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Abstract

Virtualization provides an abstraction layer
mapping a virtual resource to a real resource.
Such an abstraction allows one machine to be
carved into many virtual machines as well as
allowing a cluster of machines to be viewed
as one. Linux provides a wealth of virtual-
ization offerings. The technologies range in
the problems they solve, the models they are
useful in, and their respective maturity. This
paper surveys some of the current virtualiza-
tion techniques available to Linux users, and
it reviews ways to leverage these technologies.
Virtualization can be used to provide things
such as quality of service resource allocation,
resource isolation for security or sandboxing,
transparent resource redirection for availability
and throughput, and simulation environments
for testing and debugging.

1 Introduction

Virtualization has many manifestations in com-
puter science. At the simplest level it can be
viewed as a layer of abstraction which helps
delegate functionality—typically handling re-
source utilization. This abstraction layer of-
ten helps map avirtual resource to aphysi-
cal or real resource. The virtual resource is
then presented directly to the resource con-
sumer obscuring the existence of the real re-
source. This can be implemented through hard-

ware1 or software [16, 21, 19], may include
any subset of a machine’s resources, and has
a wide variety of applications. Such usages
include machine emulation, hardware consol-
idation, resource isolation, quality of service
resource allocation, and transparent resource
redirection. Applications of these usage mod-
els include virtual hosting, security, high avail-
ability, high throughput, testing, and ease of
administration.

It is interesting to note that differing virtual-
ization models may have inversely correlated
proportions of virtual to physical resources.
For example, the method of carving up a sin-
gle machine into multiple machines—useful
in hardware consolidation or virtual hosting—
looks quite different from a single system im-
age (SSI) [15]—useful in clustering. This pa-
per primarily focuses on providing multiple
virtual instances of a single physical resource,
however, it does cover some examples of a sin-
gle virtual resource mapping to multiple phys-
ical resources.

Modern processors are sufficiently powerful to
provide ample resources to more than one op-
erating environment at a time. Of course, time-
sharing systems have always allowed for con-
current application execution. However, there
are many ways in which these concurrent ap-
plications may effect one another. Because the

1For example, an MMU helps with translation of vir-
tual to physical memory addresses.
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operating system provides access to shared re-
sources such as the CPU, memory, I/O devices,
file system, network, etc., one application’s use
of the system’s resources may effect another’s.
This can have negative effects on both quality
of service and security. Carving a single ma-
chine into a series of independent virtual ma-
chines can eliminate the quality of service and
security issues.

At the same time, modern computing systems,
inclusive of both hardware and software, are
subject to failures and scalability problems.
The application of virtualization can hide these
shortcomings by distributing computing loads
across a cluster of physical systems which may
present a singlevirtual interface to an applica-
tion.

The remainder of this paper is organized as
follows. Section 2 presents a variety of vir-
tualization techniques. Section 3 gives a de-
tailed comparison of some of these techniques.
Section 4 presents conclusions drawn from the
comparisons.

2 Virtualization Techniques

The term “virtual” is one of those horribly
overloaded terms in computing. For the pur-
pose of this paper, we will define virtualization
as a technique for mapping virtual resources to
real resources. These virtual resources are then
used by the resource consumer, fully decou-
pled from any real resources that may or may
not exist. As discussed in Section 1 the virtual
resource may be some or all of a system’s re-
sources.

There are many virtualization techniques avail-
able to Linux users, and these techniques can
be leveraged through a variety of applications.
The techniques reviewed in this paper fall
roughly into two categories:completevirtu-
alization, Section 2.1, which provides all or

nearly all of a system’s resources; andpar-
tial virtualization, Section 2.2, which provides
only a specialized subset of resources. Under-
standing the different techniques helps identify
which technique is the best given a specific set
of requirements.

2.1 Complete Virtualization

Complete virtualization techniques involve
creating a fully functional and isolated virtual
system which can support an OS. This instance
of the OS may have no indication that it is
not being run natively on real hardware, and
it is often referred to as theguest. Host-based
virtual systems run atop an existinghost OS.
Others run atop a thin supervisor which just
helps multiplex resources to the virtual sys-
tems. Typically the host machine is capable
of supporting many concurrent virtual systems,
each with its own guest OS instance. These
virtual systems can be created by simple soft-
ware emulation or by more complicated meth-
ods. These types of complete virtualization
techniques differ in terms of efficiency and per-
formance, portability for either the host or the
guest OS, and functional goals.

The rest of this section is organized at follows.
Section 2.1.1 is a look at pure software proces-
sor emulation techniques. Section 2.1.2 looks
at the virtual OS approach taken by User-mode
Linux. Finally, Section 2.1.3 reviews tech-
niques using virtual machines and virtual ma-
chine monitors.

2.1.1 Processor Emulation

Processor emulation is one technique used to
provide complete virtualization. In this case,
the CPU is emulated entirely in software. Ad-
ditionally, it is typical to find peripheral de-
vices such as keyboard, mouse, VGA, network,
timer chips, etc. supported by the emulator.
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The emulation is done in user-space software,
which makes it a rich environment for debug-
ging system level software running in the em-
ulator. Also, this technique has great advan-
tages for portability at the cost of runtime per-
formance. The emulator may easily run on var-
ious hardware architectures, as all emulation is
done in software. Further, because these are
hardware emulators, there is often little to no
restriction on what OS software can be exe-
cuted. However, the dynamic translation re-
quired to translate hardware instructions from
the emulated processor to the native processor
is pure overhead, and thus can be hundreds of
times slower than native instructions [22].

An exhaustive survey of processor emulators is
beyond the scope of this paper. Here we take
a brief look at a few of the prevalent emulators
often used to host virtual Linux instances:

• QEMU CPU emulator
• Bochs
• PearPC
• Valgrind.

QEMU [21] is a CPU emulator that does dy-
namic instruction translation. It maintains a
translation cache for efficiency. It can be used
as a user-mode emulator which will run Linux
binaries compiled for the CPU that QEMU
is emulating regardless of the host platform.
Also, QEMU can do full system emulation,
which allows one to boot an OS on the QEMU
emulated CPU. While the QEMU user-mode
is available for many architectures, the com-
plete system emulation mode is only available
for x86 and is in testing for PowerPC. The x86
emulator provides all the PC peripheral devices
needed to boot an OS, and can easily run an
unmodified Linux kernel. It also features de-
bugger support which can be quite useful for
debugging a Linux kernel.

Bochs [2] is an IA-322 CPU emulator. It does
dynamic compilation and is often cited as be-
ing rather slow [3]. Similar to QEMU, Bochs
provides full platform emulation sufficient for
running an OS, and it can boot an unmodified
Linux kernel. While Bochs is highly portable,
it targets only the IA-32 processor.

PearPC [17] is a PowerPC CPU emulator. The
generic PearPC CPU emulator can be ported
and is slow. PearPC also provides a Pow-
erPC CPU emulator that is specific to x86
hosts. This version uses dynamic instruc-
tion translation and caching techniques (simi-
lar to QEMU) which improve the speed sub-
stantially.

Valgrind [14] is worthy of mentioning as it is
both a very useful tool and contains an x86-
to-x86 just-in-time (JIT) compiler, thus emu-
lating the x86 CPU. However, this tool has
been historically used like Purify [10] as a
memory checker, and not typically used for
bringing up a virtual instance of Linux on the
emulated CPU3. It handles user-space emula-
tion, but not full system emulation. Valgrind
is developed as an instrumentation framework
around the JIT, so it can been expanded to be a
general purpose “meta-tool for program super-
vision.” [14]

2.1.2 Virtual OS

The virtual OS is rather specific to User-mode
Linux (UML) [6]. In this case, the physical
machine is controlled by a normal Linux ker-
nel. The host kernel provides hardware re-
sources to each UML instance. The UML ker-
nel provides virtual hardware resources to all
the processes within a UML instance. The pro-
cesses on a UML instance can run native code

2IA-32 and x86 are used interchangeably in this pa-
per.

3Efforts have been made to run UML under Valgrind.
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on the processor, avoiding pure emulation, and
UML kernel traps all privileged needs. The
UML kernel is, in fact, just an architectural
port—ARCH=um—of the normal Linux ker-
nel. The architecture specific code in UML is
actually user-space code which uses the host
Linux kernel system call interface. In other
words, it is a port of the Linux kernel to the
Linux kernel. This form of virtualization can
be used for security4, debugging, or virtual
hosting.

2.1.3 Virtual Machine

The virtual machine (VM) has been studied for
well over thirty years [8, 9]. It is a power-
ful abstraction that gives the illusion of run-
ning on dedicated real hardware without such
physical requirements. In its early incarna-
tions it provided a safe and convenient way
to share expensive hardware resources. The
well-known IBM VM/370 [5] simulated the
System/390 hardware, presenting multiple in-
dependent VM’s to the user. The VM/370
was aided by the System/370 hardware design,
a luxury which is often not available to the
modern world of low-priced, powerful com-
modity processors based on the x86 architec-
ture [23]. However, it is precisely this type
of environment which can benefit from con-
solidating multiple hardware servers to a single
amply powered machine.

The typical architecture includes a physical
platform which runs a virtual machine moni-
tor (VMM). This monitor carves up the physi-
cal resources and makes them available to each
virtual machine. In some cases, the VMM
is host-basedrequiring a host OS, host spe-
cific drivers and user-space code to launch a
VM [13, 7]. As with processor emulation in

4To be secure, UML must run inskas mode which
requires a small patch to the host kernel

Section 2.1.1, it is beyond the scope of this pa-
per to give an exhaustive survey of virtual ma-
chine technologies. Here we take a brief look
at a few of the prevalent projects which can be
used to run Linux in a virtual machine:

• Plex86
• VMware5

• Xen

Plex86 [18] is one project that provides an x86
virtual machine. This project provides a hosted
virtual machine monitor, requiring a host OS
to run the plex86 VMM. Plex86 is quite spe-
cific to Linux. The host OS may be Linux (al-
though other host kernels are supported) and
requires a kernel module to help implement the
VMM. It also makes some key assumptions re-
garding usage of the virtual x86 hardware and
patches the guest Linux kernel to conform to
these assumptions. Plex86 does very little to
virtualize hardware I/O. Instead, Plex86 uses a
Hardware Abstraction Layer (HAL) to handle
virtual I/O to the hardware devices. This elim-
inates the need to provide any kind of virtual
devices in the VM, and being host-based elim-
inates the need for the VMM to understand all
the possible hardware on the host. I/O which
is started in the guest OS is passed through the
HAL using fairly simple guest kernel drivers
which issue anint $0xff —which must not
be used for other purposes on the host OS. The
host VMM traps that software interrupt and
handles the request accordingly. As noted by
the project’s author, Plex86 is still in a proto-
type state, and not really ready for meaningful
benchmarking yet.

VMware [7] is worthy of mention, despite the
fact that it is a commercial product. VMware™
Workstation [12] provides an x86 virtual ma-
chine and is in some ways similar to Plex86. It
is a hosted virtual machine monitor, however,

5VMware is a commercial product.
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the goals of VMware Workstation include the
ability to run a complete x86 OS without mak-
ing any modifications. Therefore, it makes no
assumptions about the guest OS. By emulating
very standard hardware such as the PS/2 key-
board and mouse, the AMD PCnet™ network
interface card or the Soundblaster 16 sound
card the VM provides virtual hardware devices
that can be run by standard guest OS drivers.
Another x86 virtual machine from VMware is
the ESX Server [26]—a pure virtual machine
monitor that is not host-based. This method
eliminates some of the overhead involved with
running atop a host OS at the cost of requiring
more hardware support in the VMM itself. As
with Workstation, ESX requires no modifica-
tions to the guest OS. The lower overhead of
ESX makes it a contender for a data center vir-
tual hosting environment, where it could easily
run multiple VM’s on a single physical system.

Xen [16] is an x86 virtual machine monitor that
provides a virtual hardware interface to the vir-
tual machine. Typically, the virtual machine
provides a hardware interface which is identi-
cal to the underlying hardware. However, the
Xen VM hardware abstraction is similar but
not identical to the underlying x86 hardware.
This allows the VMM to overcome some of
the shortcomings of the x86 architecture which
make it difficult to virtualize [23]. A similar
method was used for the Denali [1] isolation
kernel. However, unlike Denali, the Xen VM
supports a notion of a virtual address space.
So the guest OS and applications may share
resources just like a normal OS environment.
In addition, guest kernels running in a Xen
VM preserve the ABI to their applications. So,
while there is a need to port the guest OS kernel
to the Xen VM virtual hardware abstraction,
the porting effort ends there. Further, given the
similarity to the x86 architecture, the effort to
port to Xen results in a very small amount of
new OS code—well below 2% of the OS code
base [16]. This method has proven to be quite

effective when considering the minimal porting
effort coupled with the impressive performance
benchmarks [16].

2.2 Partial Virtualization

Partial virtualization techniques create virtu-
alized resources that are a specialized subset
of a complete system’s resources rather than a
complete virtual machine. These methods are
typically used to present a virtual interface to
clients or applications when limited isolation
or virtualization is sufficient. Partial virtual-
ization can have very different applications de-
pending on the resource which is being virtual-
ized. These techniques vary widely in the prob-
lems they solve, and in some cases can be used
with alongside of complete virtualization. The
remainder of this Section reviews these tech-
niques.

2.2.1 Linux-Vserver

The Linux-Vserver [20] project takes some
of the basic ideas of isolation from a vir-
tual machine and implements them in a sin-
gle host OS. The Linux kernel is patched to al-
low for multiple concurrent execution contexts,
often called Virtual Private Servers6 (VPS).
This method eliminates any overhead associ-
ated with running multiple operating systems,
multiple VM’s and the supervisor VMM. Each
context can have its own file system, its own
network addresses, its own set of Linux Capa-
bilities [25], and its own set of resource limits.
With this level of software isolation, it is pos-
sible to run two concurrent contexts that are
unable to interact with each other directly. It
may still be possible to generate some indirect
QoS degradation fromcrosstalk[24], however
these effects should be largely mitigated by

6This is also the name given to Ensim’s commercial
product [4].
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proper setting of each context’s resource limits.
While this solution does require a reasonably
large kernel patch (a 337K patch against Linux
2.6.6), it is a very thin virtualization layer that
efficiently isolates execution contexts.

2.2.2 Linux Virtual Server

The Linux Virtual Server Project [11] takes
a very different view of server virtualization
from Linux-Vserver, Section 2.2.1. Rather
than creating a virtual operating environment
for each server, it behaves as a network load
balancer. The Linux Virtual Server, also re-
ferred to as IP Virtual Server (IPVS), presents a
single network address for the network service
and distributes client requests transparently to
a hardware cluster of network servers. With
IPVS, the client can be redirected to the next
available resource using a variety of algorithms
such as round robin and least connected. This
is an example of virtualization used to provide
enhanced availability throughput, or scalabil-
ity. Further, this project in contrast with Linux-
Vserver helps illustrate the difficulty in defin-
ing a “Virtual Server.”

2.2.3 File system and Disks

The UNIX file system provides the basic
namespace that applications use to interact
with significant portions of the system. The
root of a file system can be relocated in Linux
using chroot() . This may be a stretch of
the definition of virtualization, but this tech-
nique does allow a single server to give dif-
ferent views into the system global names-
pace. Tools likechroot() or the BSD
jail() system7 allow multiple applications
to have completely private file system names-

7An implementation of BSD jail has been ported to
Linux.

paces, which becomes an effective tool towards
system virtualization. In fact, Linux-Vserver,
Section 2.2.1, makes use ofchroot() as key
to its file system isolation. Linux has native
support for per process private namespaces.
This gives each process its own virtual or log-
ical view of the system’s global namespace, in
a more powerful, flexible and secure manner
thanchroot() . Linux-Vserver is consider-
ing moving to namespaces as a replacement for
chroot() isolation [20]. It would not be sur-
prising to find other virtualization systems us-
ing the same technique for file system isola-
tion.

Another layer of virtualization can be found in
the disk or block device layer of the Linux ker-
nel. The device-mapper allows administrators
to create a virtual block device which is backed
by one or more physical block devices. This
type of virtualization is typically used for ease
of administration.

3 Comparisons

Having reviewed a variety of virtualization
techniques in Section 2, it is now useful to pick
a representative subset and see how they com-
pare with one another. For the sake of com-
parison, this paper will focus on QEMU, User-
mode Linux, Xen, and Linux-Vserver. All four
of these technologies can provide a virtual exe-
cution environment comprehensive enough to
run either a complete OS, or at a minimum
user-space applications.

3.1 QEMU

Pros:

• Portable to numerous architectures.
• Can be used to cross platforms.
• Can run guest OS unmodified.
• Can run on unmodified host OS.
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• Flexible, can run a full system or just iso-
lated user-space programs.

• Very easy to debug system software.
• Security through isolation.

Cons:

• Processor emulation is much slower than
virtualization.

3.2 User-mode Linux

Pros:

• Portable to numerous architectures.
• Can run on unmodified host OS.
• Efficient enough to run multiple instances

on single host in virtual hosting environ-
ment.

• Very easy to debug system software.
• Security through isolation.

Cons:

• Still slower than a virtual machine.
• The guest OS kernel is not the same as a

native one.

3.3 Xen

Pros:

• True virtual machine monitor for best per-
formance.

• The guest OS user-space applications are
binary compatible.

• No host OS, very clean virtual machine
separation.

• Security through isolation.
• Ideal for virtual hosting environment, can

scale up to 100 virtual machines.

Cons:

• The guest OS kernel must be ported to
Xen virtual hardware architecture.

3.4 Linux-Vserver

Pros:

• Highly efficient way to isolate resources.
• Can conserve on disk and memory by

sharing basic resources like shared li-
braries.

• Security through context separation.

Cons:

• Only one kernel instance, so quality of
service may be hard to guarantee.

4 Conclusions

Virtualization is an old yet resurging technol-
ogy. Virtual machine research is alive and well,
and Linux provides a great testbed for new
virtualization technologies. With a wealth of
choices, Linux users are sure to find a virtual-
ization technique that suits their requirements.
From running as a guest OS on a virtual ma-
chine, to providing thin isolation environments
for applications, to single system image clus-
ters, Linux is thriving in this virtual reality.
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