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Abstract

Virtual machine (VM) technology has been
around for 40 years and has been experiencing
a resurgence with commodity machines. VMs
have been shown to improve system and net-
work flexibility, availability, and security in a
variety of novel ways. This paper introduces
Xen, an efficient secure open source VM mon-
itor, to the Linux community.

Key features of Xen are:

1. supports different OSes (e.g. Linux 2.4,
2.6, NetBSD, FreeBSD, etc.)

2. provides secure protection between VMs

3. allows flexible partitioning of resources
between VMs (CPU, memory, network
bandwidth, disk space, and bandwidth)

4. very low overhead, even for demanding
server applications

5. support for seamless, low-latency migra-
tion of running VMs within a cluster

We discuss the interface that Xen/x86 exports
to guest operating systems, and the kernel
changes that were required to Linux to port
it to Xen. We compare Xen/Linux to User

Mode Linux as well as existing commercial
VM products.

1 Introduction

Modern computers are sufficiently powerful
to use virtualization to present the illusion of
many smaller virtual machines (VMs), each
running a separate operating system instance.
This has led to a resurgence of interest in VM
technology. In this paper we present Xen,
a high performance resource-managed virtual
machine monitor (VMM) which enables ap-
plications such as server consolidation, co-
located hosting facilities, distributed web ser-
vices, secure computing platforms, and appli-
cation mobility.

Successful partitioning of a machine to support
the concurrent execution of multiple operating
systems poses several challenges. Firstly, vir-
tual machines must be isolated from one an-
other: it is not acceptable for the execution
of one to adversely affect the performance of
another. This is particularly true when vir-
tual machines are owned by mutually untrust-
ing users. Secondly, it is necessary to support
a variety of different operating systems to ac-
commodate the heterogeneity of popular appli-
cations. Thirdly, the performance overhead in-
troduced by virtualization should be small.
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Xen hosts commodity operating systems, albeit
with some source modifications. The prototype
described and evaluated in this paper can sup-
port multiple concurrent instances of our Xen-
Linux guest operating system; each instance
exports an application binary interface identi-
cal to a non-virtualized Linux 2.6. Xen ports of
NetBSD and FreeBSD have been completed,
along with a proof of concept port of Windows
XP.1

There are a number of ways to build a sys-
tem to host multiple applications and servers
on a shared machine. Perhaps the simplest is
to deploy one or more hosts running a stan-
dard operating system such as Linux or Win-
dows, and then to allow users to install files and
start processes—protection between applica-
tions being provided by conventional OS tech-
niques. Experience shows that system adminis-
tration can quickly become a time-consuming
task due to complex configuration interactions
between supposedly disjoint applications.

More importantly, such systems do not ad-
equately support performance isolation; the
scheduling priority, memory demand, network
traffic and disk accesses of one process impact
the performance of others. This may be ac-
ceptable when there is adequate provisioning
and a closed user group (such as in the case of
computational grids, or the experimental Plan-
etLab platform [11]), but not when resources
are oversubscribed, or users uncooperative.

One way to address this problem is to retrofit
support for performance isolation to the op-
erating system, but a difficulty with such ap-
proaches is ensuring thatall resource usage is
accounted to the correct process—consider, for
example, the complex interactions between ap-
plications due to buffer cache or page replace-

1The Windows XP port required access to Microsoft
source code, and hence distribution is currently re-
stricted, even in binary form.

ment algorithms. Performing multiplexing at a
low level can mitigate this problem; uninten-
tional or undesired interactions between tasks
are minimized. Xen multiplexes physical re-
sources at the granularity of an entire operat-
ing system and is able to provide performance
isolation between them. This allows a range
of guest operating systems to gracefully coex-
ist rather than mandating a specific application
binary interface. There is a price to pay for this
flexibility—running a full OS is more heavy-
weight than running a process, both in terms of
initialization (e.g. booting or resuming an OS
instance versusfork /exec ), and in terms of
resource consumption.

For our target of 10-100 hosted OS instances,
we believe this price is worth paying: It allows
individual users to run unmodified binaries, or
collections of binaries, in a resource controlled
fashion (for instance an Apache server along
with a PostgreSQL backend). Furthermore it
provides an extremely high level of flexibility
since the user can dynamically create the pre-
cise execution environment their software re-
quires. Unfortunate configuration interactions
between various services and applications are
avoided (for example, each Windows instance
maintains its own registry).

Experience with deployed Xen systems sug-
gests that the initialization overheads and ad-
ditional resource requirements are in practice
quite low: An operating system image may be
resumed from an on-disk snapshot in typically
just over a second (depending on image mem-
ory size), and although multiple copies of the
operating system code and data are stored in
memory, the memory requirements are typi-
cally small compared to those of the applica-
tions that will run on them. As we shall show
later in the paper, the performance overhead of
the virtualization provided by Xen is low, typ-
ically just a few percent, even for the most de-
manding applications.
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2 XEN: Approach & Overview

In a traditional VMM the virtual hardware ex-
posed is functionally identical to the underly-
ing machine [14]. Althoughfull virtualization
has the obvious benefit of allowing unmodified
operating systems to be hosted, it also has a
number of drawbacks. This is particularly true
for the prevalent Intelx86architecture.

Support for full virtualization was never part
of the x86 architectural design. Certain su-
pervisor instructions must be handled by the
VMM for correct virtualization, but executing
these with insufficient privilege fails silently
rather than causing a convenient trap [13]. Effi-
ciently virtualizing the x86 MMU is also diffi-
cult. These problems can be solved, but only at
the cost of increased complexity and reduced
performance. VMware’s ESX Server [3] dy-
namically rewrites portions of the hosted ma-
chine code to insert traps wherever VMM in-
tervention might be required. This translation
is applied to the entire guest OS kernel (with
associated translation, execution, and caching
costs) since all non-trapping privileged instruc-
tions must be caught and handled. ESX Server
implements shadow versions of system struc-
tures such as page tables and maintains consis-
tency with the virtual tables by trapping every
update attempt—this approach has a high cost
for update-intensive operations such as creat-
ing a new application process.

Notwithstanding the intricacies of the x86,
there are other arguments against full virtual-
ization. In particular, there are situations in
which it is desirable for the hosted operating
systems to see real as well as virtual resources:
providing both real and virtual time allows a
guest OS to better support time-sensitive tasks,
and to correctly handle TCP timeouts and RTT
estimates, while exposing real machine ad-
dresses allows a guest OS to improve perfor-
mance by using superpages [10] or page color-

ing [7].

We avoid the drawbacks of full virtualization
by presenting a virtual machine abstraction
that is similar but not identical to the under-
lying hardware—an approach which has been
dubbedparavirtualization[17]. This promises
improved performance, although it does re-
quire modifications to the guest operating sys-
tem. It is important to note, however, that we
do not require changes to the application bi-
nary interface (ABI), and hence no modifica-
tions are required to guestapplications.

We distill the discussion so far into a set of de-
sign principles:

1. Support for unmodified application bina-
ries is essential, or users will not transi-
tion to Xen. Hence we must virtualize all
architectural features required by existing
standard ABIs.

2. Supporting full multi-application operat-
ing systems is important, as this allows
complex server configurations to be virtu-
alized within a single guest OS instance.

3. Paravirtualization is necessary to obtain
high performance and strong resource iso-
lation on uncooperative machine architec-
tures such as x86.

4. Even on cooperative machine architec-
tures, completely hiding the effects of
resource virtualization from guest OSes
risks both correctness and performance.

In the following section we describe the virtual
machine abstraction exported by Xen and dis-
cuss how a guest OS must be modified to con-
form to this. Note that in this paper we reserve
the termguest operating systemto refer to one
of the OSes that Xen can host and we use the
term domainto refer to a running virtual ma-
chine within which a guest OS executes; the
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distinction is analogous to that between apro-
gram and aprocessin a conventional system.
We call Xen itself thehypervisorsince it oper-
ates at a higher privilege level than the super-
visor code of the guest operating systems that
it hosts.

2.1 The Virtual Machine Interface

The paravirtualized x86 interface can be fac-
tored into three broad aspects of the system:
memory management, the CPU, and device
I/O. In the following we address each machine
subsystem in turn, and discuss how each is pre-
sented in our paravirtualized architecture. Note
that although certain parts of our implemen-
tation, such as memory management, are spe-
cific to the x86, many aspects (such as our vir-
tual CPU and I/O devices) can be readily ap-
plied to other machine architectures. Further-
more, x86 represents aworst casein the areas
where it differs significantly from RISC-style
processors—for example, efficiently virtualiz-
ing hardware page tables is more difficult than
virtualizing a software-managed TLB.

2.1.1 Memory management

Virtualizing memory is undoubtedly the most
difficult part of paravirtualizing an architec-
ture, both in terms of the mechanisms re-
quired in the hypervisor and modifications re-
quired to port each guest OS. The task is
easier if the architecture provides a software-
managed TLB as these can be efficiently vir-
tualized in a simple manner [5]. A tagged
TLB is another useful feature supported by
most server-class RISC architectures, includ-
ing Alpha, MIPS and SPARC. Associating an
address-space identifier tag with each TLB en-
try allows the hypervisor and each guest OS
to efficiently coexist in separate address spaces
because there is no need to flush the entire TLB

when transferring execution.

Unfortunately, x86 does not have a software-
managed TLB; instead TLB misses are ser-
viced automatically by the processor by walk-
ing the page table structure in hardware. Thus
to achieve the best possible performance, all
valid page translations for the current ad-
dress space should be present in the hardware-
accessible page table. Moreover, because the
TLB is not tagged, address space switches typ-
ically require a complete TLB flush. Given
these limitations, we made two decisions: (i)
guest OSes are responsible for allocating and
managing the hardware page tables, with mini-
mal involvement from Xen to ensure safety and
isolation; and (ii) Xen exists in a 64MB section
at the top of every address space, thus avoiding
a TLB flush when entering and leaving the hy-
pervisor.

Each time a guest OS requires a new page
table, perhaps because a new process is be-
ing created, it allocates and initializes a page
from its own memory reservation and regis-
ters it with Xen. At this point the OS must
relinquish direct write privileges to the page-
table memory: all subsequent updates must be
validated by Xen. This restricts updates in a
number of ways, including only allowing an
OS to map pages that it owns, and disallow-
ing writable mappings of page tables. Guest
OSes maybatch update requests to amortize
the overhead of entering the hypervisor. The
top 64MB region of each address space, which
is reserved for Xen, is not accessible or remap-
pable by guest OSes. This address region is
not used by any of the common x86 ABIs how-
ever, so this restriction does not break applica-
tion compatibility.

Segmentation is virtualized in a similar way,
by validating updates to hardware segment de-
scriptor tables. The only restrictions on x86
segment descriptors are: (i) they must have
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lower privilege than Xen, and (ii) they may not
allow any access to the Xen-reserved portion
of the address space.

2.1.2 CPU

Virtualizing the CPU has several implications
for guest OSes. Principally, the insertion of a
hypervisor below the operating system violates
the usual assumption that the OS is the most
privileged entity in the system. In order to pro-
tect the hypervisor from OS misbehavior (and
domains from one another) guest OSes must be
modified to run at a lower privilege level.

Efficient virtualizion of privilege levels is pos-
sible on x86 because it supports four distinct
privilege levels in hardware. The x86 privi-
lege levels are generally described asrings, and
are numbered from zero (most privileged) to
three (least privileged). OS code typically exe-
cutes in ring 0 because no other ring can ex-
ecute privileged instructions, while ring 3 is
generally used for application code. To our
knowledge, rings 1 and 2 have not been used
by any well-known x86 OS since OS/2. Any
OS which follows this common arrangement
can be ported to Xen by modifying it to exe-
cute in ring 1. This prevents the guest OS from
directly executing privileged instructions, yet it
remains safely isolated from applications run-
ning in ring 3.

Privileged instructions are paravirtualized by
requiring them to be validated and executed
within Xen—this applies to operations such
as installing a new page table, or yielding the
processor when idle (rather than attempting to
hlt it). Any guest OS attempt to directly ex-
ecute a privileged instruction is failed by the
processor, either silently or by taking a fault,
since only Xen executes at a sufficiently privi-
leged level.

Exceptions, including memory faults and soft-
ware traps, are virtualized on x86 very straight-
forwardly. A table describing the handler for
each type of exception is registered with Xen
for validation. The handlers specified in this
table are generally identical to those for real
x86 hardware; this is possible because the ex-
ception stack frames are unmodified in our par-
avirtualized architecture. The sole modifica-
tion is to the page fault handler, which would
normally read the faulting address from a priv-
ileged processor register (CR2); since this is
not possible, we write it into an extended stack
frame2. When an exception occurs while exe-
cuting outside ring 0, Xen’s handler creates a
copy of the exception stack frame on the guest
OS stack and returns control to the appropriate
registered handler.

Typically only two types of exception oc-
cur frequently enough to affect system perfor-
mance: system calls (which are usually im-
plemented via a software exception), and page
faults. We improve the performance of sys-
tem calls by allowing each guest OS to reg-
ister a ‘fast’ exception handler which is ac-
cessed directly by the processor without indi-
recting via ring 0; this handler is validated be-
fore installing it in the hardware exception ta-
ble. Unfortunately it is not possible to apply
the same technique to the page fault handler
because only code executing in ring 0 can read
the faulting address from registerCR2; page
faults must therefore always be delivered via
Xen so that this register value can be saved for
access in ring 1.

Safety is ensured by validating exception han-
dlers when they are presented to Xen. The
only required check is that the handler’s code
segment does not specify execution in ring 0.
Since no guest OS can create such a segment,

2In hindsight, writing the value into a pre-agreed
shared memory location rather than modifying the
stack frame would have simplified the XP port.
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it suffices to compare the specified segment se-
lector to a small number of static values which
are reserved by Xen. Apart from this, any other
handler problems are fixed up during excep-
tion propagation—for example, if the handler’s
code segment is not present or if the handler
is not paged into memory then an appropri-
ate fault will be taken when Xen executes the
iret instruction which returns to the handler.
Xen detects these “double faults” by checking
the faulting program counter value: if the ad-
dress resides within the exception-virtualizing
code then the offending guest OS is terminated.

Note that this “lazy” checking is safe even for
the direct system-call handler: access faults
will occur when the CPU attempts to directly
jump to the guest OS handler. In this case the
faulting address will be outside Xen (since Xen
will never execute a guest OS system call) and
so the fault is virtualized in the normal way. If
propagation of the fault causes a further “dou-
ble fault” then the guest OS is terminated as
described above.

2.1.3 Device I/O

Rather than emulating existing hardware de-
vices, as is typically done in fully-virtualized
environments, Xen exposes a set of clean and
simple device abstractions. This allows us to
design an interface that is both efficient and sat-
isfies our requirements for protection and iso-
lation. To this end, I/O data is transferred to
and from each domain via Xen, using shared-
memory, asynchronous buffer-descriptor rings.
These provide a high-performance communi-
cation mechanism for passing buffer informa-
tion vertically through the system, while al-
lowing Xen to efficiently perform validation
checks (for example, checking that buffers are
contained within a domain’s memory reserva-
tion).

Linux subsection # lines
Architecture-independent 78
Virtual network driver 484
Virtual block-device driver 1070
Xen-specific (non-driver) 1363
Total 2995
Portion of total x86 code base 1.36%

Table 1: The simplicity of porting commodity
OSes to Xen.

Similar to hardware interrupts, Xen supports
a lightweight event-delivery mechanism which
is used for sending asynchronous notifications
to a domain. These notifications are made by
updating a bitmap of pending event types and,
optionally, by calling an event handler speci-
fied by the guest OS. These callbacks can be
‘held off’ at the discretion of the guest OS—to
avoid extra costs incurred by frequent wake-up
notifications, for example.

2.2 The Cost of Porting an OS to Xen

Table 1 demonstrates the cost, in lines of code,
of porting commodity operating systems to
Xen’s paravirtualized x86 environment.

The architecture-specific sections are effec-
tively a port of the x86 code to our paravirtual-
ized architecture. This involved rewriting rou-
tines which used privileged instructions, and
removing a large amount of low-level system
initialization code.

2.3 Control and Management

Throughout the design and implementation of
Xen, a goal has been to separate policy from
mechanism wherever possible. Although the
hypervisor must be involved in data-path as-
pects (for example, scheduling the CPU be-
tween domains, filtering network packets be-
fore transmission, or enforcing access control
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Figure 1: The structure of a machine running
the Xen hypervisor, hosting a number of dif-
ferent guest operating systems, includingDo-
main0running control software in a XenLinux
environment.

when reading data blocks), there is no need for
it to be involved in, or even aware of, higher
level issues such as how the CPU is to be
shared, or which kinds of packet each domain
may transmit.

The resulting architecture is one in which the
hypervisor itself provides only basic control
operations. These are exported through an
interface accessible from authorized domains;
potentially complex policy decisions, such as
admission control, are best performed by man-
agement software running over a guest OS
rather than in privileged hypervisor code.

The overall system structure is illustrated in
Figure 1. Note that a domain is created at boot
time which is permitted to use thecontrol in-
terface. This initial domain, termedDomain0,
is responsible for hosting the application-level
management software. The control interface
provides the ability to create and terminate
other domains and to control their associated
scheduling parameters, physical memory allo-
cations and the access they are given to the ma-
chine’s physical disks and network devices.

In addition to processor and memory resources,
the control interface supports the creation and

deletion of virtual network interfaces (VIFs)
and block devices (VBDs). These virtual I/O
devices have associated access-control infor-
mation which determines which domains can
access them, and with what restrictions (for ex-
ample, a read-only VBD may be created, or
a VIF may filter IP packets to prevent source-
address spoofing or apply traffic shaping).

This control interface, together with profil-
ing statistics on the current state of the sys-
tem, is exported to a suite of application-
level management software running inDo-
main0. This complement of administrative
tools allows convenient management of the en-
tire server: current tools can create and destroy
domains, set network filters and routing rules,
monitor per-domain network activity at packet
and flow granularity, and create and delete vir-
tual network interfaces and virtual block de-
vices.

Snapshots of a domains’ state may be captured
and saved to disk, enabling rapid deployment
of applications by bypassing the normal boot
delay. Further, Xen supportslive migration
which enables running VMs to be moved dy-
namically between different Xen servers, with
execution interrupted only for a few millisec-
onds. We are in the process of developing
higher-level tools to further automate the ap-
plication of administrative policy, for example,
load balancing VMs among a cluster of Xen
servers.

3 Detailed Design

In this section we introduce the design of the
major subsystems that make up a Xen-based
server. In each case we present both Xen and
guest OS functionality for clarity of exposition.
In this paper, we focus on the XenLinux guest
OS; the *BSD and Windows XP ports use the
Xen interface in a similar manner.
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3.1 Control Transfer: Hypercalls and Events

Two mechanisms exist for control interactions
between Xen and an overlying domain: syn-
chronous calls from a domain to Xen may be
made using ahypercall, while notifications are
delivered to domains from Xen using an asyn-
chronous event mechanism.

The hypercall interface allows domains to per-
form a synchronous software trap into the
hypervisor to perform a privileged operation,
analogous to the use of system calls in conven-
tional operating systems. An example use of a
hypercall is to request a set of page-table up-
dates, in which Xen validates and applies a list
of updates, returning control to the calling do-
main when this is completed.

Communication from Xen to a domain is pro-
vided through an asynchronous event mech-
anism, which replaces the usual delivery
mechanisms for device interrupts and allows
lightweight notification of important events
such as domain-termination requests. Akin to
traditional Unix signals, there are only a small
number of events, each acting to flag a partic-
ular type of occurrence. For instance, events
are used to indicate that new data has been re-
ceived over the network, or that a virtual disk
request has completed.

Pending events are stored in a per-domain bit-
mask which is updated by Xen before invok-
ing an event-callback handler specified by the
guest OS. The callback handler is responsible
for resetting the set of pending events, and re-
sponding to the notifications in an appropriate
manner. A domain may explicitly defer event
handling by setting a Xen-readable software
flag: this is analogous to disabling interrupts
on a real processor.

Figure 2: The structure of asynchronous I/O
rings, which are used for data transfer between
Xen and guest OSes.

3.2 Data Transfer: I/O Rings

The presence of a hypervisor means there is
an additional protection domain between guest
OSes and I/O devices, so it is crucial that a
data transfer mechanism be provided that al-
lows data to move vertically through the sys-
tem with as little overhead as possible.

Two main factors have shaped the design of
our I/O-transfer mechanism: resource manage-
ment and event notification. For resource ac-
countability, we attempt to minimize the work
required to demultiplex data to a specific do-
main when an interrupt is received from a
device—the overhead of managing buffers is
carried out later where computation may be ac-
counted to the appropriate domain. Similarly,
memory committed to device I/O is provided
by the relevant domains wherever possible to
prevent the crosstalk inherent in shared buffer
pools; I/O buffers are protected during data
transfer by pinning the underlying page frames
within Xen.

Figure 2 shows the structure of our I/O descrip-
tor rings. A ring is a circular queue of descrip-
tors allocated by a domain but accessible from
within Xen. Descriptors do not directly con-
tain I/O data; instead, I/O data buffers are al-
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located out-of-band by the guest OS and in-
directly referenced by I/O descriptors. Ac-
cess to each ring is based around two pairs
of producer-consumer pointers: domains place
requests on a ring, advancing a request pro-
ducer pointer, and Xen removes these requests
for handling, advancing an associated request
consumer pointer. Responses are placed back
on the ring similarly, save with Xen as the pro-
ducer and the guest OS as the consumer. There
is no requirement that requests be processed in
order: the guest OS associates a unique identi-
fier with each request which is reproduced in
the associated response. This allows Xen to
unambiguously reorder I/O operations due to
scheduling or priority considerations.

This structure is sufficiently generic to support
a number of different device paradigms. For
example, a set of ‘requests’ can provide buffers
for network packet reception; subsequent ‘re-
sponses’ then signal the arrival of packets into
these buffers. Reordering is useful when deal-
ing with disk requests as it allows them to
be scheduled within Xen for efficiency, and
the use of descriptors with out-of-band buffers
makes implementing zero-copy transfer easy.

We decouple the production of requests or re-
sponses from the notification of the other party:
in the case of requests, a domain may enqueue
multiple entries before invoking a hypercall to
alert Xen; in the case of responses, a domain
can defer delivery of a notification event by
specifying a threshold number of responses.
This allows each domain to trade-off latency
and throughput requirements, similarly to the
flow-aware interrupt dispatch in the ArseNIC
Gigabit Ethernet interface [12].

3.3 Subsystem Virtualization

The control and data transfer mechanisms de-
scribed are used in our virtualization of the var-
ious subsystems. In the following, we discuss

how this virtualization is achieved for CPU,
timers, memory, network and disk.

3.3.1 CPU scheduling

Xen currently schedules domains according to
the Borrowed Virtual Time (BVT) scheduling
algorithm [4]. We chose this particular algo-
rithms since it is both work-conserving and has
a special mechanism for low-latency wake-up
(or dispatch) of a domain when it receives an
event. Fast dispatch is particularly important
to minimize the effect of virtualization on OS
subsystems that are designed to run in a timely
fashion; for example, TCP relies on the timely
delivery of acknowledgments to correctly es-
timate network round-trip times. BVT pro-
vides low-latency dispatch by using virtual-
time warping, a mechanism which temporarily
violates ‘ideal’ fair sharing to favor recently-
woken domains. However, other scheduling al-
gorithms could be trivially implemented over
our generic scheduler abstraction. Per-domain
scheduling parameters can be adjusted by man-
agement software running inDomain0.

3.3.2 Time and timers

Xen provides guest OSes with notions of real
time, virtual time and wall-clock time. Real
time is expressed in nanoseconds passed since
machine boot and is maintained to the accu-
racy of the processor’s cycle counter and can
be frequency-locked to an external time source
(for example, via NTP). A domain’s virtual
time only advances while it is executing: this
is typically used by the guest OS scheduler to
ensure correct sharing of its timeslice between
application processes. Finally, wall-clock time
is specified as an offset to be added to the cur-
rent real time. This allows the wall-clock time
to be adjusted without affecting the forward
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progress of real time.

Each guest OS can program a pair of alarm
timers, one for real time and the other for vir-
tual time. Guest OSes are expected to main-
tain internal timer queues and use the Xen-
provided alarm timers to trigger the earliest
timeout. Timeouts are delivered using Xen’s
event mechanism.

3.3.3 Virtual address translation

As with other subsystems, Xen attempts to vir-
tualize memory access with as little overhead
as possible. As discussed in Section 2.1.1,
this goal is made somewhat more difficult by
the x86 architecture’s use of hardware page ta-
bles. The approach taken by VMware is to pro-
vide each guest OS with a virtual page table,
not visible to the memory-management unit
(MMU) [3]. The hypervisor is then responsible
for trapping accesses to the virtual page table,
validating updates, and propagating changes
back and forth between it and the MMU-visible
‘shadow’ page table. This greatly increases
the cost of certain guest OS operations, such
as creating new virtual address spaces, and
requires explicit propagation of hardware up-
dates to ‘accessed’ and ‘dirty’ bits.

Although full virtualization forces the use of
shadow page tables, to give the illusion of con-
tiguous physical memory, Xen is not so con-
strained. Indeed, Xen need only be involved in
page tableupdates, to prevent guest OSes from
making unacceptable changes. Thus we avoid
the overhead and additional complexity asso-
ciated with the use of shadow page tables—the
approach in Xen is to register guest OS page ta-
bles directly with the MMU, and restrict guest
OSes to read-only access. Page table updates
are passed to Xen via a hypercall; to ensure
safety, requests arevalidatedbefore being ap-
plied.

To aid validation, we associate a type and ref-
erence count with each machine page frame.
A frame may have any one of the following
mutually-exclusive types at any point in time:
page directory (PD), page table (PT), local de-
scriptor table (LDT), global descriptor table
(GDT), or writable (RW). Note that a guest
OS may always create readable mappings to
its own page frames, regardless of their current
types. A frame may only safely be retasked
when its reference count is zero. This mecha-
nism is used to maintain the invariants required
for safety; for example, a domain cannot have
a writable mapping to any part of a page table
as this would require the frame concerned to
simultaneously be of types PT and RW.

The type system is also used to track which
frames have already been validated for use in
page tables. To this end, guest OSes indicate
when a frame is allocated for page-table use—
this requires a one-off validation of every en-
try in the frame by Xen, after which its type
is pinned to PD or PT as appropriate, until a
subsequent unpin request from the guest OS.
This is particularly useful when changing the
page table base pointer, as it obviates the need
to validate the new page table on every context
switch. Note that a frame cannot be retasked
until it is both unpinned and its reference count
has reduced to zero – this prevents guest OSes
from using unpin requests to circumvent the
reference-counting mechanism.

3.3.4 Physical memory

The initial memory allocation, orreservation,
for each domain is specified at the time of
its creation; memory is thus statically parti-
tioned between domains, providing strong iso-
lation. A maximum-allowable reservation may
also be specified: if memory pressure within
a domain increases, it may then attempt to
claim additional memory pages from Xen, up
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to this reservation limit. Conversely, if a
domain wishes to save resources, perhaps to
avoid incurring unnecessary costs, it can re-
duce its memory reservation by releasing mem-
ory pages back to Xen.

XenLinux implements aballoon driver [16],
which adjusts a domain’s memory usage by
passing memory pages back and forth be-
tween Xen and XenLinux’s page allocator.
Although we could modify Linux’s memory-
management routines directly, the balloon
driver makes adjustments by using existing
OS functions, thus simplifying the Linux port-
ing effort. However, paravirtualization can be
used to extend the capabilities of the balloon
driver; for example, the out-of-memory han-
dling mechanism in the guest OS can be mod-
ified to automatically alleviate memory pres-
sure by requesting more memory from Xen.

Most operating systems assume that memory
comprises at most a few large contiguous ex-
tents. Because Xen does not guarantee to al-
locate contiguous regions of memory, guest
OSes will typically create for themselves the
illusion of contiguousphysical memory, even
though their underlying allocation ofhardware
memoryis sparse. Mapping from physical to
hardware addresses is entirely the responsibil-
ity of the guest OS, which can simply main-
tain an array indexed by physical page frame
number. Xen supports efficient hardware-to-
physical mapping by providing a shared trans-
lation array that is directly readable by all do-
mains – updates to this array are validated by
Xen to ensure that the OS concerned owns the
relevant hardware page frames.

Note that even if a guest OS chooses to ig-
nore hardware addresses in most cases, it must
use the translation tables when accessing its
page tables (which necessarily use hardware
addresses). Hardware addresses may also be
exposed to limited parts of the OS’s memory-

management system to optimize memory ac-
cess. For example, a guest OS might allo-
cate particular hardware pages so as to opti-
mize placement within a physically indexed
cache [7], or map naturally aligned contigu-
ous portions of hardware memory using super-
pages [10].

3.3.5 Network

Xen provides the abstraction of a virtual
firewall-router (VFR), where each domain has
one or more network interfaces (VIFs) logi-
cally attached to the VFR. A VIF looks some-
what like a modern network interface card:
there are two I/O rings of buffer descriptors,
one for transmit and one for receive. Each di-
rection also has a list of associated rules of the
form (<pattern>, <action>)—if the pattern
matches then the associatedaction is applied.

Domain0 is responsible for inserting and re-
moving rules. In typical cases, rules will be
installed to prevent IP source address spoof-
ing, and to ensure correct demultiplexing based
on destination IP address and port. Rules may
also be associated with hardware interfaces on
the VFR. In particular, we may install rules to
perform traditional firewalling functions such
as preventing incoming connection attempts on
insecure ports.

To transmit a packet, the guest OS simply en-
queues a buffer descriptor onto the transmit
ring. Xen copies the descriptor and, to ensure
safety, then copies the packet header and ex-
ecutes any matching filter rules. The packet
payload is not copied since we use scatter-
gather DMA; however note that the relevant
page frames must be pinned until transmission
is complete. To ensure fairness, Xen imple-
ments a simple round-robin packet scheduler.

To efficiently implement packet reception, we
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require the guest OS to exchange an unused
page frame for each packet it receives; this
avoids the need to copy the packet between
Xen and the guest OS, although it requires
that page-aligned receive buffers be queued at
the network interface. When a packet is re-
ceived, Xen immediately checks the set of re-
ceive rules to determine the destination VIF,
and exchanges the packet buffer for a page
frame on the relevant receive ring. If no frame
is available, the packet is dropped.

3.3.6 Disk

Only Domain0 has direct unchecked access
to physical (IDE and SCSI) disks. All other
domains access persistent storage through the
abstraction of virtual block devices (VBDs),
which are created and configured by manage-
ment software running withinDomain0. Al-
lowing Domain0 to manage the VBDs keeps
the mechanisms within Xen very simple and
avoids more intricate solutions such as the
UDFs used by the Exokernel [6].

A VBD comprises a list of extents with asso-
ciated ownership and access control informa-
tion, and is accessed via the I/O ring mecha-
nism. A typical guest OS disk scheduling al-
gorithm will reorder requests prior to enqueu-
ing them on the ring in an attempt to reduce
response time, and to apply differentiated ser-
vice (for example, it may choose to aggres-
sively schedule synchronous metadata requests
at the expense of speculative readahead re-
quests). However, because Xen has more com-
plete knowledge of the actual disk layout, we
also support reordering within Xen, and so re-
sponses may be returned out of order. A VBD
thus appears to the guest OS somewhat like a
SCSI disk.

A translation table is maintained within the hy-
pervisor for each VBD; the entries within this

table are installed and managed byDomain0
via a privileged control interface. On receiving
a disk request, Xen inspects the VBD identi-
fier and offset and produces the corresponding
sector address and physical device. Permission
checks also take place at this time. Zero-copy
data transfer takes place using DMA between
the disk and pinned memory pages in the re-
questing domain.

Xen servicesbatchesof requests from com-
peting domains in a simple round-robin fash-
ion; these are then passed to a standard ele-
vator scheduler before reaching the disk hard-
ware. Domains may explicitly pass downre-
order barriersto prevent reordering when this
is necessary to maintain higher level seman-
tics (e.g. when using a write-ahead log). The
low-level scheduling gives us good through-
put, while the batching of requests provides
reasonably fair access. Future work will in-
vestigate providing more predictable isolation
and differentiated service, perhaps using exist-
ing techniques and schedulers [15].

4 Evaluation

In this section we present a subset of our eval-
uation of Xen against a number of alternative
virtualization techniques. A more complete
evaluation, as well as detailed configuration
and benchmark specs, can be found in [1] For
these measurements, we used our 2.4.21-based
XenLinux port as, at the time of this writing,
the 2.6-port was not stable enough for a full
battery of tests.

There are a number of preexisting solutions
for running multiple copies of Linux on the
same machine. VMware offers several com-
mercial products that provide virtual x86 ma-
chines on which unmodified copies of Linux
may be booted. The most commonly used ver-
sion is VMware Workstation, which consists
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of a set of privileged kernel extensions to a
‘host’ operating system. Both Windows and
Linux hosts are supported. VMware also offer
an enhanced product called ESX Server which
replaces the host OS with a dedicated kernel.
By doing so, it gains some performance bene-
fit over the workstation product. We have sub-
jected ESX Server to the benchmark suites de-
scribed below, but sadly are prevented from re-
porting quantitative results due to the terms of
the product’s End User License Agreement. In-
stead we present results from VMware Work-
station 3.2, running on top of a Linux host
OS, as it is the most recent VMware product
without that benchmark publication restriction.
ESX Server takes advantage of its native archi-
tecture to equal or outperform VMware Work-
station and its hosted architecture. While Xen
of course requires guest OSes to be ported, it
takes advantage of paravirtualization to notice-
ably outperform ESX Server.

We also present results for User-mode Linux
(UML), an increasingly popular platform for
virtual hosting. UML is a port of Linux to run
as a user-space process on a Linux host. Like
XenLinux, the changes required are restricted
to the architecture dependent code base. How-
ever, the UML code bears little similarity to
the native x86 port due to the very different na-
ture of the execution environments. Although
UML can run on an unmodified Linux host, we
present results for the ‘Single Kernel Address
Space’ (skas3) variant that exploits patches to
the host OS to improve performance.

We also investigated three other virtualiza-
tion techniques for running ported versions of
Linux on the same x86 machine. Connec-
tix’s Virtual PC and forthcoming Virtual Server
products (now acquired by Microsoft) are sim-
ilar in design to VMware’s, providing full x86
virtualization. Since all versions of Virtual PC
have benchmarking restrictions in their license
agreements we did not subject them to closer

analysis. UMLinux is similar in concept to
UML but is a different code base and has yet
to achieve the same level of performance, so
we omit the results. Work to improve the per-
formance of UMLinux through host OS modi-
fications is ongoing [8]. Although Plex86 was
originally a general purpose x86 VMM, it has
now been retargeted to support just Linux guest
OSes. The guest OS must be specially com-
piled to run on Plex86, but the source changes
from native x86 are trivial. The performance of
Plex86 is currently well below the other tech-
niques.

4.1 Relative Performance

The first cluster of bars in Figure 3 repre-
sents a relatively easy scenario for the VMMs.
The SPEC CPU suite contains a series of
long-running computationally-intensive appli-
cations intended to measure the performance
of a system’s processor, memory system, and
compiler quality. The suite performs little I/O
and has little interaction with the OS. With
almost all CPU time spent executing in user-
space code, all three VMMs exhibit low over-
head.

The next set of bars show the total elapsed time
taken to build a default configuration of the
Linux 2.4.21 kernel on a local ext3 file sys-
tem with gcc 2.96. Native Linux spends about
7% of the CPU time in the OS, mainly per-
forming file I/O, scheduling and memory man-
agement. In the case of the VMMs, this ‘sys-
tem time’ is expanded to a greater or lesser de-
gree: whereas Xen incurs a mere 3% overhead,
the other VMMs experience a more significant
slowdown.

Two experiments were performed using the
PostgreSQL 7.1.3 database, exercised by
the Open Source Database Benchmark suite
(OSDB) in its default configuration. We
present results for the multi-user Information
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Figure 3: Relative performance of native Linux (L), XenLinux (X), VMware workstation 3.2 (V)
and User-Mode Linux (U).

Retrieval (IR) and On-Line Transaction Pro-
cessing (OLTP) workloads, both measured in
tuples per second. PostgreSQL places consid-
erable load on the operating system, and this is
reflected in the substantial virtualization over-
heads experienced by VMware and UML. In
particular, the OLTP benchmark requires many
synchronous disk operations, resulting in many
protection domain transitions.

The dbench program is a file system bench-
mark derived from the industry-standard ‘Net-
Bench’. It emulates the load placed on a file
server by Windows 95 clients. Here, we ex-
amine the throughput experienced by a single
client performing around 90,000 file system
operations.

SPEC WEB99 is a complex application-level
benchmark for evaluating web servers and the
systems that host them. The benchmark is
CPU-bound, and a significant proportion of the
time is spent within the guest OS kernel, per-
forming network stack processing, file system
operations, and scheduling between the many
httpd processes that Apache needs to handle

the offered load. XenLinux fares well, achiev-
ing within 1% of native Linux performance.
VMware and UML both struggle, supporting
less than a third of the number of clients of the
native Linux system.

4.2 Operating System Benchmarks

To more precisely measure the areas of over-
head within Xen and the other VMMs, we per-
formed a number of smaller experiments tar-
geting particular subsystems. We examined
the overhead of virtualization as measured by
McVoy’s lmbenchprogram [9]. The OS per-
formance subset of the lmbench suite consist
of 37 microbenchmarks.

In 24 of the 37 microbenchmarks, XenLinux
performs similarly to native Linux, tracking the
Linux kernel performance closely. In Tables 2
to 4 we show results which exhibit interest-
ing performance variations among the test sys-
tems; particularly large penalties for Xen are
shown in bold face.

In the process microbenchmarks (Table 2), Xen
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Config null
call

null
I/O

open
close

slct
TCP

sig
inst

sig
hndl

fork
proc

exec
proc

sh
proc

Linux 0.45 0.50 1.92 5.70 0.68 2.49 110 530 4k0
Xen 0.46 0.50 1.88 5.69 0.69 1.75198 768 4k8
VMW 0.73 0.83 2.99 11.1 1.02 4.63 874 2k3 10k
UML 24.7 25.1 62.8 39.9 26.0 46.0 21k 33k 58k

Table 2:lmbench : Processes - times inµs

Config 2p
0K

2p
16K

2p
64K

8p
16K

8p
64K

16p
16K

16p
64K

Linux 0.77 0.91 1.06 1.03 24.3 3.61 37.6
Xen 1.97 2.22 2.67 3.07 28.7 7.0839.4
VMW 18.1 17.6 21.3 22.4 51.6 41.7 72.2
UML 15.5 14.6 14.4 16.3 36.8 23.6 52.0

Table 3: lmbench : Context switching times
in µs

Config 0K File 10K File Mmap Prot Page
create delete create delete lat fault fault

Linux 32.1 6.08 66.0 12.5 68.0 1.06 1.42
Xen 32.5 5.86 68.2 13.6 139 1.40 2.73
VMW 35.3 9.3 85.6 21.4 620 7.53 12.4
UML 130 65.7 250 113 1k4 21.8 26.3

Table 4: lmbench : File & VM system laten-
cies inµs

exhibits slowerfork, exec, andshperformance
than native Linux. This is expected, since these
operations require large numbers of page ta-
ble updates which must all be verified by Xen.
However, the paravirtualization approach al-
lows XenLinux to batch update requests. Cre-
ating new page tables presents an ideal case:
because there is no reason to commit pending
updates sooner, XenLinux can amortize each
hypercall across 2048 updates (the maximum
size of its batch buffer). Hence each update
hypercall constructs 8MB of address space.

Table 3 shows context switch times between
different numbers of processes with different
working set sizes. Xen incurs an extra over-
head between 1µs and 3µs, as it executes a hy-
percall to change the page table base. How-
ever, context switch results for larger work-

ing set sizes (perhaps more representative of
real applications) show that the overhead is
small compared with cache effects. Unusually,
VMware Workstation is inferior to UML on
these microbenchmarks; however, this is one
area where enhancements in ESX Server are
able to reduce the overhead.

The mmap latencyand page fault latencyre-
sults shown in Table 4 are interesting since they
require two transitions into Xen per page: one
to take the hardware fault and pass the details
to the guest OS, and a second to install the up-
dated page table entry on the guest OS’s behalf.
Despite this, the overhead is relatively modest.

One small anomaly in Table 2 is that Xen-
Linux has lower signal-handling latency than
native Linux. This benchmark does not re-
quire any calls into Xen at all, and the 0.75µs
(30%) speedup is presumably due to a fortu-
itous cache alignment in XenLinux, hence un-
derlining the dangers of taking microbench-
marks too seriously.

4.3 Additional Benchmarks

We have also conducted comprehensive exper-
iments that: evaluate the overhead of virtual-
izing the network; compare the performance
of running multiple applications in their own
guest OS against running them on the same
native operating system; demonstrate perfor-
mance isolation provided by Xen; and examine
Xen’s ability to scale to its target of 100 do-
mains. All of the experiments showed promis-
ing results and details have been separately
published [1].

5 Conclusion

We have presented the Xen hypervisor which
partitions the resources of a computer between
domains running guest operating systems. Our
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paravirtualizing design places a particular em-
phasis on protection, performance and resource
management. We have also described and eval-
uated XenLinux, a fully-featured port of the
Linux kernel that runs over Xen.

Xen and the 2.4-based XenLinux are suffi-
ciently stable to be useful to a wide audi-
ence. Indeed, some web hosting providers
are already selling Xen-based virtual servers.
Sources, documentation, and a demo ISO can
be found on our project page3.

Although the 2.4-based XenLinux was the ba-
sis of our performance evaluation, a 2.6-based
port is well underway. In this port, much care is
been given to minimizing and isolating the nec-
essary changes to the Linux kernel and mea-
suring the changes against benchmark results.
As paravirtualization techniques become more
prevalent, kernel changes would ideally be part
of the main tree. We have experimented with
various source structures including a separate
architecture,a la UML, a subarchitecture, and
a CONFIG option. We eagerly solicit input and
discussion from the kernel developers to guide
our approach. We also have considered trans-
parent paravirtualization [2] techniques to al-
low a single distro image to adapt dynamically
between a VMM-based configuration and bare
metal.

As well as further guest OS ports, Xen it-
self is being ported to other architectures. An
x86_64 port is well underway, and we are keen
to see Xen ported to RISC-style architectures
(such as PPC) where virtual memory virtual-
ization will be much easier due to the software-
managed TLB.

Much new functionality has been added since
the first public availability of Xen last Octo-
ber. Of particular note are a completely re-
vamped I/O subsystem capable of directly uti-

3http://www.cl.cam.ac.uk/netos/
xen

lizing Linux driver source, suspend/resume and
live migration features, much improved con-
sole access, etc. Though final implementation,
testing, and documentation was not complete
at the deadline for this paper, we hope to de-
scribe these in more detail at the symposium
and in future publications.

As always, there are more tasks to do than there
are resources to do them. We would like to
grow Xen into the premier open source virtual-
ization solution, with breadth and features that
rival proprietary commercial products.

We enthusiastically welcome the help and con-
tributions of the Linux community.
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