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Abstract Mode Linux as well as existing commercial
VM products.

Virtual machine (VM) technology has been
around for 40 years and has been experiencing |ntroduction
a resurgence with commodity machines. VMs

have been shown to improve system and netIVIodern computers are sufficiently powerful

work flexibility, availability, and security in a to use virtualization to present the illusion of

variety of novel ways. This paper mtroducesmany smaller virtual machines (VMs), each

Xen, an efficient secure open source VM mon- ; ) .
. . . running a separate operating system instance.
itor, to the Linux community.

This has led to a resurgence of interest in VM
Key features of Xen are: technology. In this paper we present Xen,
a high performance resource-managed virtual
machine monitor (VMM) which enables ap-
'plications such as server consolidation, co-
located hosting facilities, distributed web ser-
2. provides secure protection between VMs VICES, secure computing platforms, and appli-
cation mobility.

3. allows flexible partitioning of resources o _
between VMs (CPU, memory, network Successful partitioning of a machine to support

bandwidth, disk space, and bandwidth) the concurrent execution of multiple operating
systems poses several challenges. Firstly, vir-

4. very low overhead, even for demandingtual machines must be isolated from one an-

server applications other: it is not acceptable for the execution
of one to adversely affect the performance of
another. This is particularly true when vir-
tual machines are owned by mutually untrust-
ing users. Secondly, it is necessary to support
We discuss the interface that Xen/x86 exporta variety of different operating systems to ac-
to guest operating systems, and the kernetommodate the heterogeneity of popular appli-
changes that were required to Linux to portcations. Thirdly, the performance overhead in-
it to Xen. We compare Xen/Linux to User troduced by virtualization should be small.

1. supports different OSes (e.g. Linux 2.4
2.6, NetBSD, FreeBSD, etc.)

5. support for seamless, low-latency migra-
tion of running VMs within a cluster
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Xen hosts commodity operating systems, albeiment algorithms. Performing multiplexing at a
with some source modifications. The prototypelow level can mitigate this problem; uninten-
described and evaluated in this paper can sugional or undesired interactions between tasks
port multiple concurrent instances of our Xen-are minimized. Xen multiplexes physical re-
Linux guest operating system; each instancasources at the granularity of an entire operat-
exports an application binary interface identi-ing system and is able to provide performance
cal to a non-virtualized Linux 2.6. Xen ports of isolation between them. This allows a range
NetBSD and FreeBSD have been completedof guest operating systems to gracefully coex-
along with a proof of concept port of Windows ist rather than mandating a specific application
XP1l binary interface. There is a price to pay for this
] flexibility—running a full OS is more heavy-
There are a number of ways to build & SySyygight than running a process, both in terms of
tem to host multiple applications and ServerSpitialization (e.g. booting or resuming an OS

on a shared machine. Perhaps the simplest jssance versutork /exec ), and in terms of
to deploy one or more hosts running a stanyegource consumption.

dard operating system such as Linux or Win-
dows, and then to allow users to install files and~or our target of 10-100 hosted OS instances,
start processes—protection between applicane believe this price is worth paying: It allows
tions being provided by conventional OS tech-individual users to run unmodified binaries, or
niques. Experience shows that system adminiszollections of binaries, in a resource controlled
tration can quickly become a time-consumingfashion (for instance an Apache server along
task due to complex configuration interactionswith a PostgreSQL backend). Furthermore it
between supposedly disjoint applications. provides an extremely high level of flexibility

_ since the user can dynamically create the pre-
More importantly, such systems do not ad-Gise execution environment their software re-
equately support performance isolation; theyires. Unfortunate configuration interactions
scheduling priority, memory demand, networkpenyeen various services and applications are

traffic and disk accesses of one process impacg},5iged (for example, each Windows instance
the performance of others. This may be acinintains its own registry).

ceptable when there is adequate provisioning
and a closed user group (such as in the case @&xperience with deployed Xen systems sug-
computational grids, or the experimental Plan-gests that the initialization overheads and ad-
etLab platform [11]), but not when resourcesditional resource requirements are in practice
are oversubscribed, or users uncooperative. quite low: An operating system image may be
) . _resumed from an on-disk snapshot in typically
One way to address this problgm is to retroflt]-ust over a second (depending on image mem-
support for performance isolation to the op-qry sjze), and although multiple copies of the
erating system, but a difficulty with such ap- gnerating system code and data are stored in
proaches is ensuring thall resource usage is memory, the memory requirements are typi-
accounted to the correct process—consider, fo(ga||y small compared to those of the applica-
example, the complex interactions between apgons that will run on them. As we shall show
plications due to buffer cache or page replaceyier in the paper, the performance overhead of
the virtualization provided by Xen is low, typ-

1The Windows XP port required access to Microsoftically just a few percent, even for the most de-
source code, and hence distribution is currently remanding applications.
stricted, even in binary form.
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2 XEN: Approach & Overview ing [7].

We avoid the drawbacks of full virtualization
In a traditional VMM the virtual hardware ex- by presenting a virtual machine abstraction
posed is functionally identical to the underly- that is similar but not identical to the under-
ing machine [14]. Althouglfull virtualization  lying hardware—an approach which has been
has the obvious benefit of allowing unmodifieddubbedparavirtualization[17]. This promises
operating systems to be hosted, it also has mnproved performance, although it does re-
number of drawbacks. This is particularly truequire modifications to the guest operating sys-
for the prevalent Intex86 architecture. tem. It is important to note, however, that we

do not require changes to the application bi-

Support for full yirtualization.was never part nary interface (ABI), and hence no modifica-
of the x86 architectural design. Certain SU-;qnc are required to gueapplications

pervisor instructions must be handled by the

VMM for correct virtualization, but executing We distill the discussion so far into a set of de-
these with insufficient privilege fails silently sign principles:

rather than causing a convenient trap [13]. Effi-
ciently virtualizing the x86 MMU is also diffi-
cult. These problems can be solved, but only at
the cost of increased complexity and reduced tion to Xen. Hence we must virtualize all
performance. VMware's ESX Server [3] dy- architectural features required by existing
namically rewrites portions of the hosted ma- standard ABIs.

chine code to insert traps wherever VMM in-

tervention might be required. This translation 2. Supporting full multi-application operat-

1. Support for unmodified application bina-
ries is essential, or users will not transi-

is applied to the entire guest OS kernel (with ing systems is important, as this allows
associated translation, execution, and caching complex server configurations to be virtu-
costs) since all non-trapping privileged instruc- alized within a single guest OS instance.

tions must be caught and handled. ESX Server ) S _
implements shadow versions of system struc- 3. RaraV|rtuaI|zat|on IS necessary to obt‘aln
tures such as page tables and maintains consis- Nigh performance and strong resource iso-
tency with the virtual tables by trapping every lation on uncooperative machine architec-
update attempt—this approach has a high cost ~ tUres such as x86.

for update-intensive operations such as creat- 4

: AR Even on cooperative machine architec-
ing a new application process.

tures, completely hiding the effects of

Notwithstanding the intricacies of the x86, resource virtualization from guest OSes
there are other arguments against full virtual-  1SkS both correctness and performance.
ization. In particular, there are situations in

which it is desirable for the hosted operatingln the following section we describe the virtual
systems to see real as well as virtual resourcesnachine abstraction exported by Xen and dis-
providing both real and virtual time allows a cuss how a guest OS must be modified to con-
guest OS to better support time-sensitive taskgprm to this. Note that in this paper we reserve
and to correctly handle TCP timeouts and RT Tthe termguest operating systeta refer to one
estimates, while exposing real machine adof the OSes that Xen can host and we use the
dresses allows a guest OS to improve perforterm domainto refer to a running virtual ma-
mance by using superpages [10] or page colorehine within which a guest OS executes; the
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distinction is analogous to that betweepra-  when transferring execution.

gram and aprocessin a conventional system.
We call Xen itself thenypervisorsince it oper-  Unfortunately, x86 does not have a software-

ates at a higher privilege level than the superManaged TLB; instead TLB misses are ser-

visor code of the guest operating systems thaficed automatically by the processor by walk-
it hosts. ing the page table structure in hardware. Thus

to achieve the best possible performance, all
valid page translations for the current ad-
dress space should be present in the hardware-
accessible page table. Moreover, because the
The paravirtualized x86 interface can be fac-TB is not tagged, address space switches typ-
tored into three broad aspects of the systemially require a complete TLB flush. Given
memory management, the CPU, and devicghese limitations, we made two decisions: (i)
/0. In the following we address each machineguest OSes are responsible for allocating and
subsystem in turn, and discuss how each is prenanaging the hardware page tables, with mini-
sented in our paravirtualized architecture. Notgnal involvement from Xen to ensure safety and
that although certain parts of our implemen-jsplation; and (ii) Xen exists in a 64MB section
tation, such as memory management, are spext the top of every address space, thus avoiding

cific to the x86, many aspects (such as our virg TLB flush when entering and leaving the hy-
tual CPU and /O devices) can be readily appervisor.

plied to other machine architectures. Further-

more, x86 representsveorst casen the areas Each time a guest OS requires a new page
where it differs significantly from RISC-style table, perhaps because a new process is be-
processors—for example, efficiently virtualiz- ing created, it allocates and initializes a page
ing hardware page tables is more difficult thanfrom its own memory reservation and regis-
virtualizing a software-managed TLB. ters it with Xen. At this point the OS must
relinquish direct write privileges to the page-
table memory: all subsequent updates must be
validated by Xen. This restricts updates in a
number of ways, including only allowing an

_ . . OS to map pages that it owns, and disallow-
Virtualizing memory is undoubtedly the most i, \yritable mappings of page tables. Guest
difficult part_ of paravirtualizing an a_rchltec- OSes maybatch update requests to amortize
ture, both in terms of the mechanisms reynq oyerhead of entering the hypervisor. The
quired in the hypervisor and modifications re-tOIO 64MB region of each address space, which

quired to port each guest OS. The task ig reserved for Xen, is not accessible or remap-
easier if the architecture provides g‘softwar‘e-pable by guest OSes. This address region is
managed TLB as these can be efficiently vir-

) : _ not used by any of the common x86 ABIs how-
tualized in a simple manner [5]. A tagged

; ever, so this restriction does not break applica-
TLB is another useful feature supported by, compatibility.

most server-class RISC architectures, includ-

ing Alpha, MIPS and SPARC. Associating an Segmentation is virtualized in a similar way,
address-space identifier tag with each TLB enby validating updates to hardware segment de-
try allows the hypervisor and each guest OSscriptor tables. The only restrictions on x86
to efficiently coexist in separate address spacesegment descriptors are: (i) they must have
because there is no need to flush the entire TLB

2.1 The Virtual Machine Interface

2.1.1 Memory management
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lower privilege than Xen, and (ii) they may not Exceptions, including memory faults and soft-
allow any access to the Xen-reserved portiorware traps, are virtualized on x86 very straight-
of the address space. forwardly. A table describing the handler for
each type of exception is registered with Xen
for validation. The handlers specified in this
table are generally identical to those for real
212 CPU x86 hardware; this is possible because the ex-
ception stack frames are unmodified in our par-
, . ... avirtualized architecture. The sole modifica-
Virtualizing the CPU has several implications i, is to the page fault handler, which would

for guest OSes. Principally, the insertion of &, ma)ly read the faulting address from a priv-
hypervisor below the operating system V'Olatesileged processor registeER2); since this is

the usual assumption that the OS is the Mogtq; hossible, we write it into an extended stack
privileged entlty in the system. 'In order.to Pro- ¢ame. When an exception occurs while exe-
tect the hypervisor from OS misbehavior (andcuting outside ring 0, Xen's handler creates a

domains from one another) guest OSes must bg, ' of the exception stack frame on the guest
modified to run at a lower privilege level. OS stack and returns control to the appropriate

Efficient virtualizion of privilege levels is pos- "€gistered handler.

sible on x86 because it supports four diStinCtTypically only two types of exception oc-

privilege levels in hardware. _The_ X86 privi- frequently enough to affect system perfor-
lege levels are generally describediags, and mance: system calls (which are usually im-

are numbered from zero (most privileged) t0pemented via a software exception), and page
three (least privileged). OS code typically exe-y ,its. We improve the performance of sys-

cutes in ring 0 because no other ring can exXgem calls by allowing each guest OS to reg-
ecute privileged instructions, while ring 3 is ictar 4 ‘fast exception handler which is ac-

generally used for application code. To OUrcegseq directly by the processor without indi-
knowledge, rings 1 and 2 have not been usegy.ting via ring 0: this handler is validated be-
by any well-known x86 OS since OS/2. ANY fqq installing it in the hardware exception ta-
OS which follows this common arrangementy e - ynfortunately it is not possible to apply
can be ported to Xen by modifying it 0 exe- \he same technique to the page fault handler
cute inring 1. This prevents the guest OS ffoMya4,,5e only code executing in ring 0 can read
directly executing privileged instructions, yetit 4, faulting address from regist@R2 page
remains safely isolated from applications run-, ;s myst therefore always be delivered via
hing inring 3. Xen so that this register value can be saved for

Privileged instructions are paravirtualized by&ccess inring 1.

requiring them to be validated and executedsycery is ensured by validating exception han-
within Xen—this applies to operations such yars \when they are presented to Xen. The

as installing a new page table, or yielding the,,y yequired check is that the handler's code

processor when idle (rather than attempting t%egment does not specify execution in ring O.

hit it). Any guest OS attempt to directly ex- gjnce no guest OS can create such a segment,
ecute a privileged instruction is failed by the

processor, either silently or by taking a fault, 2In hindsight, writing the value into a pre-agreed

since only Xen executes at a sufficiently privi- shared memory location rather than modifying the
leged level. stack frame would have simplified the XP port.
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it suffices to compare the specified segment se- Linux subsection # lines
lector to a small number of static values which Architecture-independent 78
are reserved by Xen. Apart from this, any other Virtual network driver 484
handler problems are fixed up during excep- Virtual block-device driver 1070
tion propagation—for example, if the handler's Xen-specific (non-driver) 1363
code segment is not present or if the handler Total 2995

is not paged into memory then an appropri- Portion of total x86 code base 1.36%
ate fault will be taken when Xen executes the_I_ ble 1: The simplicity of . di
iret  instruction which returns to the handler. - o2'¢ - & simplicity of porting commodity
Xen detects these “double faults” by checkingOses to Xen.

the faulting program counter value: if the ad-

dress resides within the exception-virtualizingsim“ar to hardware interrupts, Xen supports
code then the offending guest OS is terminated, jghweight event-delivery mechanism which
Note that this “lazy” checking is safe even for IS used for sending asynchronous notifications

the direct system-call handler: access faultd0 & domain. These notifications are made by
will occur when the CPU attempts to directly UPdating a bitmap of pending event types and,

jump to the guest OS handler. In this case th@Ptionally, by calling an event handler speci-
faulting address will be outside Xen (since Xenfi€d by the guest OS. These callbacks can be

will never execute a guest OS system call) and€!d Off’ at the discretion of the guest OS—to
so the fault is virtualized in the normal way. If @V0id extra costs incurred by frequent wake-up

propagation of the fault causes a further “dou-N0tifications, for example.

ble fault” then the guest OS is terminated as
described above. 2.2 The Cost of Porting an OS to Xen

Table 1 demonstrates the cost, in lines of code,
_ of porting commodity operating systems to
2.1.3 Device l/O Xen'’s paravirtualized x86 environment.

. . The architecture-specific sections are effec-
Rather than emulating existing hardware de-. ,
tively a port of the x86 code to our paravirtual-

vices, as is typically done in fully-virtualized , ed architecture. This involved rewriting rou-

: |
environments, Xen exposes a set of clean anﬁ ) L ) :

: , : : ines which used privileged instructions, and
simple device abstractions. This allows us to

design an interface that is both efficient and saticmoving a large amount of low-level system
o : : _initialization code.

isfies our requirements for protection and iso-

lation. To this end, I/O data is transferred to

and from each domain via Xen, using shared?-3 Control and Management

memory, asynchronous buffer-descriptor rings.

These provide a high-performance communi-Throughout the design and implementation of
cation mechanism for passing buffer informa-Xen, a goal has been to separate policy from
tion vertically through the system, while al- mechanism wherever possible. Although the
lowing Xen to efficiently perform validation hypervisor must be involved in data-path as-
checks (for example, checking that buffers argects (for example, scheduling the CPU be-
contained within a domain’s memory reserva-tween domains, filtering network packets be-

tion). fore transmission, or enforcing access control
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v deletion of virtual network interfaces (VIFs)
ser User User . .
Software  Software  Software and block devices (VBDs). These virtual 1/0
devices have associated access-control infor-
gggfitngg ngggs%? %Sﬁi%s mation which determlnes Whlch.d(.)malns can
Yono-n Yonon Yoron access them, and with what restrictions (for ex-
Device Drivers Device Drivers Device Drivers Device Drivers

ample, a read-only VBD may be created, or
a VIF may filter IP packets to prevent source-

v v v v address spoofing or apply traffic shaping).
H/W (SMP x86, phy mem, enet, SCSI/IDE)

Domain0 — yjrtyaj virtual virtual virtual )E(

control
et x86 CPU phy mem network blockdev

This control interface, together with profil-

Figure 1: The structure of a machine runninging statistics on the current state of the sys-
the Xen hypervisor, hosting a number of dif-tem, is exported to a suite of application-
ferent guest operating systems, includibg-  level management software running Do-

mainOrunning control software in a XenLinux mainQ  This complement of administrative
environment. tools allows convenient management of the en-

tire server: current tools can create and destroy
domains, set network filters and routing rules,

when reading data blocks), there is no need fofonitor per-domain network activity at packet
it to be involved in, or even aware of, higher and flow granularity, and create and delete vir-

level issues such as how the CPU is to bdual network interfaces and virtual block de-
shared, or which kinds of packet each domair!C€s-

may transmit. Snapshots of a domains’ state may be captured

The resulting architecture is one in which thend saved to disk, enabling rapid deployment
hypervisor itself provides only basic control Of @pplications by bypassing the normal boot
operations. These are exported through af€lay. Further, Xen supporis/e migration
interface accessible from authorized domainsWhich enables running VMs to be moved dy-
potentially complex policy decisions, such asnamically between different Xen servers, with
admission control, are best performed by manéXecution interrupted only for a few millisec-
agement software running over a guest o$nds. We are in the process of developing

rather than in privileged hypervisor code. higher-level tools to further automate the ap-
plication of administrative policy, for example,

The overall system structure is illustrated inload balancing VMs among a cluster of Xen
Figure 1. Note that a domain is created at booservers.

time which is permitted to use thentrol in-

terface This initial domain, terme@®omainQ

is responsible for hosting the application-level3 Detailed Design

management software. The control interface

provides the ability to create and terminate

other domains and to control their associatedn this section we introduce the design of the
scheduling parameters, physical memory alloMaor subsystems that make up a Xen-based

cations and the access they are given to the m&ErVer- In each case we present both Xen and
chine’s physical disks and network devices. guest OS functionality for clarity of exposition.
In this paper, we focus on the XenLinux guest

In addition to processor and memory resources)S; the *BSD and Windows XP ports use the
the control interface supports the creation anen interface in a similar manner.
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Request Consumer Request Producer

3.1 Control Transfer: Hypercalls and Events Private pointer Shared pointer
in Xen \ A/ updated by guest OS

Response Producer
Shared pointer
updated by Response Consumer

R e
Two mechanisms exist for control interactionS  —request queue - Descriptors queued by the VM but not et accepted by Xen
between Xen and an overlying domain: syn- St bocr s o i
chronous calls from a domain to Xen may be  [Junused descriptors
made using &ypercall while notifications are
delivered to domains from Xen using an asyn-Figure 2: The structure of asynchronous 1/O
chronous event mechanism. rings, which are used for data transfer between

_ _ Xen and guest OSes.
The hypercall interface allows domains to per-

form a synchronous software trap into the

hypervisor to perform a privileged o_|oerat|on,3_2 Data Transfer: /O Rings
analogous to the use of system calls in conven-
tional operating systems. An example use of a

hypercall is to request a set of page-table upThe presence of a hypervisor means there is
dates, in which Xen validates and applies a lisen additional protection domain between guest
of updates, returning control to the calling do-OSes and I/O devices, so it is crucial that a
main when this is completed. data transfer mechanism be provided that al-

o o lows data to move vertically through the sys-
Communication from Xen to a domain is pro- ;o m with as little overhead as possible.

vided through an asynchronous event mech-

anism, which replaces the usual deliveryTwo main factors have shaped the design of
mechanisms for device interrupts and allowsour I/O-transfer mechanism: resource manage-
lightweight notification of important events ment and event notification. For resource ac-
such as domain-termination requests. Akin tacountability, we attempt to minimize the work
traditional Unix signals, there are only a smallrequired to demultiplex data to a specific do-
number of events, each acting to flag a particmain when an interrupt is received from a
ular type of occurrence. For instance, eventslevice—the overhead of managing buffers is
are used to indicate that new data has been rearried out later where computation may be ac-
ceived over the network, or that a virtual disk counted to the appropriate domain. Similarly,
request has completed. memory committed to device 1/O is provided

by the relevant domains wherever possible to

Pending events are stored in a per-domain bitseyent the crosstalk inherent in shared buffer
mask which is updated by Xen before invok-pq4s: /0 buffers are protected during data

ing an event-callback handler specified by thansfer by pinning the underlying page frames
guest OS. The callback handler is responsiblgiinin Xen.

for resetting the set of pending events, and re-

sponding to the notifications in an appropriateFigure 2 shows the structure of our I/O descrip-
manner. A domain may explicitly defer eventtor rings. A ring is a circular queue of descrip-
handling by setting a Xen-readable softwaretors allocated by a domain but accessible from
flag: this is analogous to disabling interruptswithin Xen. Descriptors do not directly con-
on a real processor. tain /O data; instead, 1/0 data buffers are al-
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located out-of-band by the guest OS and inhow this virtualization is achieved for CPU,
directly referenced by I/O descriptors. Ac- timers, memory, network and disk.

cess to each ring is based around two pairs

of producer-consumer pointers: domains place

requests on a ring, advancing a request pro3 3.1 CPU scheduling

ducer pointer, and Xen removes these requests

for handling, advancing an associated requeié

. en currently schedules domains according to
consumer pointer. Responses are placed ba . : .
) - ) e Borrowed Virtual Time (BVT) scheduling
on the ring similarly, save with Xen as the pro-

ducer and the guest OS as the consumer. Theglgorlthr.n [4].' .We chose this partlgular algo
. : rithms since it is both work-conserving and has
is no requirement that requests be processed Iin ) .

) . . : a special mechanism for low-latency wake-up
order: the guest OS associates a unique |dentt-

. : L . (or dispatch) of a domain when it receives an
fier with each request which is reproduced Mevent. Fast dispatch is particularly important
the associated response. This allows Xen t ) P P y Imp

: . o minimize the effect of virtualization on OS
unambiguously reorder 1/O operations due to

scheduling or priority considerations. subs_ystems that are designed_ torunin a.timely

fashion; for example, TCP relies on the timely
This structure is sufficiently generic to supportdelivery of acknowledgments to correctly es-
a number of different device paradigms. Fortimate network round-trip times. BVT pro-
example, a set of ‘requests’ can provide buffer/ides low-latency dispatch by using virtual-
for network packet reception; subsequent ‘retime warping, a mechanism which temporarily
sponses’ then signal the arrival of packets into/iolates ‘ideal’ fair sharing to favor recently-
these buffers. Reordering is useful when dealwoken domains. However, other scheduling al-
ing with disk requests as it allows them togorithms could be trivially implemented over
be scheduled within Xen for efficiency, and our generic scheduler abstraction. Per-domain
the use of descriptors with out-of-band buffersscheduling parameters can be adjusted by man-
makes implementing zero-copy transfer easy. agement software running bomainQ

We decouple the production of requests or re-
sponses from the notification of the other party’3 3 5 Time and timers
in the case of requests, a domain may enqueue

multiple entries before invoking a hypercall to . . .
alert Xen: in the case of responses, a domaif€n Provides guest OSes with notions of real
time, virtual time and wall-clock time. Real

can defer delivery of a notification event by . ] i )
specifying a threshold number of reSporlseSt_|me is expressed in hanoseconds passed since

This allows each domain to trade-off latencyMachine boot and is maintained to the accu-
and throughput requirements, similarly to theacy Of the processor’s cycle counter and can

flow-aware interrupt dispatch in the ArseNIC be frequency-loc_:ked to an external_ time_source
Gigabit Ethernet interface [12]. (for example, via NTP). A domain’s virtual

time only advances while it is executing: this
is typically used by the guest OS scheduler to
ensure correct sharing of its timeslice between
application processes. Finally, wall-clock time
The control and data transfer mechanisms dds specified as an offset to be added to the cur-
scribed are used in our virtualization of the var-rent real time. This allows the wall-clock time
ious subsystems. In the following, we discusgo be adjusted without affecting the forward

3.3 Subsystem Virtualization
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progress of real time. To aid validation, we associate a type and ref-
) erence count with each machine page frame.
Each guest OS can program a pair of alarh frame may have any one of the following
tlmer_s, one for real time and the other for V|r_- mutually-exclusive types at any point in time:
tu_al t_|me. Gu_est OSes are expected to malnpage directory (PD), page table (PT), local de-
tain internal timer queues and use the Xenycrinior table (LDT), global descriptor table
provided alarm timers to trigger the earllest(GDT), or writable (RW). Note that a guest
timeout. Time_outs are delivered using Xen'sng may always create readable mappings to
event mechanism. its own page frames, regardless of their current
types. A frame may only safely be retasked
when its reference count is zero. This mecha-
3.3.3 Virtual address translation nism is used to maintain the invariants required
for safety; for example, a domain cannot have

As with other subsystems, Xen attempts to vir-& Writable mapping to any part of a page table
tualize memory access with as little overhead®S this would require the frame concerned to
as possible. As discussed in Section 2.1.15Imultaneously be of types PT and RW.

this goal is made somewhat more difficult byThe type system is also used to track which
the x86 architecture’s use of hardware page g mes have already been validated for use in
bles. The approach taken by VMware is to pro,, e tahles. To this end, guest OSes indicate
vide each guest OS with a virtual page table, nap, 5 frame is allocated for page-table use—
not visible to the memory-management Unityis requires a one-off validation of every en-
(MMU) [3]. The hypervisor is then responsible try in the frame by Xen, after which its type
for trapping accesses to the virtual page tableg pinned to PD or PT as appropriate, until a
validating updates, and propagating changeg,psequent unpin request from the guest OS.
back and forth between itand the MMU-visible rps i particularly useful when changing the
shadow’ page table. This greatly _mcreasesﬁjage table base pointer, as it obviates the need
the cost .of certain .guest OS operations, sucly \alidate the new page table on every context
as creating new virtual address spaces, anditch. Note that a frame cannot be retasked
requires explicit propagation of hardware Up-ynjl it js both unpinned and its reference count
dates to ‘accessed’ and ‘dirty’ bits. has reduced to zero — this prevents guest OSes
¢ from using unpin requests to circumvent the

Although full virtualization forces the use o ’ )
reference-counting mechanism.

shadow page tables, to give the illusion of con
tiguous physical memory, Xen is not so con-

strained. Indeed, Xen need only be involved in .

page tableipdatesto prevent guest OSes from 3-3-4  Physical memory

making unacceptable changes. Thus we avoid

the overhead and additional complexity assoThe initial memory allocation, oreservation
ciated with the use of shadow page tables—théor each domain is specified at the time of
approach in Xen is to register guest OS page tats creation; memory is thus statically parti-
bles directly with the MMU, and restrict guest tioned between domains, providing strong iso-
OSes to read-only access. Page table updat&gtion. A maximum-allowable reservation may
are passed to Xen via a hypercall; to ensuralso be specified: if memory pressure within
safety, requests analidatedbefore being ap- a domain increases, it may then attempt to
plied. claim additional memory pages from Xen, up
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to this reservation limit. Conversely, if a management system to optimize memory ac-
domain wishes to save resources, perhaps tess. For example, a guest OS might allo-
avoid incurring unnecessary costs, it can recate particular hardware pages so as to opti-
duce its memory reservation by releasing memmize placement within a physically indexed
ory pages back to Xen. cache [7], or map naturally aligned contigu-

_ _ _ ous portions of hardware memory using super-
XenLinux implements &alloon driver [16], pages [10].

which adjusts a domain’s memory usage by
passing memory pages back and forth be-
tween Xen and XenLinux’s page allocator.
Although we could modify Linux's memory- 3.3.5 Network
management routines directly, the balloon

driver makes adjustments by using existingxen provides the abstraction of a virtual
OS functions, thus simplifying the Linux port- firewall-router (VFR), where each domain has
ing effort. However, paravirtualization can be gne or more network interfaces (VIFs) logi-
used to extend the capabilities of the baIIoorha”y attached to the VFR. A VIF looks some-
driver; for example, the out-of-memory han-\yhat like a modern network interface card:
dling mechanism in the guest OS can be Modiere are two 1/0 rings of buffer descriptors,
ified to automatically alleviate memory pres- one for transmit and one for receive. Each di-
sure by requesting more memory from Xen.  yaction also has a list of associated rules of the
g]wm (<pattern>, <action>)—if the pattern

Most operating systems assume that memor . . )
P g sy atches then the associatattionis applied.

comprises at most a few large contiguous ex-

tents. Because Xen does not guarantee to ahomainQis responsible for inserting and re-
locate contiguous regions of memory, guesingying rules. In typical cases, rules will be
OSes will typically create for themselves thejnstajled to prevent IP source address spoof-
illusion of contiguousphysical memoryeven  jng and to ensure correct demultiplexing based
though their underlying allocation éfrdware o destination IP address and port. Rules may
memoryis sparse. Mapping from physical 10 gjsq be associated with hardware interfaces on
hardware addresses is entirely the responsibihe VER. In particular, we may install rules to
ity of the guest OS, which can simply main- herform traditional firewalling functions such

tain an array indexed by physical page framéys preventing incoming connection attempts on
number. Xen supports efficient hardware-tongecure ports.

physical mapping by providing a shared trans-

lation array that is directly readable by all do- To transmit a packet, the guest OS simply en-

mains — updates to this array are validated byjueues a buffer descriptor onto the transmit

Xen to ensure that the OS concerned owns theng. Xen copies the descriptor and, to ensure

relevant hardware page frames. safety, then copies the packet header and ex-

_ ~ ecutes any matching filter rules. The packet
Note that even if a guest OS chooses 10 igpayload is not copied since we use scatter-

nore hardware addresses in most cases, it Mughther DMA; however note that the relevant
use the translation tables when accessing it§age frames must be pinned until transmission
page tables (which necessarily use hardwarg complete. To ensure fairness, Xen imple-

addresses). Hardware addresses may also Bgants a simple round-robin packet scheduler.
exposed to limited parts of the OS’s memory-

To efficiently implement packet reception, we
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require the guest OS to exchange an unuseidble are installed and managed Bpmain0
page frame for each packet it receives; thisvia a privileged control interface. On receiving
avoids the need to copy the packet betweea disk request, Xen inspects the VBD identi-
Xen and the guest OS, although it requiredier and offset and produces the corresponding
that page-aligned receive buffers be queued atector address and physical device. Permission
the network interface. When a packet is re-checks also take place at this time. Zero-copy
ceived, Xen immediately checks the set of re-data transfer takes place using DMA between
ceive rules to determine the destination VIFthe disk and pinned memory pages in the re-
and exchanges the packet buffer for a pageguesting domain.

frame on the relevant receive ring. If no frame

is available, the packet is dropped. Xen servicesbatchesof requests from com-

peting domains in a simple round-robin fash-
ion; these are then passed to a standard ele-
vator scheduler before reaching the disk hard-
ware. Domains may explicitly pass dowsa-
order barriersto prevent reordering when this
Only DomainO has direct unchecked accessis necessary to maintain higher level seman-
to physical (IDE and SCSI) disks. All other tics (e.g. when using a write-ahead log). The
domains access persistent storage through thew-level scheduling gives us good through-
abstraction of virtual block devices (VBDs), put, while the batching of requests provides
which are created and configured by managereasonably fair access. Future work will in-
ment software running withilbomainQ Al-  vestigate providing more predictable isolation
lowing DomainOto manage the VBDs keeps and differentiated service, perhaps using exist-
the mechanisms within Xen very simple anding techniques and schedulers [15].

avoids more intricate solutions such as the

UDFs used by the Exokernel [6].

3.3.6 Disk

_ _ _ 4 Evaluation
A VBD comprises a list of extents with asso-

ciated ownership and access control informa-

tion, and is accessed via the I/O ring mechain this section we present a subset of our eval-
nism. A typical guest OS disk scheduling al-uation of Xen against a number of alternative
gorithm will reorder requests prior to enqueu-virtualization techniques. A more complete
ing them on the ring in an attempt to reduceevaluation, as well as detailed configuration
response time, and to apply differentiated serand benchmark specs, can be found in [1] For
vice (for example, it may choose to aggres-these measurements, we used our 2.4.21-based
sively schedule synchronous metadata requeskenLinux port as, at the time of this writing,

at the expense of speculative readahead re¢he 2.6-port was not stable enough for a full
guests). However, because Xen has more conipattery of tests.

plete knowledge of the actual disk layout, we o _

also support reordering within Xen, and so re-1h€re are a number of preexisting solutions
sponses may be returned out of order. A vBpfor running multiple copies of Linux on the

thus appears to the guest OS somewhat like §2Me machine. VMware offers several com-
SCSI disk. mercial products that provide virtual x86 ma-

chines on which unmodified copies of Linux
A translation table is maintained within the hy- may be booted. The most commonly used ver-
pervisor for each VBD; the entries within this sion is VMware Workstation, which consists
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of a set of privileged kernel extensions to aanalysis. UMLinux is similar in concept to
‘host’ operating system. Both Windows and UML but is a different code base and has yet
Linux hosts are supported. VMware also offerto achieve the same level of performance, so
an enhanced product called ESX Server whichwve omit the results. Work to improve the per-
replaces the host OS with a dedicated kerneformance of UMLinux through host OS modi-
By doing so, it gains some performance benefications is ongoing [8]. Although Plex86 was
fit over the workstation product. We have sub-originally a general purpose x86 VMM, it has
jected ESX Server to the benchmark suites derow been retargeted to support just Linux guest
scribed below, but sadly are prevented from reOSes. The guest OS must be specially com-
porting quantitative results due to the terms ofpiled to run on Plex86, but the source changes
the product’s End User License Agreement. Infrom native x86 are trivial. The performance of
stead we present results from VMware Work-Plex86 is currently well below the other tech-
station 3.2, running on top of a Linux host niques.
OS, as it is the most recent VMware product
without that benchmark publication restriction. 4 1 Relative Performance
ESX Server takes advantage of its native archi-
tecture to equal or outperform VMware Work- _ _ _

The first cluster of bars in Figure 3 repre-

station and its hosted architecture. While Xen

of course requires guest OSes to be ported, gents a relatively easy scenario for the VMMs.

takes advantage of paravirtualization to notice-] "¢ SPEC CPU suite contains a series of

ably outperform ESX Server long-running computationally-intensive appli-
cations intended to measure the performance

We also present results for User-mode Linuxof a system’s processor, memory system, and
(UML), an increasingly popular platform for compiler quality. The suite performs little 1/0
virtual hosting. UML is a port of Linux to run and has little interaction with the OS. With
as a user-space process on a Linux host. Likalmost all CPU time spent executing in user-
XenLinux, the changes required are restrictecspace code, all three VMMs exhibit low over-
to the architecture dependent code base. Howhkead.

ever, the UML code bears little similarity to ,
the native x86 port due to the very different na-1N€ Next set of bars show the total elapsed time
ture of the execution environments. Althought@ken to build a default configuration of the
UML can run on an unmodified Linux host, we LiNux 2.4.21 kernel on a local ext3 file sys-
present results for the ‘Single Kernel AddressieM With gcc 2.96. Native Linux spends about

Space’ (skas3) variant that exploits patches td 7 Of the CPU time in the OS, mainly per-
the host OS to improve performance. forming file I/O, scheduling and memory man-
agement. In the case of the VMMs, this ‘sys-

We also investigated three other virtualiza-tem time’ is expanded to a greater or lesser de-
tion techniques for running ported versions ofgree: whereas Xen incurs a mere 3% overhead,
Linux on the same x86 machine. Connec-the other VMMs experience a more significant
tix's Virtual PC and forthcoming Virtual Server slowdown.

products (now acquired by Microsoft) are sim- i .
ilar in design to VMware’s, providing full x86 WO experiments were performed using the

virtualization. Since all versions of Virtual pc P0ostgreSQL 7.1.3 database, exercised by

have benchmarking restrictions in their licensg€ Open Source Database Benchmark suite

agreements we did not subject them to closefOSPB) In its default configuration.  We
present results for the multi-user Information
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Figure 3: Relative performance of native Linux (L), XenLinux (X), VMware workstation 3.2 (V)
and User-Mode Linux (U).

Retrieval (IR) and On-Line Transaction Pro-the offered load. XenLinux fares well, achiev-
cessing (OLTP) workloads, both measured inng within 1% of native Linux performance.
tuples per second. PostgreSQL places consid/Mware and UML both struggle, supporting
erable load on the operating system, and this ikss than a third of the number of clients of the
reflected in the substantial virtualization over-native Linux system.

heads experienced by VMware and UML. In

particular, the OLTP benchmark requires many4.2 Operating System Benchmarks
synchronous disk operations, resulting in many

protection domain transitions. To more precisely measure the areas of over-
Thedbench program is a file system bench- head within Xen and the other VMMs, we per-

mark derived from the industry-standard ‘Net-fo"_ned a nymber of smaller experiments _tar-
Bench’. It emulates the load placed on a file9eting particular subsystems. We examined

server by Windows 95 clients. Here, we eX_the overhead of virtualization as measured by
amine the throughput experienced by a singl«{;\"cvc’y'S 'mbenChp';O%raT [9]. Lhe OS per-
client performing around 90,000 file system!ormance subset of the Imbench suite consist
operations. of 37 microbenchmarks.

SPEC WEB99 is a complex application-levelln 24 of the 37 microbenchmarks, XenLinux

benchmark for evaluating web servers and thé)erforms similarly to native Linux, tracking the
systems that host them. The benchmark ii_inux kernel performance closely. In Tables 2
CPU-bound, and a significant proportion of thet© 4 we show results which exhibit interest-

time is spent within the guest OS kernel, per_ing performance variations among the test sys-

forming network stack processing, file system€MS: Particularly large penalties for Xen are

operations, and scheduling between the man§hown in bold face.
httpd  processes that Apache needs to handig, the process microbenchmarks (Table 2), Xen
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Config nullll %" Olpenil(cztp _Sigt Eigdl fork execsh ing set sizes (perhaps more representative of
ca close NS n roC proc proc : H :
| 045 050 1.02 570 0,68 2.4 110 530 4ko €2 @pplications) show that the overhead is
xen | 0.46 050 1.88 5.69 069 17098 768 akg Small compared with cache effects. Unusually,
VMW | 0.73 0.83 2.99 11.1 1.02 4.63 874 2k3 10k VMware Workstation is inferior to UML on
UML | 24.7 25.1 62.8 39.9 26.0 46.0 21k 33k 58k these microbenchmarks; however, this is one
area where enhancements in ESX Server are

able to reduce the overhead.

Table 2:Imbench : Processes - times jms

Config2p 2p 2p 8p 8p 16p 16p )
OK 16K 64K 16K 64K 16K B4K The mmap latencyand page fault latencye

Cinux| 077 091 1.06 1.03 243 361 376 SultsshowninTable 4 are interesting since they
Xen | 1.97 2.22 2.67 3.07 28.7 7.089.4 require two transitions into Xen per page: one
VMW| 18.1 17.6 21.3 224 51.6 417 722 to take the hardware fault and pass the details
UML | 155 146 144 163 368 236 520 g the guest OS, and a second to install the up-
dated page table entry on the guest OS’s behalf.
Despite this, the overhead is relatively modest.

Table 3:Imbench : Context switching times
in s
One small anomaly in Table 2 is that Xen-
Config  OK File 10K File  Mmap Prot Page Linux has lower signal-handling latency than
create delete create delete lat  fault faultnative Linux. This benchmark does not re-
Linux| 32.1 6.08 66.0 125 68.0 1.06 1.42 quire any calls into Xen at all, and the 0,4
Xen | 325 586 682 13.6139 1.40 273 o is presumabl fortu-
VMW| 353 93 856 214 620 7.53 124 (t?’O 0) Spﬁedl;p S P ?S.u Xabﬁl. due :10 a fortu
UML | 130 657 250 113 1k4 218 263 ''OUScCachealignmentin AenLtinux, hence un-
derlining the dangers of taking microbench-
Table 4:Imbench : File & VM system laten- marks too seriously.
ciesinus

4.3 Additional Benchmarks

exhibits sloweffork, exe¢ andsh performance :
. . g . We have also conducted comprehensive exper-
than native Linux. This is expected, since these ] ,
: . iments that: evaluate the overhead of virtual-
operations require large numbers of page ta-

ble updates which must all be verified by Xen.'“!N9 th_e netwqu; compare the_perfo_rmance
of running multiple applications in their own

However, th ravirtualization roach al- : :
owever, The paravirualization approach a guest OS against running them on the same

lows XenLinux to batch update requests. Cre~> " " . )
: . native operating system; demonstrate perfor-
ating new page tables presents an ideal case

. . ._Mmance isolation provided by Xen; and examine
because there is no reason to commit pendin

. . r%en’s ability to scale to its target of 100 do-
updates sooner, XenLinux can amortize eac

. mains. All of the experiments showed promis-
hypercall across 2048 updates (the Maximuriy results and details have been separatel
size of its batch buffer). Hence each update g P y

hypercall constructs 8MB of address space. published [1].

Table 3 shows context switch times betwee .

different numbers of processes with di1‘feren?5 Conclusion

working set sizes. Xen incurs an extra over-

head between;is and 3:s, as it executes a hy- We have presented the Xen hypervisor which
percall to change the page table base. Howpartitions the resources of a computer between
ever, context switch results for larger work- domains running guest operating systems. Our
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paravirtualizing design places a particular emdizing Linux driver source, suspend/resume and
phasis on protection, performance and resourcleve migration features, much improved con-

management. We have also described and evadole access, etc. Though final implementation,
uated XenLinux, a fully-featured port of the testing, and documentation was not complete
Linux kernel that runs over Xen. at the deadline for this paper, we hope to de-

_ _scribe these in more detail at the symposium
Xen and the 2.4-based XenLinux are SUffI-and in future pUb”C&tiOﬂS.

ciently stable to be useful to a wide audi-
ence. Indeed, some web hosting provider®s always, there are more tasks to do than there
are already selling Xen-based virtual serversare resources to do them. We would like to
Sources, documentation, and a demo ISO cagrow Xen into the premier open source virtual-
be found on our project pagje ization solution, with breadth and features that

_ rival proprietary commercial products.
Although the 2.4-based XenLinux was the ba-

sis of our performance evaluation, a 2.6-basedVe enthusiastically welcome the help and con-
portis well underway. In this port, much care istributions of the Linux community.

been given to minimizing and isolating the nec-

essary changes to the Linux kernel and mea-

suring the changes against benchmark resulté\cknowledgments
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As well as further guest OS ports, Xen it- References
self is being ported to other architectures. An
x86_64 port is well underway, and we are keen
to see Xen ported to RISC-style architectures
(such as PPC) where virtual memory virtual-
ization will be much easier due to the software-
managed TLB.
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