
Object-based Reverse Mapping

Dave McCracken
IBM

dmccr@us.ibm.com

Abstract

Physical to virtual translation of user addresses
(reverse mapping) has long been sought af-
ter to improve the pageout algorithms of the
VM. An implementation was added to 2.6
that uses back pointers from each page to its
mapping (pte chains). While pte chains do
work, they add significant spaceoverhead and
significant time overhead during page map-
ping/unmapping and fork/exit.

I will describe an alternative method of reverse
mapping based on the object each page belongs
to. I will discuss the partial implementation
I did last year as well as the work done by
Hugh Dickins and Andrea Arcangelli to com-
plete it. I will describe the current implemen-
tations, their relative strengths and weaknesses,
and what plans if any there are for solutions to
the remaining issues.

1 Introduction

Up through version 2.4, the Linux® kernel
had no mechanism for translating physical ad-
dresses to user virtual addresses, commonly
called reverse mapping, or rmap. This meant it
was not possible for the memory management
subsystem to point to a physical page and re-
move all its mappings. There was a mechanism
that walked through each process’s mappings
and selected pages to unmap. Only after all a
page’s mappings were removed could it be se-
lected for pageout.

Many in the memory management community
considered this very inefficient. Page aging and
removal could be made much more efficient if
the page could be directly unmapped when it
was ready to be removed. Some form of rmap
was clearly needed for this to work.

2 PTE Chains

Rik van Riel implemented an rmap mecha-
nism that added a chain of pointers to each
page back to all its mappings, commonly called
pte_chains . It works by adding a linked list
to the control structure for each physical page
(struct page) which points to all the page ta-
ble entries that map that page. His code was
accepted into mainline early in the 2.5 devel-
opment cycle.

Once this rmap implementation was in place
the page aging and removal algorithm was
changed to use it, streamlining the code and al-
lowing better tuning.

One negative to thepte_chain implemen-
tation was a significant performance cost to
fork , exec , and exit . The cost to these
functions was related to the amount of mem-
ory mapped to the process, but was close to an
order of magnitude worse.

A second cost was space. In its original form
pte_chains cost two pointers per mapping.
An optimization eliminated the extra structure
for singly-mapped pages and another optimiza-



358 • Linux Symposium 2004 • Volume Two

tion added multiple pointers per list entry, but
the space taken by thepte_chain structures
was still significant.

3 A Brief History of Object-based
Rmap

Processes do not really map memory one page
at a time. They map a range of data from an
offset within some object (usually a file) to a
range of addresses. The virtual addresses of all
pages within that range can be calculated from
their offset in that object and the base mapping
address of the range.

The kernel has the information to do object-
based reverse mapping for files. Eachstruct
page for a file has an offset and a pointer to
a struct address_space , which is the
base anchor for all memory associated with a
file. Every time a range of data from that file
is mapped to a process, avm_area_struct
or vma is created. Thevma contains the vir-
tual address of the mapping and the base offset
within the file. It is then added to a linked list
of all vmas in theaddress_space for that
file.

The remaining problem in the kernel is anony-
mous memory. Blocks of anonymous memory
havevmas but thesevmas are not connected to
any common object that can be used for reverse
mapping.

3.1 Partial Object-based Rmap

Given this information, last year I did a sam-
ple implementation of object-based rmap for
files, but left thepte_chain implementation
in place for anonymous memory. It works by
following the pointer in thestruct page to
the struct address_space , then walk-
ing the linked list ofvmas to find all that con-
tain the page. A simple calculation then de-

termines the virtual address of that page and a
page table walk finds the page table entry.

This implementation recovers the performance
of fork , exec , andexit and eliminates the
space penalty used bypte_chain structures.
It introduces a performance penalty when it
walks the linked list ofvmas, but this is in-
curred by the page aging code instead of the
application code. It could still be significant,
however, since it rises linearly with the num-
ber of times any part of the file is mapped while
with pte_chains the cost rises linearly with
the number of times that page is mapped.

3.2 First Cut at Full Object-based Rmap

Hugh Dickins took my implemenation and
extended it to handle anonymous mappings,
eliminating pte_chains entirely. He did
this by creating ananonmm object for each
process that all anonymous pages belong to.
All anonmmstructures are linked together by
fork . A new anonmmstructure is allocated
onexec . The offset stored instruct page
is the virtual address of the page, while the ob-
ject pointer points to ananonmmthat the page
is mapped in.

Finding all mappings of a page is simple. The
pointer in struct page is followed to the
anonmmchain, which is then walked looking
for mappings of that page at the virtual address
specified in the offset.

Hugh’s initial patch ignored the problem of
shared anonymous pages that were remapped
by an mremap call. The problem with
mremap is that it allows an anonymous page
to be at different virtual addresses in different
processes, but there is only one offset for the
page.

After some initial discussion among the com-
munity, both Hugh and I moved on to other
things.



Linux Symposium 2004 • Volume Two • 359

3.3 A Second Cut at Full Object-based Rmap

In February of this year Andrea Arcangeli be-
gan to investigate what could be done about
the problems ofpte_chains . He took my
partial object-based rmap patch and imple-
mented his own solution for anonymous mem-
ory, calledanon_vma .

The basic mechanism ofanon_vma is the
addition of ananon_vma structure linked to
each vma that has anonymous pages. The
anon_vma structure has a linked list of
all vmas that map that anonymous range.
The pointer instruct page points to the
anon_vma and the index is the offset into the
current mapping.

An advantage of Andrea’sanon_vma struc-
ture is that it solves the mremap problem that
theanonmmstructure did not. Since the offset
stored in each page is relative to the base of the
vma that maps it, the region can be remapped
without changing the offset. However, since
vmas can be merged, it is not an an absolutely
painless solution.

4 Advancements All Around

In response to Andrea’s patch, Hugh resumed
work on hisanonmmpatch. Prompted by a
discussion among the community and an ap-
proach suggested by Linus, Hugh implemented
a simple scheme for handling the remap case.
For each page, if there is only one reference,
that page can simply have its offset changed.
If the page is shared, a copy is forced and the
new unshared page is mapped at the new ad-
dress. Since all anonymous pages are already
copy-on-write, it is likely that the page would
be written to eventually and the copy taken.
It is possible that some read-only pages might
be duplicated, but to date there is no evidence
that any code actually remaps shared read-only

anonymous pages.

5 Thevma List Problem

All these implementations still include the
original implementation for file pages, includ-
ing the need to walk the linked list ofvmas
attached to theaddress_space structure.
This has been identified as a possible per-
formance issue for massively mapped files,
though few if any real-life examples have been
found. A few optimizations have been tried,
including sorting the list by start address and
making a two level list based on start and end
address. Both these solutions share the prob-
lem that adding or modifying avma is fairly
expensive and holds the associated lock for a
long time.

A recent contribution by Rajesh Venkatasubra-
manian is the use of aprio_tree , which is
similar to a radix tree but supports sorting ob-
jects by both start and end addresses. It adds
some complexity to thevma list but greatly
reduces the potential performance impact of a
large number of mappings.

6 The remap_file_pages
Problem

While object-based rmap appears relatively
simple, there is one new feature that greatly
complicates the problem. This feature is
remap_file_pages .

The remap_file_pages system call was
introduced during the 2.5 development cycle.
It works on a range of shared memory mapped
from a file, and allows an application to change
the memory range to map a different offset
within that file. This is done without modifying
the vma describing the mapping. This means
the offsets specified within thevma are now



360 • Linux Symposium 2004 • Volume Two

wrong. Since theaddress_space pointer
and offset within thepage structure are intact,
the page can still be mapped back to its place in
the file, but it is no longer possible to use this
information to find its virtual mappings. The
vma is called anonlinear vma and is put
on a special list within theaddress_space .

Andrea and Hugh have provided two different
solutions to the problem of what to do when a
nonlinear page is called to be unmapped. An-
drea’s solution is the more draconian in that it
walks the list of nonlinearvmas and unmaps all
pages in them until the page in question has no
more mappings. Hugh’s solution only unmaps
a fixed number of nonlinear pages and makes
no attempt to unmap the actual page passed in.

7 Release Status

As of the date this was written, Hugh has been
submitting incremental rmap changes to An-
drew Morton for the -mm tree over the past
couple of months. The early submissions were
primarily cleanup, but later patches included
first my partial object-based rmap implementa-
tion followed by hisanonmmimplementation,
which completely removed thepte_chain
code.

Hugh has just submitted a final set of patches to
Andrew that removes hisanonmmimplemen-
tation and replaces it with Andrea’sanon_
vma implementation.

The general expectation among the VM devel-
oper community is that once this code has been
adequately tested in the -mm tree that it will
replace the existingpte_chain implementa-
tion in mainline 2.6.

Legal Statement

This paper represents the views of the author and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.

Other company, product or service names may be
the trademarks or service marks of others.



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


