
TCPfying the Poor Cousins

Arnaldo Carvalho de Melo
Conectiva S.A.

acme@conectiva.com.br

http://advogato.org/person/acme

http://www.conectiva.com.br

Abstract

In this paper I will describe the work I am
doing on the Linux networking infrastructure,
with emphasis on cleaning the code, but with
important “side effects” like reduction of core
structures already saving over 600 bytes on
UDP sockets all over the net in 2.5/2.6 (tcp,
etc.), elimination of data dependencies, reduc-
tion of the non-mainstream network families
maintenance cost by making them use code
that now is innet/ipv4 but can be moved
to net/core , leaving only the really ipv4-
specific code and making LLC use it as a proof
of concept (work done in my net-exp tree,
pending submission).

TCP code becomes used by the poor cousins,
they appreciate that!

1 How This Started

Making IPX uptodate with regards to advances
in the core networking infrastructure, to kill
deliver_to_old_ones , i.e., special cases
in the core kernel for protocols that hasn’t been
converted to shared skbs and multithreading.

In the process I noticed several areas where
code was replicated or used a different, older
framework, due to the evolution of the core net-
working infrastructure.

Also de experience of porting the NetBEUI
and LLC code released as GPL by Procom
Inc. from the 2.0 Linux kernel networking in-
frastructure to 2.4 and then to 2.5/6, working
on a BSD sockets API forPF_LLC, initially
contributed by Jay Schullist was instrumental
in realising the existing similarities in the in-
frastructure needs required by several protocol
families.

2 TCP/IP Evolves Faster

Most of the attention is given, of course,
to TCP/IP, and in the process new infras-
tructure is created, with TCP/IP using it at
first and sometimes leaving things like the
deliver_to_old_ones function to sim-
ulate the previously existing big networking
lock and theSOCKOPS_WRAPPEDmacro, to
allow the other protocol families to continue
working, hoping that their maintainers do the
necessary work, but this sometimes doesn’t
happen for a long time.

In other cases code is added to TCP/IP that,
upon further inspection, could be moved to
net/core and be useful for the other proto-
col families.

Doing this factorization will help make these
improvements to TCP/IP be taken advantage of
by the other protocol families and will help in
realising the ultimate goal of keep the proto-



368 • Linux Symposium 2004 • Volume Two

col families code with just what is completely
specific.

3 Trimming struct sock

In 2.4,struct sock has a big fat union that
has most of the private data for each protocol
family, so when any change had to be done to a
specific protocol family the layout ofstruct
sock would change, generating unnecessary
recompilation of most of the network related
code in the kernel.

In 2.6 this has changed andstruct sock
nowadays is mostly free of details specific to
network protocol families.

In the process two ways were devised to store
the network protocol private area, one for pro-
tocols that have stringent performance require-
ments, like TCP/IP, using per-protocol slab
caches and another one, simpler, that allows
protocol families to just allocate a chunk of
memory and store its pointer in thestruct
sock member sk_protinfo . As most
stacks now use helper macros to access its pri-
vate area, the eventual switch to the slab cache
approach is easily done.

With this in place the footprint of thestruct
sock , that was of about 1280 bytes on a UP
machine in 2.4 to 308 bytes for the generic
sock slabcache in 2.6, with thetcp_sock
slabcache using 1004 bytes,udp_sock slab-
cache using 484 bytes and finally theunix_
sock (PF_UNIX sockets) using just 356
bytes.

This changes also resulted in a performance
gain in the establishment of connections, as
was verified with thelmbench tool.

Another related change was to diminish the
data dependency amongstruct sock and
struct tcp_tw_bucket , that is a “mini

socket” used to represent TCP connections
in the TIME_WAIT state. To accomplish
this, struct sock_common was intro-
duced, that is the minimal required set of mem-
bers common to these structs. With this data
layout we will certainly avoid bugs introduced
when changing only one of the structs, like has
happened at least once to my knowledge.

4 Usinglist.h in the Networking
Code

With the advent of the hashed lists (struct
hlist_node) it turned out to be useful to
make the networking code follow the general
kernel trend of using thelinux/list.h
macros, replacing the ad-hoc lists present in the
networking code.

The work consisted of introducing a set of
helper macros to handlestruct sock list
handling, namelysk_add_node and sk_
del_node_init , and bind list variants.

These functions also bump the reference count
for the socket, something that was not being
done by some protocols, that have since been
converted to use this new set of helper macros,
thus fixing some bugs in the process.

It should also be noted thathlist started
using prefetch as part of the process of con-
vincing David Miller, the Linux Networking
maintainer, to accept such changes. Perfor-
mance gains are an important technique in get-
ting code-cleaning patches accepted.

5 Socket Timers Manipulation
Helpers

Another area that received attention was the
socket timers manipulation routines, that in
some protocols aren’t always bumping the ref-



Linux Symposium 2004 • Volume Two • 369

erence count as they should and do in the Blue-
tooth and TCP/IP code.

To abstract this handling thesk_reset_
timer andsk_stop_timer functions were
introduced recently to do thetimer_list
handling and deal withstruct sock refer-
ence counting.

6 Factorization of net/ipv4 Code

In the past Alan Cox worked on having data-
gram code that could be shared among several
network families shared at thenet/core/
datagram.c file, moving chunks of code out
of the UDP implementation.

Now with this work I’m trying to do the same
with the stream code, now moving chunks of
TCP code to the core infrastructure.

Initial steps are just moving code around,
like tcp_eat_skb , that becamesk_eat_
skb ; tcp_data_wait becamesk_wait_
data ; and here we see something interest-
ing, namely the fact that this function correctly
sets theSOCK_ASYNC_WAITDATAbits in the
struct socket flags member, something
that some protocols aren’t doing now but will
as soon as they start usingsk_wait_data .

In my net-experimental tree I have in-
troduced some new members to thestruct
sock membersk_prot , allowing both TCP
and LLC to use commonstream_sendmsg
and stream_sendpage functions, that are
generalizations oftcp_sendmsg and tcp_
sendpage . Further work is needed to fully
determine the performance implications of
such changes, but no noticeable performance
drop or stability problems have been verified in
using this patched kernel in my main machine
for over a month.

7 BSD Sockets Layer

There is some duplication of work at the BSD
sockets level among the network protocol fam-
ilies implementation. Trying to reduce the
code required to implement a protocol fam-
ily is being investigated, with some proofs-of-
concept already implemented, where the func-
tions now used for TCP/IP are being shared
with LLC.

The idea here is to to reduce the protocol-
specific implementation to just that, i.e., what
is absolutely specific to each protocol.

Perhaps this will make it easier to stack pro-
tocols, allowing combinations that are possible
in other kernels but not on Linux right now.

The extra function pointers insk->sk_prot
probably won’t be a problem because they
will make it possible to eliminatesock->
proto_ops by calling directly thesk->sk_
prot functions.

8 Future Developments

With this newly common infrastructure, it may
be possible to add features like network async
I/O to all protocols. More sharing will be in-
vestigated, trying to avoid pitfalls that appeared
in similar work done in other kernel subsys-
tems.

9 Conclusion

Looking every other year at how core infras-
tructures evolve and how the implementations
of subsystems attached to those infrastructure
evolve is something that should be done, pay-
ing off in terms of code clarity, reduction of the
cost of maintaining code that has come out of
mainstream but are still used in lots of legacy
setups.



370 • Linux Symposium 2004 • Volume Two

Another eventual benefit gained is the perfor-
mance one, as making the code clear and more
general is not incompatible with having fast
code.

Reuse the code, Luke.

10 Acknowledgments

I’d like to thank David S. Miller for all the sup-
port he gives me in continuing this work, re-
viewing my patches, and providing much val-
ued words of wisdom. And my respect for
Andi Kleen, for helping me out in my child-
hood as a Linux networking wannabe hacker,
Alan Cox for throwing me the Procom Net-
BEUI stack, that was fun! And nasty as well.
As well as all the fine kernel networking hack-
ers that spare some of their time to comment
on my ideas.



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


