
Using a the Xen Hypervisor to Supercharge OS
Deployment

Mike D. Day
International Business Machines

ncmike@us.ibm.com

Ryan Harper
International Business Machines

ryanh@us.ibm.com

Michael Hohnbaum
International Business Machines

hohnbaum@us.ibm.com

Anthony Liguori
International Business Machines

aliguori@us.ibm.com

Andrew Theurer
International Business Machines

habanero@us.ibm.com

Abstract

Hypervisor technology presents some promis-
ing opportunities for optimizing Linux deploy-
ment. By isolating a server’s unique properties
into a set of patches to initialization scripts and
other selected files, deployment of a new server
will be demonstrated to occur in a few seconds
by creating a new Xen domain, re-using an ex-
isting file system image and applying patches
to it during domain initialization. To capture
changes to a server’s configuration that occur
while it is running, the paper discusses the po-
tential of copy-on-write file systems to hold
changes to selected files. By separating the ini-
tialization and file data that make a linux server
instance unique, that data can be stored and re-
trieved in a number of ways. The paper demon-
strates how to store and retrieve different ini-
tialization patches over the network and inte-
grate these capabilities into the Xen tools. Po-
tential uses for the techniques demonstrated in
the paper include capacity on demand, and new

methods of provisioning servers and worksta-
tions.

1 Introduction

Virtual machine technology is rapidly be-
coming ubiquitous for commodity processors.
Commercial product has established a foothold
in this space. Open Source products are emerg-
ing and maturing at a rapid pace. This pa-
per demonstrates how the use of virtualization
technology can improve deployment and main-
tenance of Linux servers.

The virtualization technology used for this pa-
per is Xen, an open source hypervisor devel-
oped at the University of Cambridge1. Xen
supports para-virtualized guests, that is operat-
ing systems are modified to run in domains on
top of Xen.

1http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/

• 97 •



98 • Using a the Xen Hypervisor to Supercharge OS Deployment

All I/O devices are owned by one or more privi-
leged domains. Typically the first domain to be
created (called domain 0), but other domains
may have control over one or more I/O device.
The privileged domain runs a kernel that is con-
figured with regular device drivers. The privi-
leged domain initializes and services I/O hard-
ware.

Block, network, and USB devices are virtual-
ized by the privileged domain. Backend device
drivers run in the privilege domain to provide a
bridge between the physical device and the user
domains. Front end virtual device drivers exe-
cute in user domains and appear to Linux as a
regular device driver.

While Xen includes management and control
tools (xend and others), an alternate toolset,
vmtools2, is used for the work discussed in
this paper. vmtools is a re-implementation in
“C” of the Xen toolset, which is implemented
in python. vmtools provides the capabilities
needed to configure domains.

vmtools consists of a daemon,xenctld ; a
set of command line tools,vm-* ; andvmm—a
script that provides a more user-friendly fron-
tend to the vmtools. vmtools provides com-
mands for creating a domain, assigning re-
sources to the domain, starting and stopping a
domain, querying information about domains.
The tools are modular, provide ease of use
within scripts, and are easy to modify and ex-
tend.

vmtools are used to demonstrate the flexibil-
ity of the Xen architecture by showing it can
be controlled by multiple toolsets, and also as
a vehicle for extending the Xen configuration
syntax3.

2http://www.cs.utexas.edu/users/
aliguori/vm-tools-0.0.9a.tar.gz

3http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/readmes/user/user.html

2 DEPLOYMENT OVERVIEW

Deployment is the provisioning of a new op-
erating system and associated configuration
for a unique instance of a computer system.
Throughout this paper a unique instance of an
operating system is referred to as a system im-
age. Traditionally, each computer system has
one system image deployed on it. With virtual-
ization technology, each computer system may
have one to many system images deployed,
each executing within its own virtual machine
environment.

Related to deployment is maintenance. After a
system image is established, it must be main-
tained. Software components must be updated
(for example, replaced with new versions) to
address security problems, provide new fun-
tionality, or correct problems with existing soft-
ware. Sometimes this involves replacing one
component, a subset of the overall software
components, or a complete replacement of all
operating system software. Similarly, applica-
tion software and middleware needs to be main-
tained.

Data centers have numerous computer systems,
and numerous system images. To keep things
manageable, most datacenters strive to keep
system images as common as possible. Thus, it
is common practice to choose one specific ver-
sion of an operating system and deploy that on
all (or a large percentage of) the system images.

2.1 Deployment Tasks

Deploying a new system image involves:

• Configuring the physical (or virtual) ma-
chine, such as processor count, physical
memory, I/O devices



2005 Linux Symposium • 99

• Installing the operating system software,
such as kernel configuration (smp vs up,
highmem, and so on), device drivers,
shells, tools, documentation, and so on.

• Configuring the operating system (such as
hostname, network parameters, security,
and so on).

• Creating user accounts

• Installing application software

• Configuring application environment

2.2 Current Deployment Methods

There are different ways to deploy multiple
copies of the same system. These include man-
ual deployment, use of a higher-level installa-
tion tool for example kickstart, and installation
customization then cloning.

2.2.1 Manual

The most basic mechanism is to do a manual
install from the same installation media to each
system image. This method is time consuming
and can be error prone (as the system admin-
istrator must execute a series of steps and with
repetition is inclined to miss a step or make a
subtle variation in the process that can have un-
forseen consequences).

2.2.2 Kickstart

Kickstart4 is a tool provided by Red Hat that
enables repeating a system install with identi-
cal parameters. In effect, all questions that are

4http://www.redhat.com/docs/
manuals/linux/RHL-9-Manual/
custom-guide/part-install-info.html .

normally asked by the system installer are an-
swered in advanced and saved in a configura-
tion file. Thus, identical system images may be
installed on multiple machines with reasonable
automation.

2.2.3 YaST Auto Installer

AutoYaST5 functions according to the same
principal as Kickstart. Configuration and de-
ployment of the platform is driven by a con-
figuration file, and the process can be repeated
(with configuration changes) for multiple de-
ployments.

2.2.4 Clone/Customize

Another install method is to clone an installed
system and customize the resulting system im-
age. In many cases a clone operation, which
consists of copying the contents of the original
installed root file system, is quicker than go-
ing through the complete install process. Af-
ter the clone operation, system image specific
customization is then performed. For example,
setting hostname.

3 IMPROVEMENTS AVAILABLE
THROUGH VIRTUALIZATION

Virtualization technology provides opportuni-
ties to improve deployment mechanisms. Im-
proved aspects of deployment include:

• normalization of hardware configuration

• dynamic control over hardware configura-
tion

5http://yast.suse.com/autoinstall/
ref.html .



100 • Using a the Xen Hypervisor to Supercharge OS Deployment

• omission of hardware discovery and prob-
ing

• use of virtual block devices (VBD)

• file system reuse

• virtual networking (VLAN)

3.1 Dynamic Control Of Hardware Config-
uration

Without virtualization, changing the number of
CPUs available, the amount of physical mem-
ory, or the types and quantity of devices re-
quires modifying the physical platform. Typ-
ically this requires shutting down the system,
modifying the hardware resources, then restart-
ing the system. (It may also involve rebuilding
the kernel.)

Using virtualization, resources can be modi-
fied through software control. This makes it
possible to take disparate hardware, and still
create normalized virtual machine configura-
tions, without having to physically reconfigure
the machine. Further, it provides the capabil-
ity of redefining virtual machines with more re-
sources available to address capacity issues.

For example, Xen allows you to add and re-
move processors, network, and block devices
from and to user domains by editing a configu-
ration file and running a command-line utility.
No kernel configuration is necessary, and you
don’t need to shut down the physical computer.
This operation can be repeated as often as nec-
essary.

In addition to the advantages in deploying and
maintaining Linux systems, dynamic hardware
configuration makes more advanced workload
management applications easier to implement.

3.2 Virtual Block Devices

Xen privileged domains virtualize block de-
vices by exporting virtual block devices (VBD)
to domU’s. Any block device accessible by
Linux can be exported as a VBD. As part of
the process of setting up a VBD, the system ad-
ministrator specifies the device path the VBD
should appear to the domU as. For example
/dev/sda1 or /dev/hda5 . Disk partitions
may be exported this way, or a VBD may be
backed by a file in dom0’s file system.

Virtual block devices provide two benefits to
deployment and maintenance of Linux servers.
First, they provide hardware normalization as
described above. (Every domain can have an
identical fstab, for example). Secondly, VBDs
make the reuse of file systems with Xen do-
mains exceedingly simple, even for read/write
file systems.

3.3 Virtual Networking

Xen privileged domains virtualize network de-
vices in a manner similar to VDBs. The priv-
ileged domain kernel initializes network inter-
faces and starts networking services just as a
normal kernel does. In addition, Xen privileged
domains implement a virtual LAN and use the
Xen network back end (netback) driver to ex-
port virtual network interfaces to user domains.

User domains import virtualized network in-
terfaces as “devices,” usuallyeth0...ethN .
The virtualized eth0, for example, is really a
stub that uses Xen inter-domain communica-
tion channels to communicate with the netback
driver running in a privileged domain. Finally,
the Xen privileged domain bridges virtualized
network interfaces to the physical network us-
ing standard Linux bridge tools.

The most common practice is to use private IP
addresses for all the virtual network interfaces



2005 Linux Symposium • 101

and then bridge them to a physical network in-
terface that is forwarded using Network Ad-
dress Translation (NAT) to the “real world.”

A significant benefit of this method for deploy-
ment and maintenance of servers is that every
server can have identical network configura-
tions. For example, every user domain can have
the same number of network interfaces and can
use the same IP configuration for each inter-
face. Each server can use the bridging and NAT
forwarding services of the privileged domain to
hide their private addresses. Note that bridging
without NAT is also a common practice, and
allows user domains to host externally visible
network interfaces.

3.4 File System Reuse

Xen’s Virtual Machine technology can export
file systems and file images to virtual ma-
chines as devices. Sharing file systems among
Linux platforms is a time-honored technique
for deploying Linux servers, and virtual ma-
chine technology simplifies the sharing of file
systems.

File System reuse is an especially helpful tech-
nique for deploying and maintaining Linux sys-
tems. The vast majority of the time spent de-
ploying a new Linux system is spent creating
and populating the file systems.

Re-using read-only file systems is exceedingly
simple in Xen. All you have to do is ex-
port the file system as a device to Xen. For
example, the linedisk = [’file:/var/

images/xen_usr,sda1,r’] causes the file
system image/var/images/xen_usr to
be exported to the user domain as/dev/
sda1 . (All configuration commands are rel-
ative to the privilged domain’s view of the
world.) Because this is a read-only file system
you don’t need to do anything special to syn-
chronize access among domians.

In addition to file system images, the Xen do-
main configuration syntax allows you to export
both physical devices and network file systems
as devices into the new domain. A future ver-
sion of Xen will the exporting of a VFS direc-
tory tree to a Xen domain as a device.

Read/write file systems are not as easy to share
among domains because write access must be
synchronized among domains. There are at
least three ways to do this:

• Use a storage server that provides exter-
nal, sychronized shared storage. There is
a range of systems that have this capabil-
ity.

• Use a copy-on-write file system. One such
file system is unionfs.6

• “Fork” an existing file system by duplicat-
ing it for each new domain. This is a sim-
ple and expedient (if not efficient) way to
re-use read-write file systems.

The Logical Volume Manager (LVM)7 has an
interesting snapshot capability that was de-
signed primarily to support hot backups of file
systems, but which could evolve into a copy-
on-write file system appropriate for use with
Xen.

One problem with re-use of read-write file sys-
tems is that they usually contain configuration
files that are specific to an individual Linux sys-
tem. For example,/etc on a Linux system
contains most of the uniqueness of a system. If
you are going to re-use an/etc file system,
you need an automated way to “fork” and mod-
ify it. Fortunately the typical system does not

6http://www.fsl.cs.sunysb.edu/
project-unionfs.html

7http://www.tldp.org/HOWTO/
LVM-HOWTO/index.html .



102 • Using a the Xen Hypervisor to Supercharge OS Deployment

need a vast number of changes in/etc and
as a result it is possible to automate the “fork-
ing” process. Later this paper discusses some
tools we have developed to automate the cre-
ation, modification, and exporting of file sys-
tems under Xen.

4 EXPLOITING XEN TO DE-
PLOY SERVERS

A variation of the clone and modify approach
is proposed to deploy Linux on Xen virtual ma-
chines. In addition, an extended configuration
syntax and Xen deployment tool is proposed to
integrate the deployment process with Xen do-
main creation. This approach uses Xen to im-
prove on the existing clone methods in the fol-
lowing ways:

• Xen allows exporting of VBDs to do-
mains, where they appear as virtual de-
vices, such as SCSI or IDE drives. This
is an improvement over cloning a file sys-
tem image to a bare-metal server.

• Xen allows the exporting of NFS volumes
as virtual devices. This privides a file sys-
tem with some of the same advantages as
VBDs.

• Xen allows provides control over the
“hardware” environment of each new
server. By exporting specific devices to
the new domain, it is not necessary to ac-
comodate all the possible hardware con-
figurations when deploying a new server.
For example, all domains within an orga-
nization may appear to have only SCSI
block devices, despite variation in the un-
derlying physical hardware.

4.1 Deploying Application Stacks

The flexibility to export specific file systems to
the new partitions means that it is much eas-
ier to deploy new servers for specific applica-
tions. For example, a file system image can be
prepared with a complete DBMS stack. When
a new data base server is needed, a Xen do-
main can be created using the DBMS file sys-
tem images. In this case, Xen can export the
DBMS image to the new domain. The new
domain can and mount the image read-only as
/opt/dbms/ . Exporting of pre-built file sys-
tems as virtual devices to Xen domains sim-
plifies the deployment of application-specific
servers.

4.2 Xen Deployment Methodology

The general methodology used is to create
a handful of “canned” file systems that can
be mixed-and-matched to create new Xen do-
mains by exporting them as VDBs or NFS
mounts. For example,/usr and /bin as
standard read-only file systems;/etc as a
read/write file system that needs to be prepro-
cessed;/var/ and /home as read-write file
systems that need COW or snapshot capabil-
ity; Variations of/opt for specific application
stacks, and so on.

Extending vmtools to support integrated de-
ployment and domain creation requires some
new configuration properties for domains, as
well as some shell scripts to perform prepro-
cessing on the images to customize them (when
necessary) for each domain.

The “Xen Domain Container” is comprised of
the following:

• An overall configuration file for the new
domain. This is an extended version of



2005 Linux Symposium • 103

the existing domain configuration file used
by the vmmcommand. The extensions
include information about the domain’s
VDB or NFS file systems and how they
should be processed by vmtools prior to
domain creation. The extended-syntax
configuration file is called a “container
file.”

• File System Images. Each image consists
of a file system stored in a compressed
cpio archive (just as initrd). In addition,
each file system image has metadata in
the container file for the file system and
processing instructions for vmtools. The
metadata and processing instructions de-
scribe characteristics of the file system in-
cluding where it should be mounted by the
new domain, whether it should be read-
only or read-write, and how it needs to be
customized for each new domain.

For example, a file system that is to be
mounted by the new domain as/etc
needs to be customized for each new do-
main. The /etc file system includes
the sysinit data and configuration files,
plus user and group accounts, file system
mounting, hostnames, terminal configura-
tion, etc.

• Init hooks. Each file system can include
shell scripts that will be driven by a con-
figuration file, also in that file system. The
idea is to have vmtools preprocess the file
system, then mount it on a device (or ex-
port it using NFS). During domain startup,
the initrd/init process looks for a “post
processing” shell script and executes the
script on the mounted file system. De-
pending upon the context of the init pro-
cess, it may remount file systems and ex-
ecute a pivot-root and restart the init pro-
cess.

4.3 Composing a Xen Container

An important goal is to make composing and
maintaining Xen domain containers as simple
as possible. The container file may contain
standard Xen domain configuration statements
in addition to “container” syntax. Both types
of statements (standard Xen configuration and
container) may be intermixed throughout the
file.

The container syntax refers to file system
images using URIs. Each URI may point
to a file system image stored locally, as
in file:///var/images/etc.cpio.gz ; or
remotely, as inhttp://foo.org/images/

etc.cpio.gz . This reference syntax has two
important advantages:

• Simplification of file system deployment.
Using a URI reference for each file system
image allows the administrator to keep
a canonical image on a network server.
When starting the domain, vmtools will
follow the URI and download the file sys-
tem and perform pre-processing on a lo-
cal copy. The tools follow this process for
each URI reference configured for use by
the domain.

• Simplification of file system maintene-
nace. For read-only file systems that con-
tain applications, such as/bin , /sbin ,
and /usr , applying updates and patches
comprise a large percentage of the ad-
ministrator’s time. The URI reference al-
lows the administrator to patch or update
the cononical, network-resident file sys-
tem image. Domains can be configured to
retrieve their file system images every time
they start. A more advanced design would
provide a way for the domain initialization
to check for recent updates to its file sys-
tem images.



104 • Using a the Xen Hypervisor to Supercharge OS Deployment

4.3.1 Domain Customization

Domain customization involves applying mod-
ifications to Linux configuration files residing
within a file system image. After retrieving a
file system image, vmtools can mount and mod-
ify the image before starting the Xen domain.

The container syntax provides three different
methods for modifying files within a file sys-
tem image:

• File replacement. This mechanism causes
vmtools to replace the content of a file
with text embedded in the configuration
file itself. The conainter syntax for file re-
placement is shown in Figure 1.

This simple expression in Figure 1 will
cause vmtools to retrieve the file system
archive at http://images.xen.foo.

org/etc.cpio.gz , expand the archive,
and replace the file /etc/HOSTNAME with
a new file. The new file will contain
a single line, “FCDOBBS.” If /etc/
HOSTNAMEdoes not exist, it will be cre-
ated.

There are additional options in the file re-
placement syntax to create a patch file by
comparing the original and modified file
systems, and to “fork” the archive by cre-
ating a new copy (with the modifications)

vmtools makes some simple attempts to
be efficient. It will only retrieve and ex-
pand file system image once per invoca-
tion. Thereafter, it will use a locally ex-
panded copy. The creator of the container
file can order expressions so that the file
system is forked only after it has been
completely processed.

The remaining methods for modifying
files follow the same patterns as the re-
placement method.

• File copy. This mechanism causes vm-
tools to retrieve a file and copy the re-
trieved file over an existing file.

• File system patching. This mechanism re-
trieves a patch and then applies the patch
to the file system.

4.3.2 Steps to Compose a Xen “Container”

Composing a Xen container, then, involves:

• Preparing file system images. This step
only needs to be performed initially, af-
ter which you can use the same file system
images repeatedly to deploy further Linux
domains. The tools discussed in this paper
provide commands that automate file sys-
tem preparation. (Remember, a file sys-
tem image is simply a compressed cpio
archive).

• Creating the container file. The container
file defines the new domain, including the
location of the kernel, the amount of mem-
ory, the number of virtual processors, vir-
tual block devices, virtual ethernets, and
so on. The proposed container expressions
prepare, retrieve, and process file system
images for use by the new domain.

All information describing the domain is
present in the container file: resources, devices,
kernel, and references to file systems. Further,
the container file includes processing instruc-
tions for each file system, with the ability to
retrieve updated file systems whenever the do-
main is started. This collection of information
is referred to as a “domain container” because
it is self-contained and portable from one xen
platform to another.

At the present time one container file must be
created for each domain. However, because



2005 Linux Symposium • 105

CONTAINER SYNTAX FOR FILE REPLACEMENT

[replace /etc/HOSTNAME
archive http://foo.org/images/etc.cpio.gz

FCDOBBS

] [end]

Figure 1: Container Syntax for File Replacement. This simple example shows the
/etc/HOSTNAME file being replaced with one text line containing “FCDOBBS.”

most of the configuration syntax (including the
extensions we propose) is boilerplate, there are
improvements which will allow reuse of a con-
tainer template to control the deployment and
maintenance of multiple domains.

To complete the deployment, you must process
the domain container usingvm-container ,
as shown in Figure 2. This example is assumed
to be running as a user process in the Xen Do-
main0 virtual machine. Domain0 is always the
first domain to run on a Xen platform, and it is
created implicitly by Xen at boot time.

The command in Figure 2 parses the con-
tainer file my-domain and processes all the
extended-syntax expressions within that file. It
also produces the standard Xen configuration
file my-config . Output is logged to/var/
log/domain , and/var/images is used as
the working directory for processing file system
images.

At this point all that’s left is to start the domain
usingvmm create my-config .

4.4 Xen Container Syntax

The Xen container syntax is a superset of “stan-
dard” Xen configuration syntax. Using the
standard Xen syntax you can define the domain
boot kernel and boot parameters, the amount of

memory to allocate for the domain, which net-
work and disk devices to virtualize, and more.
The expressions discussed below arein addi-
tion to the standard Xen syntax and both types
of expressions may be mingled in the same con-
tainer file.

The Xen container syntax will expand as fur-
ther experience using it to deploy Linux sys-
tems is gained. The syntax is presently com-
plete enough to manage the creation, deploy-
ment, and maintenance of Xen domains, in-
cluding the composition and reuse of file sys-
tem images.

The Xen container syntax is explained below
using examples. In actual use, the container file
will have a number of container expressions.
The vm-container parser only makes one
pass through the container file and it processes
each expression in the order it is declared
within the file. Dependent expressions, such
as apopulate expression which refers to an
archive instantiated by acreate expression,
must be in the correct order.

4.5 Creating a File System Image

A file system image for a Xen container can be
created from any existing file system. For ex-
ample, the expression



106 • Using a the Xen Hypervisor to Supercharge OS Deployment

PROCESSING THE DOMAIN CONTAINER

vm-container --container my-domain \
--stripped my-config --log /var/log/domain \
--dir /var/images

Figure 2: Processing the Domain Container

[create
/etc/

ftp://foo.org/images/etc.cpio.gz
][end]

will create a compressedcpio archive out of
the contents of the local/etc/ directory tree.
It will then store that archive usingftp to
the URI ftp://foo.org/images/etc.
cpio.gz

4.6 Creating a Sparse File System

Loopback devices are especially convenient to
use with Xen. Theimage expression will
causevm-container to create a sparse file
system image, formatted as anext3 volume.

[image /var/images/fido-etc
50MB

fido_etc] [end]

This example will causevm-container to
create a sparse 50 MB file system image at
/var/images/fido-etc . The file system
will be formatted and labelled asfido-etc .

4.7 Populating a File System Image

Any type of volume (LVM, NFS, loopback,
or physical device) exported to a Xen domain
needs to have a formatted file system and be
populated with files. Thepopulate expres-
sion will make it happen.

[populate image
/var/images/fido-etc
/mnt/
ftp://foo.org/images/etc.cpio.gz
][end]

The example above will cause
vm-container to mount the file sys-
tem /var/images/fido-etc to
/mnt using a loopback device. It
will then retrieve the archive ftp:

//foo.org/images/etc.cpio.gz , ex-
pand the archive into/mnt , sync , umount ,
and delete the loop device.

4.8 Replacing and Copying

Figure 1 shows an example of replacing a spe-
cific file within a file system. Thereplace
expression can also be used to generate adiff
file that isolates the modifications made to the
file system. It can also create an new file system
archive based on the modifications.

The copy expression is almost identical to
replace , except that it retrieves whole files
using URI references and copies those file into
the file system being modified. It also supports
patch generation and forking.

4.9 Patching a File System

Thereplace andcopy expressions can both
generate a patch file that isolates modifications



2005 Linux Symposium • 107

to a file system. Once that patch file is created,
you can use it repeatedly to modify file systems
during domain initialization.

[patch
file://var/ images/fido-etc
ftp://foo.org/ images/fido-etc.patch 1
file:///var/ images/fido-etc-patched
][end]

This example will retrieve a patch file
from ftp://foo.org/images/fido-etc.

patch1 . It will then expand and patch the file
system image at/var/images/fido-etc .
It will then “fork” the file system by saving
a patched archive atfile:///var/images/

fido-etc-patched .

4.10 Forking File Systems

While each of thereplace , copy , and
patch expressions will “fork” the file system,
doing so should only occur after that file sys-
tem had undergone all the modifications indi-
cated by the container file. The statement that
causes the file system to be copied and stored is
always optional.

5 Further Work

The notion of using a hypervisor to supercharge
OS deployment is valuable and warrants fur-
ther development effort. In particular, the inte-
gration of file system image customization with
Xen management and control tools proved very
successful. The concept of capturing the unique
personality of a domain as a set of changes to
file system images was straightforward and fa-
miliar, and it worked as expected. A number of
files were successfully patched during domain
initialization, including the/etc/passwd ,

/etc/shadow , and /etc/groups . These
last three examples show how user accounts
and group member can be modified during do-
main initialization.

Patching user accounts and authorization data
during domain initialization is dangerous, espe-
cially since our tools retrieved patchfiles over
the network. High on the list of further work
is generation and verification of cryptographic
signatures for all file system images and differ-
ence files. It would also be prudent to generate
and verify signatures for the extended configu-
ration file.

While modifying file systems during domain
initialization from Domain 0’s userspace was
very reliable, mixed success was achieved
when modifying file systems during the kernel
init process. Sometimes patches were success-
ful but usually the patches failed or the init pro-
cess died and was respawned. Continued ex-
perimentation with the init process as a vehicle
for domain customization is warrented.

5.0.1 LVM

LVM has great potential to augment the ap-
proach to domain deployment. In fact, it is al-
ready a great tool for use with virtual machines.
The LVM snapshot capability, while design for
hot backups, works as a COW file system but
needs to be evaluated further with this particu-
lar use model in mind.

6 Legal Statement

This work represents the views of the authors and
does not necessarily represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e
(logo) server, and xSeries are trademarks of Interna-
tional Business Machines Corporation in the United
States and/or other Countries.



108 • Using a the Xen Hypervisor to Supercharge OS Deployment

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


