup When opening file

Marginal delay

I/O request completion

Data copy

Meta−data update

Application mlocks buffer

Mount with noatime

Disk I/O priorityI/O

Figure 3: The steps in reading a page, and how
ABISS controls their latency.

If trying to read a page that is already present
in memory (in the so-calledpage cache), the
data becomes available immediately, without
any prior I/O. Thus, to avoid waiting for data
to be read from disk, we make sure that it is
already in the page cache when the application
needs it.

3.1 Prefetching

We can accurately predict which data will be
read, and can therefore initiate the read process
ahead of time. We call thisprefetching. Pages

1A buffer head describes the status and location of
a block of the corresponding file system, and is used to
communicate I/O requests to the block device layer.
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read in advance are placed in aplayout buffer,
illustrated in Figure 4, in which they are kept
until the application has read them. After that,
pages with old data are evicted from the playout
buffer, and new pages with data further into the
file are loaded. This can also be thought of as a
buffer sliding over the file data.

upgrade existing request
Request new page or

Playout point

playout point
Application moves

Drop first page, shift window

Page arrives (in page cache)

Page cache

Playout buffer

Figure 4: Playout buffer movement is initiated
by the application moving its playout point.
More than one page may be “in flight” at once.

The playout buffer maintained by ABISS is not
a buffer with the actual file data, but an array
of pointers to the page structures, which in turn
describe the data pages.

Since the maximum rate at which the applica-
tion will read is known, we can, given knowl-
edge of how long the data retrieval will take,
size the playout buffer accordingly, as shown
in Figure 5. For this, we consider the space de-
termined by the application, and the buffering
needed by the operating system to load data in
time. The application requests the total buffer
size it needs, which comprises the maximum
amount of data it will read at once, and the
space needed to compensate for imperfections
in its scheduling. To this, buffering is added

to cover the maximum time that may pass be-
tween initiating retrieval of a page and its ar-
rival, and the batching described in Section 3.4.

Application jitter

Read size or work area

Kernel latency

IO latency

Application−dependent buffering

Operating system and hardware
dependent buffering

Read batching

Figure 5: The playout buffer of the scheduler
provides for buffering needs resulting from ap-
plication properties and from latencies caused
by the operating system and the hardware.

Prefetching is similar to theread-aheadpro-
cess the kernel performs regularly when se-
quentially reading files. The main differences
are that read-ahead uses heuristics to predict the
application behaviour, while applications ex-
plicitly tell ABISS how they will read files, and
that ABISS keeps a reference to the pages in the
playout buffer, so that they cannot be reclaimed
before they have actually been used.

Prefetching is done in a separate kernel thread,
so the application does not get delayed.

For prefetching to work reliably, and with-
out consuming excessive amounts of memory,
data retrieval must be relatively quick, and the
worst-case retrieval time should not be much
larger than the typical retrieval time. In the fol-
lowing sections, we describe how ABISS ac-
complishes this.



2005 Linux Symposium • 115

3.2 Memory allocation

When reading a page from disk, memory allo-
cation happens mainly at three places: (1) when
allocating the page itself, (2) when allocating
the buffer heads, and (3) when allocating disk
I/O request structures.

The first two are regular memory allocation
processes, and we assume that they are not
sources of delays significantly larger than disk
I/O latency.2

The number of disk I/O request structures is
limited by the maximum size of the request
queue of the corresponding device. If the re-
quest queue is full, processes wanting to en-
queue new requests have to wait until there is
room in the queue. Worse yet, once there is
room, all processes waiting for it will be han-
dled in FIFO order, irrespective of their CPU
priority.

In order to admit high priority I/O requests
(see below) instantly to the request queue, the
ABISS elevator can be configured to guarantee
a certain number of requests for any given pri-
ority. Note that this does not affect the actual
allocation of the request data structure, but only
whether a process has to wait before attempting
an allocation.

3.3 Prioritized disk I/O

The key purpose of ABISS is to hide I/O la-
tency from applications. This is accomplished
mainly through the use of prefetching. Now,
in order to make prefetching work properly, we
also have to limit the worst-case duration3 of

2In fact, they are much shorter most of the time, ex-
cept when synchronous memory reclaim is needed.

3We ignore degenerate cases, such as hardware er-
rors.

Application playout point

Beginning of playout buffer

Page is no longer used

Page is accessible and up to date

Page is being loaded

Pending read request

Advances at the requested rate (or less)

Moves freely

Figure 6: Playout buffer movement is con-
trolled by the kernel, and tracks the position of
the playout point, controlled by the application.

I/O requests, independent from what compet-
ing applications may do.

ABISS achieves isolation against applications
not using ABISS by giving I/O requests issued
by the prefetcher thread a higher priority than
requests issued by regular applications. The
priorities are implemented in theelevator:4 re-
quests with a high priority are served before any
requests with a lower priority. We currently use
an elevator specifically designed for ABISS. In
the future, we plan to migrate to Jens Axboe’s
more versatile time-sliced CFQ elevator [2].

An interesting problem occurs if a page enters
an ABISS playout buffer while being read at
a low priority. In order to avoid having to wait
until the low priority requests get processed, the
prefetcherupgradesthe priority of the requests
associated with the page.

We have described the ABISS elevator in more
detail in [3].

4Also called “I/O scheduler.” In this paper, we use
“elevator” to avoid confusion with the CPU scheduler
and the ABISS scheduler.
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Figure 7: Playout buffer movement is limited by a credit that accumulates at the rate requested by
the application, and which is spent when the playout buffer advances through the file.

ABISS users may also compete among each
other for I/O. To ensure that there is enough
time for requests to complete, the playout
buffer must be larger if more ABISS users
are admitted. Dynamically resizing of play-
out buffers is currently not implemented. In-
stead, the initial playout buffer size can be cho-
sen such that it is sufficiently large for the ex-
pected maximum competing load.

3.4 Rate control

Movement of the playout buffer is limited to
the rate the application has requested. Appli-
cation and kernel synchronize through the so-
called playout point: when the application is
done accessing some data, it moves the playout
point after this data. This tells the kernel that
the playout buffer can be shifted such that its

beginning lines up with the playout point again,
as shown in Figure 6.

We require explicit updating of the playout
point, because, when usingread andwrite ,
the file position alone may not give an accurate
indication of what parts of the file the applica-
tion has finished reading. Furthermore, in the
case of memory-mapped files, or when using
pread andpwrite , there is no equivalent of
the file position anyway.

The ABISS scheduler maintains acredit for
playout buffer movements. If enough credit is
available to align the playout buffer with the
playout point, this is done immediately. Oth-
erwise, the playout buffer catches up as far as
it can until all credit is consumed, and then ad-
vances whenever enough new credit becomes
available. This is illustrated in Figure 7.
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The credit allows the playout buffer to “catch
up” after small distortions. Its accumulation is
capped to the batch size described below, plus
the maximum latency for timer-driven playout
buffer movement, as shown in Figure 8.

1 jiffie

Timer latency

Work queue latency

Batch size

1 jiffie

Timer is set

C
re

di
t l

im
it

Maximum delay
between adding
work queue
entry and credit
calculation

Minimum duration
of wait

Maximum delay between
timer tick and addition of
work queue entry

Credit is updated

Figure 8: The limit keeps the scheduler from
accumulating excessive credit, while allowing
it to compensate for the delays occurring when
scheduling operations.

If the file was read into the playout buffer one
page at a time, and there is also concurrent
activity, the disk would spend an inordinate
amount of time seeking. Therefore, prefetch-
ing only starts when a configurablebatching
threshold is exceeded, as shown in Figure 9.
This threshold defaults to ten pages (40 kB).

Furthermore, to avoid interrupting best-
effort activity for every single ABISS reader,
prefetching is done for all files that are at
or near (i.e., half) the batching threshold, as
soon as one file reaches that threshold. This is
illustrated in Figure 10.

3.5 Wrapping up

Copying the data to user space could consume
a significant amount of time if memory for the
buffer needs to be allocated or swapped in at
that time. ABISS makes no special provisions
for this case, because an application can easily
avoid it by mlock ing this address region into
memory.

Finally, the file system may maintain an access
time, which is updated after each read opera-
tion. Typically, the access time is written back
to disk once per second, or less frequently. Up-
dating the access time can introduce particu-
larly large delays if combined with journaling.
Since ABISS currently provides no mechanism
to hide these delays, file systems used with it
should be mounted with thenoatime option.

4 Writing

When writing a page, the overall procedure is
similar to reading, but a little more compli-
cated, as shown in Figure 11: if the page is not
already present in the page cache, a new page is
allocated. If there is already data for this page
in the file, i.e., if the page does not begin be-
yond the end of file, and does not in its entirety
coincide with a hole in the file, the old data is
read from disk.

If we are about to write new data, the file sys-
tem driver looks for free space (which may
involve locking and reading file system meta-
data), allocates it, and updates the correspond-
ing file system meta-data.

Next, the data is copied from the user space
buffer to the page. Finally, the status of the
buffer heads and the page is set to “dirty” to in-
dicate that data needs to be written back to disk,



118 • Active Block I/O Scheduling System (ABISS)

A

B

A

B

Position of disk head

Seek

Position of disk head

Read

Time

Time

Figure 9: Reading a file (A) with ABISS one
page at a time (above) would cause many seeks,
greatly slowing down any concurrent best-
effort reader (B). Therefore, we batch reads
(below).

and to “up to date” to indicate that the buffers,
or even the entire page, are now filled with valid
data. Also file meta-data, such as the file size,
is updated.

At this point, the data has normally not been
written to disk yet. Thiswriteback is done
asynchronously, when the kernel scans fordirty
pages to flush.

If using journaling, some of the steps above in-
volve accesses to the journal, which have to
complete before the write process can continue.

If overwriting already allocated regions of the
file, the steps until after the data has been
copied are the same as when reading data, and
ABISS applies the same mechanisms for con-
trolling delays.

4.1 Delayed allocation

When writing new data, disk space for it would
have to be allocated in thewrite system call.

B

B

A

C

A

C

Position of disk head

Position of disk head

Time

Time

Figure 10: If there are multiple ABISS read-
ers (A andC), further seeks can be avoided if
prefetching is synchronized (below).

It is not possible to do the allocation at prefetch
time, because this would lead to inconsistent
file state, e.g., the nominal end-of-file could dif-
fer from the one effectively stored on disk.

A solution for this problem is to defer the al-
location until after the application has made
the write system call, and the data has been
copied to the page cache. This mechanism is
calleddelayed allocation.

For ABISS, we have implemented experimen-
tal delayed allocation at the VFS level: when
a page is prefetched, the newPG_delalloc
page flag is set. This flag indicates to other VFS
functions that the corresponding on-disk loca-
tion of the data is not known yet.

Furthermore, PG_delalloc indicates to
memory management that no attempt should be
made to write the page to disk, e.g., during nor-
mal writeback or when doing async . If such
a writeback were to happen, the kernel would
automatically perform the allocation, and the
page would also get locked during this. Since
allocation may involve disk I/O, the page may
stay locked for a comparably long time, which
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Figure 11: The steps in writing a page (without
ABISS).

could block an application using ABISS that is
trying to access this page. Therefore, we ensure
that the page does not get locked while it is still
in any playout buffer.

The code to avoid allocation is mainly
in fs/buffer.c , in the functions __
block_commit_write (we set the entire
page dirty), cont_prepare_write and
block_prepare_write (do nothing if us-
ing delayed allocation), and also inmpage_
writepages in fs/mpage.c (skip pages
marked for delayed allocation).

Furthermore, cont_prepare_write and
block_prepare_write may now see
pages that have been prefetched, and thus are
already up to date, but are not marked for
delayed allocation, so these functions must not
zero them.

The prefetching is done inabiss_read_
page in fs/abiss/sched_lib.c , and
writeback in abiss_put_page , using
write_one_page .

Support for delayed allocation in ABISS cur-
rently works with FAT, ext2, and ext3 in
data=writeback mode.

4.2 Writeback

ABISS keeps track of how many playout
buffers share each page, and only clearsPG_
delalloc when the last reference is gone. At
that time, the page is explicitly written back by
the prefetcher. This also implies allocating disk
space for the page.

In order to obtain a predictable upper bound
for the duration of this operation, the prefetcher
uses high disk I/O priority.

We have tried to leave final writeback to the
regular memory scan and writeback process of
the kernel, but could not obtain satisfactory per-
formance, resulting in the system running out
of memory. Therefore, writeback is now done
explicitly when the page is no longer in any
ABISS playout buffer. It would be desirable
to avoid this special case, and more work is
needed to identify why exactly regular write-
back performed poorly.

4.3 Reserving disk space

A severe limitation of our experimental imple-
mentation of delayed allocation is that errors,
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in particular allocation failures due to lack of
disk space or quota, are only detected when a
page is written back to disk, which is long after
thewrite system call has returned, indicating
apparent success.

This could be solved by asking the file system
driver to reserve disk space when considering
a page for delayed allocation, and using this
reservation when making the actual allocation.
Such a mechanism would require file system
drivers to supply the corresponding functional-
ity, e.g., through a new VFS operation.

There is a set of extensions for the ext3 file
system by Alex Tomas [4], which also adds,
among other things, delayed allocation, along
with reservation. Unfortunately, this imple-
mentation is limited to the ext3 file system, and
extending it to support the prefetching done by
ABISS would require invasive changes.

More recent work on delayed allocation with
fewer dependencies on ext3 [4] may be consid-
erably easier to adapt to our needs. However,
actively preventing allocation while a page is
in any playout buffer, which is a requirement
unique to ABISS, may be a controversial addi-
tion.

4.4 Meta-data updates

When writing, file meta-data such as the file
size and the modification time is also changed,
and needs to be written back to disk. When
reading, we could just suppress meta-data up-
dates, but this is not an option when writing.
Instead, we count on these updates to be per-
formed asynchronously, and therefore not to
delay the ABISS user.

This is clearly not an optimal solution, partic-
ularly when considering journaling, which im-
plies synchronous updates of on-disk data, and

we plan to look into whether meta-data up-
dates can be made fully asynchronous, while
still honoring assurances made by journaling.

Figure 12 shows the modified write process
when using ABISS, with all read and write op-
erations moved into the prefetcher.

4.5 FAT’s contiguous files

Files in a FAT file system are always logi-
cally contiguous, i.e., they may not have holes.
If adding data beyond the end of file, the in-
between space must be filled first. This causes
a conflict, if we encounter a page marked for
delayed allocation while filling such a gap. If
we write this page immediately, we may inflict
an unexpected delay upon the ABISS user(s)
whose playout buffer contains this page. On the
other hand, if we defer writing this page until it
has left all playout buffers, we must also block
the process that is trying to extend the file, or
turn also this write into a delayed allocation.

Since our infrastructure for delayed allocations
does not yet work for files accessed without
ABISS, and because a page can be held in a
playout buffer indefinitely, we chose to simply
ignore the delayed allocation flag in this case,
and to write the page immediately.

A more subtle consequence of all files being
contiguous is that new space can only be allo-
cated in awrite call, never when writing back
memory-mapped data. With delayed allocation
this changes, and allocations may now happen
during writeback, triggered by activity of the
allocation code. As a consequence, the locking
in the allocation code of the FAT file system
driver has to be changed to become reentrant.5

5This reorganization is partly completed at the time
of writing.
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Figure 12: The modified sequence of steps in
writing a page using ABISS.

5 Measurements

To be able to assure we have reached our main
goal as stated before, near-zero I/O delays, a
testing setup was created. The machine run-
ning ABISS was deliberately a fairly low-end
machine, to assess the results in the light of em-
bedded consumer devices. The data was gath-
ered byrwrt , a tool in the ABISS distribution
which performs isochronous read or write oper-
ations on a file with a certain specified data rate.
We have compared the results obtained using
ABISS with those obtained using the standard
Linux disk I/O. For fair comparison, we used
the ABISS elevator on all occasions.

The measurements are performed on a system
built around a Transmeta Crusoe TM5800 CPU
[5], running at 800 MHz, equipped with 128
MB of main memory of which about 92 MB is
available for applications, according tofree .
Two hard drives were connected to the system:
the primary drive containing the operating sys-
tem and applications, and a secondary drive
purely for measurement purposes. The drive
on which our tests were performed was a 2.5”
4200 RPM Hitachi Travelstar drive.

We have measured the jitter and the latency of
reads and writes, the latency of advancing the
playout point, the duration of the sleeps of our
measurement tool between the I/O calls and the
effective distance of the playout point move-
ments. Of these values the jitter is the most
interesting one, as it includes both the system
call time as well as any effects on time-keeping.
Therefore it is a realistic view of what an appli-
cation can really expect to get. This is further
explained in Figure 13. Furthermore, the be-
haviour of background best-effort readers was
analyzed.

Last but not least, we made sure that the
streams we read or write are not corrupted in
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the process. This was done by adding se-
quence numbers in the streams, either in pre-
pared streams for reading or on-the-fly while
writing.

}
    sleep_until(due_time);
        due_time = now;

    due_time = when next read is due;
    // C
    move_playout();
    // B
    read();

while (work_to_do) {
due_time = now;

    if (due_time < now)

    // A (should ideally be due_time)

Figure 13: Main loop in rwrt used for reading.
Latency is the time from A to B, jitter is B−
due_time.6 Playout point advancement latency
is C−B. A similar loop is used for writing.
Missed deadlines are forgiven by making sure
the next due_time will never be in the past.

5.1 Reading and writing performance

The delays of both the read and write system
call with ABISS were measured under heavy
system load, to show we are effectively able
to guarantee our promised real-time behaviour.
Using therwrt tool, we have read or written a
stream of 200 MB with a data rate of 1 MB/s, in
blocks of 10 kB. The playout buffer size was set
to 564 kB for reading and a generous 1 MB for
writing, as the latter stressed the system notice-
ably more. The number of guaranteed real-time
requests in the elevator queue was set to 200.

For the tests involving writing, data was written
to a new file. The system load was generated
by simultaneously running eight greedy best-

6We considered using the interval C− due_time in-
stead, but found no visible difference in preparatory tests.

effort readers or writers7 during the tests, using
separate files with an as high as possible data
rate. The background writers were overwriting
old data to avoid too many allocations.

5.2 Timeshifting scenario test

To show a realistic scenario for applications
mentioned in the introduction of this paper,
we have measured the performance of three
foreground, real-time writers writing new data,
while one foreground real-time reader was
reading the data of one of the writers. This is
comparable with recording two streams while
watching a third one using timeshifting8. We
have used the same setup as with the previous
measurements, i.e., the same bit rate and file
sizes.

5.3 Results

The top two plots in Figure 14 show the mea-
sured jitter for reading operations. The plots
are cumulative proportional, i.e., each point ex-
presses the percentage of requests (on the y-
axis) that got executed after a certain amount
of time (on the x-axis). For example, a point at
(5 ms, 0.1%) on the graph would indicate that
0.1% of all operations took longer than 5 ms.
This nicely shows the clustering of the delays;
a steep part of the graphs indicates a cluster.

It can be seen that only a small percentage
of the requests experience delays significantly
longer than average. However, those measure-
ments are the most interesting ones, as we try

7Greedy readers or writers try to read or write as fast
as possible, in this case in a best-effort way, using a lower
CPU and I/O priority than the ABISS processes.

8Timeshifting is essentially recording a stream and
playing the same stream a few minutes later. For exam-
ple, this can be used for pausing while watching a broad-
cast.
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Figure 14: Cumulative proportional plots of the jitter measurements. In all cases the ABISS eleva-
tor was used and the measurements were performed on a FAT filesystem.
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to bound the experienced delays heuristically.
To be able to focus on these delays, the y-axis
is logarithmic. As the greedy best-effort read-
ers experience delays of orders of magnitude
longer than the real-time delays, the x-axis is
logarithmic as well.

Without using the ABISS prefetching mecha-
nism or I/O priorities, all traffic is basically
unbounded best-effort. Under the load of the
greedy readers, the requested 1 MB/s can defi-
nitely not be provided by the system. Although
the majority of the requests are served within a
few milliseconds, occasional delays of up to a
300 ms were measured. The performance of the
greedy readers is even worse: maximum ser-
vice times of more than a second occurred.

When ABISS is used, we see an enormous de-
crease of the maximum delay: the reading re-
quests of the 1 MB/s foreground reader now get
serviced within less than 5 ms, while the back-
ground readers are hardly influenced.

Similar results were observed when using
ABISS for writing, as can be concluded from
the middle two plots in Figure 14. Using
no buffering, prefetching or real-time efforts,
but with the ABISS elevator, both the 1 MB/s
writer of new data as the greedy background
writers experience delays of up to ten seconds.
ABISS is able to decrease the service times of
the foreground writer to the same level as when
it is used for reading: a maximum delay of less
than 5 ms, while again the background writers
experience little discomfort.

As for the timeshifting scenario with multi-
ple high-priority real-time writers and a ditto
reader, the results conform with the above. The
results are shown in the last two plots in Fig-
ure 14. Without the help of ABISS, especially
the writers cannot keep up at all and some re-
quest only get served after seconds. Again, us-
ing ABISS shortens the delays to less than 5
ms, for both the reader and the writers.

6 Future work

We have briefly experimented with a mecha-
nism based on the NUMA emulator [6], to pro-
vide a guaranteed amount of memory to ABISS
users. With our changes, we generally observed
worse results with than without this mecha-
nism, which suggests that Linux memory man-
agement is usually capable to fend for itself,
and can maintain sufficient free memory re-
serves. In periods of extreme memory pres-
sure, this is not true, and additional help may
be needed.

When additional ABISS users are admitted
or applications close their files, I/O latency
changes. In response to this, playout buffers
should be adjusted. We currently only pro-
vide the basic infrastructure for this, i.e., the
ABISS daemon that oversees system-wide re-
source use, and a set of communication mech-
anisms to affect schedulers, but we do not im-
plement dynamic playout buffer resizing so far.

Since improvements are constantly being made
to the memory management subsystem, it
would be good to avoid the explicit writeback
described in Section 4.2, and use the regu-
lar writeback mechanism instead. We need to
identify why attempts to do so have only caused
out of memory conditions.

As discussed in Section 4.3, error handling
when using delayed allocation is inadequate for
most applications. This is due to the lack of
a reservation mechanism that can presently be
used by ABISS. Possible solutions include ei-
ther the introduction of reservations at the VFS
level, or to try to use file system specific reser-
vation mechanisms, such as the one available
for ext3, also with ABISS.

Since delayed allocation seems to be useful in
many scenarios, it would be worthwhile to try
to implement a general mechanism, that is nei-
ther tied to a specific usage pattern (such as the



2005 Linux Symposium • 125

ABISS prefetcher), nor confined to a single file
system. Also, delayed allocation is currently
very experimental in ABISS, and some corner
cases may be handled improperly.

Last but not least, it would be interesting to ex-
plore to what extent the functionality of ABISS
could be moved into user space, e.g., by giving
regular applications limited access to disk I/O
priorities.

7 Conclusion

The ABISS framework is able to provide a
number of different services for controlling the
way reads and writes are executed. It further-
more allows for a highly controlled latency due
to the use of elevated CPU and I/O priorities by
using a custom elevator. These properties have
enabled us to implement a service providing
guaranteed I/O throughput and service times,
without making use of an over-dimensioned
system. Other strategies might also be imple-
mented using ABISS, e.g., a HDD power man-
agement algorithm to extend the battery life of
a portable device.

Reading is a more clearly defined operation
than writing and the solutions for controlling
the latencies involved have matured, yielding
good results with FAT, ext2, and ext3. We
have identified the problem spots of the writ-
ing operation and have implemented partial so-
lutions, including delayed allocation. Although
these implementations are currently in a proof-
of-concept state, the results are good for both
FAT and ext2. The interface complexity of our
framework is hidden from the application re-
questing the service, by introducing a middle-
ware library.

To determine the actual effectiveness and per-
formance of both the framework as well as the

implemented scheduler, we have carried out
several measurements. The results of the stan-
dard Linux I/O system have been compared
with the results of using ABISS. Summarizing,
using ABISS for reading and writing streams
with a maximum bit rate which is knowna pri-
ori leads to heuristically bounded service times
in the order of a few milliseconds. Therefore,
buffering requirements for the application are
greatly reduced or even eliminated, as all data
will be readily available.
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