
Repository-based System Management Using
Conary

Michael K. Johnson, Erik W. Troan, Matthew S. Wilson
Specifix, Inc.

ols2004@specifixinc.com

Abstract

There have been few advances in software
packaging systems since the creation of dpkg
and RPM. Conary is being developed to pro-
vide a fresh approach to Open Source Software
management and provisioning, one that applies
new ideas from distributed software version
control tools such as GNU arch and Monotone.
Rather than concentrating on package files,
Conary provides an architecture built around
distributed repositories and change sets, and
includes features designed to make branching
and tracking Linux distributions simple opera-
tions.

The rise of distributions such as Fedora and
Gentoo has moved the development of Linux
distributions from small, tightly-connected
groups to widely-dispersed groups of infor-
mal collaborators. These changes have brought
to light many shortcomings of the dominant
packaging metaphor. By providing version
trees distributed across Internet-based software
repositories, Conary allows these casual group-
ings of contributors to work together much
more effectively than they can today.

1 Packaging Limitations

Traditional package management systems
(such as RPM and dpkg) provided a major
improvement over the previous regime of

installing from source or binary tar archives.
However, they suffer from a few shortcomings,
and some of these shortcomings are felt more
acutely as the Internet and the Open Source
communities have developed and expanded.
The authors’ experience with the shortcomings
of current package management systems
strongly motivated Conary’s design.

1.1 Branching

Traditional package management systems use
simple version numbers to allow the differ-
ent package versions to be sorted into “older”
and “newer” packages, adding concepts such
asepochsto work around version numbers that
do not follow the packaging system’s ideas of
how they are ordered. While the concepts of
“newer” and “older” seem simple, they break
down when multiple streams of development
are maintained simultaneously using the pack-
age model. For example, a single version of a
set of sources can yield different binary pack-
ages for different versions of a Linux distribu-
tion. A simple linear sorting of version num-
bers cannot represent this situation, as neither
of those binary packages is newer than the
other; the packages simply apply to different
contexts.

558 • Linux Symposium 2004 • Volume Two

1.2 Package Repository Limitations

Traditional package management systems pro-
vide no facilities for coordinating work be-
tween independent repositories.

• Repositories have version clashes; the
same version-release string means differ-
ent things in different repositories. Repos-
itories can even have name clashes—the
same name in two different repositories
might not mean the same thing.

• There is no way to identify which distri-
bution, let alone which version of the dis-
tribution, a package is intended and built
for.

For example, is theaalib-1.4.0-5.
1fc2.fr package newer than theaalib-1.
4.0-0-fdr.0.8.rc5.2 package? One is
from the freshrpms repository, and the other is
from the fedora.us repository. Which package
should users apply to their systems? Does it
depend on which version of which distribution
they have? How are the two packages related?
Are they related at all?

This is not really a problem in a disconnected
world. However, when you install packages
from multiple sources, it can be hard to tell how
to update them—or even what it means to up-
date a package. You have to rely on your mem-
ory of where you fetched a package from in
order even to look in the right repository. Once
you look there, it is not necessarily obvious
which packages are intended for the particular
version of the distribution you have installed.
Automated tools for fetching packages from
multiple repositories have increased the num-
ber of independent package repositories over
the past few years, making the confusion more
and more evident.

The automated tools helped exacerbate this
problem (although they did not create it); they

have not been able to solve it because the pack-
ages do not carry enough information to allow
the automated tools to do so.

1.3 Source Disconnected from Binaries

Traditional package management does not
closely associate source code with the pack-
ages created from it. The binary package may
include a hint about a filename to search for to
find the source code that was used to build the
package, but there is no formal link contained
in the packages to the actual code used to build
the packages.

Many repositories carry only the most recent
versions of packages. Therefore, even if you
know which repository you got a package
from, you may not be able to access the source
for the binary packages you have downloaded
because it may have been removed when the
repository was upgraded to a new version.
(Some tools help ameliorate this problem by
offering to download the source code with bi-
naries from repositories that carry the source
code in a related directory, but this is only a
convention and is limited.)

1.4 Namespace Arbitrary and Unmanaged

Traditional package management does not pro-
vide a globally unique mechanism for avoid-
ing package name, version, and release num-
ber collisions; all collision-avoidance is done
by convention and is generally successful only
when the scope is sufficiently limited. Package
dependencies (as opposed to file dependencies)
suffer from this; they are generally valid only
within the closed scope of a single distribution;
they generally have no global validity.

It can also be difficult for users to find the right
packages for their systems. Both SUSE and
Fedora provide RPMs for version 1.2.8 of the
iptables utility; if a user found release 101 from

Linux Symposium 2004 • Volume Two • 559

SUSE and thought it was a good idea to apply it
to Fedora Core 2, they would quite likely break
their systems.

1.5 Build Configuration

Traditional packaging systems have a granu-
lar definition of architecture, not reflecting the
true variety of architectures available. They
try to reduce the possibilities to common cases
(i386 , i486 , i586 , i686 , x86_64 , etc.)
when, in reality, there are many more vari-
ables. But to build packages for many combi-
nations means storing a new version of the en-
tire package for every combination built, and
then requires the ability to differentiate be-
tween the packages and choose the right one.
While some conventions have been loosely es-
tablished in some user communities, most of
the time customization has required individual
users to rebuild from source code, whether they
want to or not.

In addition, most packaging systems build their
source code in an inflexible way; it is not easy
to keep local modifications to the source code
while still tracking changes made to the distri-
bution (Gentoo is the most prominent excep-
tion to this rule).

1.6 Fragile Scripts

Traditional package management systems al-
low the packager to attach arbitrary shell
scripts to packages as metadata. These scripts
are run in response to package actions such as
installation and removal. This approach creates
several problems.

• Bugs in scripts are often catastrophic
and require complicated workarounds in
newer versions of packages. This can ar-
bitrarily limit the ability to revert to old
versions of packages.

• Most of the scripts are boilerplate that is
copied from package to package. This in-
creases the potential for error, both from
faulty transcription (introducing new er-
rors while copying) and from transcrip-
tion of faults (preserving old errors while
copying).

• Triggers (scripts contained in one pack-
age but run in response to an action done
to a different package) introduce levels of
complexity that defy reasonable QA ef-
forts.

• Scripts cannot be customized to handle lo-
cal system needs.

• Scripts embedded in traditional packages
often fail when a package written for one
distribution is installed on another distri-
bution.

2 Introduction to Conary

Conary provides a fresh approach to open
source software management and provision-
ing, one that applies new ideas from distributed
configuration management tools such as GNU
arch and monotone. Rather than concentrating
on separate package files as RPM and dpkg do,
Conary uses networked repositories containing
a structured version hierarchy of all the files
and organized sets of files in a distribution.

This new approach gives us exciting new fea-
tures:

• Conary allows you to maintain and pub-
lish changes, both by allowing you to cre-
ate new branches of development, and by
helping track changes to existing branches
of development while maintaining local
changes.

• Conary intelligently preserves local
changes on installed systems. An update

560 • Linux Symposium 2004 • Volume Two

will not blindly obliterate changes that
you have made on your local system.

• Conary can duplicate local changes made
on one machine, installing those changes
systematically on other machines, thereby
easing provisioning of large sets of similar
or identical systems.

3 Distributed Version Tree

Conary keeps track of versions in a tree struc-
ture, much like a source code control sys-
tem. The difference between Conary and many
source code control systems is that Conary
does not need all the branches of a tree to be
kept in a single place. For example, if Specifix
maintains a kernel atspecifixinc.com ,
and you, working forexample.com , want
to maintain a branch from that kernel, your
branch could be stored on your machines, with
the root of that branch connected to the tree
stored on Specifix’s machines.

 c
on

ar
y.

sp
ec

ifi
xi

nc
.c

om
@

sp
x:

re
le

as
e-

1

example.com@local:branch

2.9.0-1-1

2.9.0-1-2

2.9.0-1-3

 2.9.0-1-3

example.com

specifixinc.com

3.1 Repository

Conary stores everything in adistributed
repository, instead of in package files. The
repository is a network-accessible database
that contains files for multiple packages, and

multiple versions of these packages, on mul-
tiple development branches. Nothing is ever
removed from the repository once it has been
added. In simple terms, Conary is like a source
control system married to a package system.

3.2 Files

When Conary stores a file in the repository, it
tracks it by a unique file identifier rather than
by name. Among other things, this allows
Conary to track changes to file names—the file
name is merely one piece of metadata associ-
ated with the file, just like the ownership, per-
mission, timestamp, and contents. If you think
of the repository as a filesystem, the file identi-
fier is like an inode number.

3.3 Troves, Packages, and Components

When you build software with Conary, it col-
lects the files intocomponents, and then col-
lects the components into one or morepack-
ages. Components and packages are both
called troves. A trove is (generically) a col-
lection of files or other troves.

A package does not directly contain files; a
package references components, and the com-
ponents reference files. Every component’s
name is constructed from the name of its con-
tainer package, a: character, and a suffix
describing the component. Conary has sev-
eral standard component suffixes::source ,
:runtime , :devel , :docs , and so forth.
Conary automatically assigns files to compo-
nents during the build process, but you can
overrule its assignments and create arbitrary
component suffixes as appropriate.

Linux Symposium 2004 • Volume Two • 561

package gzip

component gzip:runtime component gzip:doc

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

One component, with the suffix:source ,
holds all source files (archives, patches, and
build instructions); the other components hold
files to be installed. The:source compo-
nent is not included in any package, since
several different packages can be built from
the same source component. For example,
the mozilla:source component builds
the packagesmozilla , mozilla-mail ,
mozilla-chat , and so forth. The version
structure in Conary’s repositories always tells
exactly which source component was used to
build any other component.

3.4 Labels and Versions

Conary uses strongly descriptive strings to
compose the version and branch structure.
The amount of description makes them quite
long, so Conary hides as much of the
string as possible for normal use. Conary
version strings act somewhat like domain
names, in that for normal use you need
only a short portion. For example, the ver-
sion/conary.specifixinc.com@spx:
trunk/2.2.3-4-2 can usually be referred
to and displayed as2.2.3-4-2 . The en-
tire version string uniquely identifies both the
source of a package and its intended context.
These longer names are globally unique, pre-
venting any confusion.

Let’s dissect the version string
/conary.specifixinc.com@spx:

trunk/2.2.3-4-2 . The first part,
conary.specifixinc.com@spx:trunk ,
is a label. It holds three pieces of information:

• The repository host name:
conary.specifixinc.com

• Namespace: spx A high-level context
specifier that allows branch names to be
reused by independent groups. Speci-
fix will maintain a registry of names-
pace identifiers to prevent conflicts. Use
local for branches that will never need
to be shared with other organizations.

• Branch name: trunk This is the only
portion of the label that is essentially arbi-
trary; and will be defined by the owner of
the namespace it is part of.

The next part,2.2.3-4-2 , contains the more
traditional version information.

• Upstream version string: 2.2.3 This
is the version number or string assigned
by the upstream maintainer: Conary never
interprets this string in any way; the only
check it does is whether it is the same or
different. It is there primarily to present
useful information to the user. Conary
never tries to determine whether one up-
stream version is “newer” or “older” than
another. It makes these decisions based on
the ordering specified by the repository’s
version tree.

• Conary revision: 4-2 This pair is com-
posed from:

– Source build serial number: 4 In-
cremented each time a version of the
sources with the same upstream ver-
sion string is checked in. It is similar
to the release number used by tradi-
tional packaging systems.

– Binary build serial number: 2
How many times this particular
source package has been built. This
number is not provided for source

562 • Linux Symposium 2004 • Volume Two

packages, because it is meaningless
in that context.

Conary describes branch structure by append-
ing version strings, separated by a/ charac-
ter. The first step to make a release is to cre-
ate a branch that specifies what is in the re-
lease. Let’s create therelease-1 branch off
the trunk: /conary.specifixinc.com@
spx:trunk/2.2.3-4/release-1 (note
that because we are branching the source, there
is no binary build number).

In this branch,release-1 is a label. The
label inherits the repository and namespace of
the node it branches from; in this case, the
full label is conary.specifixinc.com@
spx:release-1

The first change that is committed to
this branch can be specified in some-
what shortened form as /conary.
specifixinc.com@spx:trunk/
2.2.3-4/release-1/5 Because the
upstream version is the same as the node
from which the branch descends, the upstream
version may be omitted, and only the Conary
version provided. Users will normally see this
version expressed as2.2.3-5 , so this string,
still long even when it has been shortened by
elision, will not degrade the user experience.

/conary.specifixinc.com@spx:trunk

2.2.2-2

release-12.2.3-4

2.2.3-3

2.2.2-1

/conary.specifixinc.com@spx:trunk/2.2.3-4/release-1/5
(normally seen as 2.2.3-5)

2.2.3-5

release-1/2.3.4-1

release-1/2.3.4-2
2.2.4-1

Labels also have an unusual property: a sin-
gle label can referencemultiple branches. To
demonstrate why this is useful, let’s look at
the glib library. Like many other libraries, glib
is designed to allow more than one version to
be installed on the system at once. Older pro-
grams require glib 1.2; newer programs require
glib 2. All new releases of glib 1.2 are compat-
ible with programs written and compiled for
older versions of glib 1.2; all new releases of
glib 2 are compatible with programs written
and compiled for older versions of glib 2. They
are not, however, compatible with each other;
a program compiled for glib 1.2 will certainly
not run with glib 2. Therefore, a complete sys-
tem requires that glib 1.2 and glib 2 both be
installed.

Packaging systems often solve this problem by
naming the packages differently, putting part of
the version number into the name of the pack-
age (i.e.glib andglib2). This works, but it
dilutes the revision history that the repository
model provides.

By contrast, Conary solves this problem by
allowing labels to apply to more than one
branch. To see how, we will start by “go-
ing back in time” and looking at the version
string for glib on the trunk with only glib
1.2 packaged: /conary.specifixinc.
com@spx:trunk/1.2.10-19-3

Now, we want to add glib 2 to the repository.
We want to have a branch for continuing main-
tenance of maintain glib 1.2, though, so let’s
create that first:/conary.specifixinc.
com@spx:trunk/1.2.10-19-3/
glib1.2

Now, we upgrade the trunk to glib 2:
/conary.specifixinc.com@spx:
trunk/2.2.3-1-1

Having maintained both glib 1.2 and glib 2
for a while, we decide that we want to make

Linux Symposium 2004 • Volume Two • 563

our first release. We will label every package
in the release, including two versions of glib:
/conary.specifixinc.com@spx:
trunk/2.2.3-4-2/release-1/4-2
and /conary.specifixinc.com@spx:
trunk/1.2.10-19-3/glib1.2/23-2/
release-1/23-2

The label conary.specifixinc.com@
spx:release-1 now specifiesboth ver-
sions of glib. Therefore, if you in-
stallglib conary.specifixinc.com@
spx:release-1 , you will get both versions
of glib.

Normally, the label to install will be set by
installation scripts, and Conary will automat-
ically install both versions of glib. Of course,
updates will be applied only when there is a
change; an update to glib 1.2 does not affect
glib 2. In other words, it “just works” without
you having to worry about it.

release-1
2.2.3-4-2

/conary.specifixinc.com@spx:trunk

1.2.10-19-3
glib1.2

1.2.10-23-2

release-1

3.5 Shadows

The most powerful way to manage local
changes is (of course) to build changes from
source code. Conary makes this possible in
two ways. One way is a simple branch, just

like you would do with any source code con-
trol software. Unfortunately, this is not always
the best solution.

Imagine a stock 2.6 Linux kernel packaged in
Conary, being maintained on the/linux26
branch (we have omitted the repository host
name and namespace identifier from the label
for brevity) of the kernel:source pack-
age, currently at version2.6.5-1 (note that
because it is a source package, there is no
binary build number). You have one patch
that you want to add relative to that version,
and then you wish to track that maintenance
branch, keeping your own change up to date
with the maintenance branch, and building new
versions as you go.

If you create a new branch from/linux26/
2.6.5-1 , say /linux26/2.6.5-1/
mybranch , all the work you do is relative
to that one version. Creating a new branch
does not help you, because the new branch
goes off in its own direction from one point
in development, rather than tracking changes.
Therefore, when the new version/linux26/
2.6.6-1 is committed to the repository, the
only way to represent that version in your
branch would be to manually compare the
changes and apply them all, bring your patch
up to date, and commit your changes to your
branch. This is time-consuming, and the
branch structure does not represent what is
really happening in that case.

Conary introduces a new concept: ashadow.
A shadow acts primarily as a repository for lo-
cal changes to a tree. A shadow tracks changes
relative to a particular upstream version string
and source build serial number. Therefore,
you cannot change the upstream version of
the package—though you can apply any patch
you like. (In order to change the upstream
version of the package, you would need to
create a branch rather than a shadow.) The

564 • Linux Symposium 2004 • Volume Two

name of a shadow is the name of the branch
with // shadowname appended; for exam-
ple, /branch//shadow . The whole branch
is shadowed, so if/branch/1.2.3-3 and
/branch//shadow exist, then so does
/branch//shadow/1.2.3-3 , regardless
of whether /branch/1.2.3-3 existed at
the time the shadow was created. Similarly, if
/branch/1.2.3-3/rel1/1.2.3-3 ex-
ists, then so does/branch//shadow/
1.2.3-3/rel1/1.2.3-3 .

Both /branch/1.2.3-3 and/branch//
shadow/1.2.3-3 refer to exactly the same
contents. Changes are represented with a
dotted source build serial number, so the
first change to /branch/1.2.3-3 that
you check in on the/branch//shadow
shadow will be called/branch//shadow/
1.2.3-3.1 .

So, to track changes to the/linux26 branch
of thekernel:source package, you create
the mypatch shadow of the /linux26
branch, /linux26//mypatch , and there-
fore /linux26//mypatch/2.6.5-1
now exists. Commit a patch to the shadow,
and /linux26//mypatch/2.6.5-1.1
exists. Later, when thelinux26 branch is
updated to version2.6.6-1 , you merely
need to update your shadow, modify the
patch to apply to the new kernel source
code if necessary, and commit the your
new changes to the shadow, where they
will be named /linux26//mypatch/
2.6.6-1.1 . You can use the shadow branch
name /linux26//mypatch just like you
can use the branch name/linux26 ; you can
install that branch, andconary update
will use the same rules to find the latest version
on the shadow that it uses to find the latest
version on the branch.

3.6 Flavors

Conary has a unified approach to handling mul-
tiple architectures and modified configurations.
It has a very fine-grained view of architecture
and configuration. Architectures are viewed
as an instruction set, including settings for op-
tional capabilities. Configuration is set with
system-wide flags. Each separate architec-
ture/configuration combination built is called a
flavor.

Using flavors, the same source package can
be built multiple times with different architec-
ture and configuration settings. For example,
it could be built once forx86 with i686 and
SSE2 enabled, and once forx86 with i686
enabled butSSE2 disabled. Each of those ar-
chitecture builds could be done twice, once
with PAMenabled, and once withPAMdis-
abled. All these versions, built from exactly the
same sources, are stored together in the repos-
itory.

At install time, Conary picks the most appro-
priate flavor of a component to install for the
local machine and configuration (unless you
override Conary’s choice, of course). Further-
more, if two flavors of a component do not
have overlapping files, and both are compati-
ble with the local machine and configuration,
both can be installed. For example, library
files for the i386 family are kept in/lib
and/usr/lib , but forx86_64 they are kept
in /lib64 and/usr/lib64 , so there is no
reason that they should not both be installed,
and since the AMD64 platform can run both, it
is convenient to have them both installed.

4 Changesets

Just as source code control systems use patch
files to describe the differences between two
versions of a file, Conary useschangesetsto

Linux Symposium 2004 • Volume Two • 565

describe the differences between versions of
troves and files. These changesets include in-
formation on how files have changed, as well
as how the troves that reference those files have
changed.

These changesets are often transient objects;
they are created as part of an operation and
disappear when that operation has completed.
They can also be stored in files, however,
which allows them to be distributed like the
packages produced by a classical package
management system.

Applying changesets rather than installing new
versions of packages allows Conary to update
only the parts of a package that have changed,
rather than blindly reinstalling every file in the
package.

Besides saving space and bandwidth, repre-
senting updates as changes has another advan-
tage: it allows merging. Conary intelligently
merges changes not only to file contents, but
also to file metadata such as permissions.

This capability is very useful if you wish to
maintain a branch or shadow of a package—for
example, keeping current with vendor mainte-
nance of a package, while adding a couple of
patches to meet local needs.

Conary also keeps track of local changes in
essentially the same way, preserving them.
When, for example, you add a few lines to a
configuration file on an installed system, and
then a new version of a package is released
with changes to that configuration file, Conary
can merge the two unless there is a direct con-
flict (unusual but possible). If you change a
file’s permission bits, those changes will be
preserved across upgrades.

Conary supports two types of change sets:

• The differences between two versions in a

repository

• The complete contents of a version in a
repository (logically, this is the difference
between nothing at all and that version)

In the first case, where Conary is calculating
the differences between two different versions,
the result is arelative changeset. In the sec-
ond case, where Conary is encoding the entire
content of the version, the result is anabsolute
changeset. (If you use an absolute changeset
to upgrade to the version provided in the abso-
lute changeset, Conary internally converts the
changeset to a relative changeset, thereby pre-
serving your local changes.) Absolute change-
sets are convenient ways of distributing ver-
sions of troves and files to users who have var-
ious versions of those items already installed
on their systems. In practice, they can be dis-
tributed just like package files created by tradi-
tional package management systems.

Conary can do two things with one of these
changesets. It can update a system, either di-
rectly from a changeset file, or by asking the
repository to provide a changeset and then ap-
plying that changeset. It can also store existing
changesets in a repository. This capability will
be used in the future to provide repository mir-
roring, and it can also be used to move changes
from one repository to a branch in a different
repository.

4.1 Representing Local Changes

Conary can also generate alocal changeset
that is a relative changeset showing the differ-
ence between the repository and the local sys-
tem for the version of a trove that is installed.
You can distribute a local changeset to another
machine in two ways:

• You can distribute it to other machines

566 • Linux Symposium 2004 • Volume Two

with the same version of the trove in ques-
tion installed.

• You can commit the local changeset to a
branch of a repository, and then update to
that branch on target machines.

There is an important distinction between the
two cases. In the first case, the machine that ap-
plies the changeset will act as if those changes
had been made by the system’s administrator;
since those changes are not in a repository they
are not versioned. In the second case, however,
the machine gets those changes by updating the
trove to the branch that contains those changes,
and it can continue to track changes from that
branch.

For example, assume that you have machines
with troves from branches labeledconary.
specifixinc.com@spx:rel1 installed,
and you have some local changes that you want
to distribute to a group of machines. Let’s
say that after updating to version2.9.0-1-2
of tmpwatch , you want to change the per-
missions of the /usr/sbin/tmpwatch binary
because you are paranoid:chmod 100
/usr/sbin/tmpwatch Now, you record
that change in a local changeset; that changeset
is relative to2.9.0-1-2 , and describes your
local changes.

You then commit your local changeset to
the conary.example.com@local:
paranoid branch in your local repository.
Now, on all the machines in the group, you can
update tmpwatch conary.example.
com@local:paranoid . Each machine will
now look in the conary.example.com
repository on theparanoid branch if you
simply run conary update tmpwatch .
This means that if you make further changes
to the tmpwatch package, you can commit
those changes to theparanoid branch on
the conary.example.com repository, and
each of the machines will update to the latest

version you have committed to that branch.
Every time a new version oftmpwatch is
released on theconary.specifixinc.
com@spx:rel1 branch, you will have
to apply the changeset to theconary.
example.com@local:paranoid branch
before the machines with yourparanoid
branch installed will update their copies of
tmpwatch .

 c
on

ar
y.

sp
ec

ifi
xi

nc
.c

om
@

sp
x:

re
le

as
e-

1

 example.com@local:paranoid

2.9.0-1-1

2.9.0-1-2

2.9.0-1-3

2.9.0-1-3

If rather than maintaining a branch, you merely
want to distribute some changes that are lo-
cal to the group of machines, you do not
want to commit the local changeset to the
repository. Instead, you want to copy the
changeset file (let’s call it paranoid.ccs) to each
machine and runconary localcommit
paranoid.ccs on each machine. Now, your
change to permissions applies to each sys-
tem, butconary update tmpwatch will
still look at conary.specifixinc.com@
spx:rel1 and Conary will apply updates to
tmpwatch from conary.specifixinc.
com@spx:rel1 without additional work
required on your part, and it will pre-
serve the change to the permissions of the
/usr/sbin/tmpwatch binary on each machine.

Both ways of managing local change are use-
ful. Committing local changesets to a repos-
itory is best for systems with entirely cen-
tralized management policy, where all sys-

Linux Symposium 2004 • Volume Two • 567

tem changes must be cleared by some cen-
tral agency, whereas distributing local change-
sets is best when individual systems are ex-
pected to autonomously update themselves
asynchronously.

4.2 Merging

When Conary updates a system, it does not
blindly obliterate all changes that have been
made on the local system. Instead, it does
a three-way merge between the currently in-
stalled version of a a file as originally installed,
that file on the local system, and the version of
the file being installed. If an attribute of the
file was not changed on the local system, that
attribute’s value is set from the new version
of the package. Similarly, if the attribute did
not change between versions of the package,
the attribute from the local system is preserved.
The only time conflicts occur is if both the new
value and the local value of the attribute have
changed; in that case a warning is given and the
administrator needs to resolve the conflict.

For configuration files, Conary creates and ap-
plies context diffs. This preserves changes us-
ing the the widely-understood diff/patch pro-
cess.

4.3 Efficiency

Conary is more efficient than traditional pack-
aging systems in several ways.

• By utilizing relative changesets whenever
possible, Conary uses less bandwidth.

• By modifying only changed files on up-
dates, Conary uses less time to do updates,
particularly for large packages with small
changes.

• By using a versioned repository, Conary
saves space because unchanged files are

stored once for the whole repository, in-
stead of once in each version of each
package.

• By enabling distributed repositories,
Conary

– saves the time it takes to maintain
a modified copy of an entire repos-
itory, and

– saves the space it takes to store com-
plete copies of an entire repository.

4.4 Rollbacks

Because Conary updates systems by applying
changesets, and because it is able to follow
changes on the local system intrinsically, it eas-
ily supportsrollbacks. If requested, Conary
can store an inverse changeset that represents
eachtransaction (a set of trove updates that
maintains system consistency, including any
dependencies) that it commits to the local sys-
tem. If the update creates or causes problems,
the administrator can ask Conary to install the
changeset that represents the rollback.

Because rollbacks can affect each other, they
are strictly stacked; you can (in effect) go back-
ward through time, but you cannot browse.
You have to apply the most recent rollback be-
fore you apply the next most recent rollback,
and so forth.

This might seem like a great inconvenience,
but it is not. Because Conary maintains
local changes vigorously, including merging
changes to configuration files, and because all
the old versions you might have installed be-
fore are still in the repositories they came from,
you can “update” to older versions of troves
and get practically the same effect as rolling
back your upgrade from that older version.

Applying rollbacks can be more convenient
when you know that you want to roll back the

568 • Linux Symposium 2004 • Volume Two

previous few transactions and restore the sys-
tem to the state it was in, say, two hours ago.
However, if you want to be selective, “upgrad-
ing” to an older version is actually more conve-
nient than it would be to try to select a rollback
transaction that contains the change you have
in mind.

5 Other Concepts

5.1 Dynamic Tags

In place of the fragile script metadata provided
by traditional package management systems,
Conary introduces a concept calleddynamic
tags. Files managed by Conary can have sets of
arbitrary text tags that describe them. Some of
these tags are defined by Conary (for example,
shlib is reserved to describe shared library
files that cause Conary to update /etc/ld.so.conf
and runldconfig), and others can be more
arbitrary. (In order to allow tag semantics to
be shared between repositories, it is likely that
Specifix will host a global tag registry in the
future.)

By convention, a tag is a noun or noun phrase
describing the file; it is not a description of
what to do to the file. That is,file is-a tag.
For example, a shared library is tagged as
shlib instead of asldconfig . Similarly,
an info file is tagged asinfo-file , not as
install-info .

Conary can be explicitly directed to apply a tag
to a file, and it can also automatically apply
tags to files based on atag description file.
A tag description file provides the name of the
tag, a set of regular expressions that determine
which files the tag applies to, the path of the
tag handler program that Conary runs to pro-
cess changes involving tagged files, and a list
of actions that the handler cares about. Conary
then calls the handler at appropriate times to

handle the changes involving the tagged files.

Actions include changes involving either the
tagged files or the tag handlers. Conary will
pass in lists of affected files whenever it makes
sense, and will coalesce actions rather than
running all possible actions once for every file
or component installed.

The current list of possible actions is:

• Tagged files have been installed or up-
dated; Conary provides a list of all in-
stalled or updated tagged files.

• Tagged files are going to be removed;
Conary provides a list of all tagged files
to be removed.

• Tagged files have been removed; Conary
provides a list of filenames that were re-
moved.

• The tag handler itself has been installed
or updated; Conary provides a list of all
tagged files already installed on the sys-
tem.

• The tag handler itself will be removed;
Conary provides a list of all the tagged
files already installed on the system to fa-
cilitate cleanup.

Because the tag description files list the ac-
tions they handle, the tag handler API can be
expanded easily while maintaining backward
compatibility with old handlers.

Avoiding duplication between packages by
writing scripts once instead of many times
avoids bugs in scripts. Practically speaking,
it avoids whole classes of common bugs that
cause package upgrades to break installed soft-
ware, and even more importantly from a provi-
sioning standpoint, bugs that would cause roll-
backs to fail. It makes it much easier to fix

Linux Symposium 2004 • Volume Two • 569

bugs when they do occur, without any need
for “trigger” scripts that are often needed to
work around script bugs in traditional package
management. It also allows components to be
installed across distributions—as long as they
agree on the semantics for the tags, the actions
taken for any particular tag will be correct for
the distribution on which the package is being
installed.

Calling tag handlers when they have been up-
dated makes recovery from bugs in older ver-
sions of tag handlers relatively benign; Conary
needs to install only a single new tag handler
with the capability to recover from the effects
of the bug. Older versions of packages with
tagged files will use the new, fixed tag han-
dler, which allows you to revert those pack-
ages to older versions as desired, without fear
of re-introducing bugs created by old versions
of scripts.

Furthermore, storing the scripts as files in the
filesystem instead of as metadata in a package
database means:

• they can be modified to suit local system
peculiarities, and those modifications will
be tracked just like other configuration file
modifications;

• they are easier for system administrators
to inspect; and

• they are more readily available for system
administrators to use for custom tasks.

5.2 Groups and Filesets

There are two other kinds of troves that we did
not discuss when we introduced the trove con-
cept: groups and filesets.

Filesetsare troves that contain only files, but
those files come from components in the repos-
itory. They allow custom re-arrangements

of any set of files in the repository. (They
have no analog at all in the classical package
model.) Each fileset’s name is prefixed with
fileset- , and that prefix is reserved for file-
sets only.

Filesets are useful primarily for creating small
embedded systems. With traditional packag-
ing systems, you are essentially limited to in-
stalling a system, then creating an archive con-
taining only the files you want; this limits
the options for upgrading the system. With
Conary, you can instead create a fileset that ref-
erences the files, and you can update that fileset
whenever the components on which it is based
are updated, and use Conary to update even
very thin embedded images.

The desire to be able to create working filesets
was a large motive for using file-specific meta-
data instead of trove-specific metadata wher-
ever possible. For example, files in filesets
maintain their tags, which means that exactly
the right actions will be taken for the fileset.
If Conary had package scripts like traditional
package managers, it would be impossible to
automatically determine which parts (if any) of
the script should be included in the fileset. (As
already discussed, scripts have other problems
that tags solve; this is just another one of the
architectural reasons that tags are preferable to
scripts.)

Groups are troves that contain any other kind
of trove, and the troves are found in the repos-
itory. (The task lists used by apt are similar
to groups, as are the components used by ana-
conda, the Red Hat installation program.) Each
group’s name is prefixed withgroup- , and
that prefix is reserved for groups only.

Groups are useful for any situation in which
you want to create a group of components
that should be versioned and managed together.
Groups are versioned like any trove, including
packages and components. Also, a group ref-

570 • Linux Symposium 2004 • Volume Two

erences only specific versions of troves. There-
fore, if you install a precise version of a group,
you know exactly which versions of the in-
cluded components are installed; if you update
a group, you know exactly which versions of
the included components have been updated.

If you have a group installed and you then
erase a component of the group without chang-
ing the group itself, the local changeset for the
group will show the removal of that component
from the group. This makes groups a power-
ful mechanism administrators can use to easily
browse the state of installed systems.

The relationship between all four kinds of
troves is illustrated as follows:

built from
Troves

source repository

co
nt

ai
n files component fileset

troves package* group

*packages contain only components

Groups and filesets are built from:source
components just like packages. The contents
of a group or fileset is specified as plain text in
a source file; then the group or fileset is built
just like a package.

This means that groups and filesets can be
branched and shadowed just like packages can.
So if you have a local branch with only one
modified package on it, and then you want
to create a branch of the whole distribution
containing your package, you can branch the
group that represents the whole distribution,
changing only one line to point to your locally
changed file. You do not have to have a full
local branch of any of the other packages or
components.

Furthermore, when the distribution from which

you have branched is updated, your modifica-
tion to the group can easily follow the updates,
so you can keep your distribution in sync with-
out having to copy all the packages and com-
ponents.

6 Further Work

An alpha release of Conary is now avail-
able from http://www.specifixinc.
com, along with a Linux distribution built with
Conary. While these releases allow users and
developers to begin making use of Conary’s
features, there is significant work remaining.

The shadow design discussed in this paper has
not yet been implemented.

Conary does not yet resolve dependencies. Al-
though some dependency information is al-
ready generated and tracked on a per-file ba-
sis, no effort is made to ensure that those de-
pendencies are resolved when components are
installed.

As Conary and Conary-based distributions be-
come more popular, there will be a need for
both repository caches and repository mirrors.
While some preliminary design work has been
done for each of these, no implementation
work has begun.

The implementation of flavors is preliminary,
especially in regards to configuration settings.
While limited testing has been done with troves
built for varying architectures and Specifix’s
build scripts implement some configuration
settings, Conary does not yet properly select
the flavor to install on a system.

Conclusion

Conary was designed to address many of
the limitations of the traditional packaging

Linux Symposium 2004 • Volume Two • 571

metaphor. The enormous growth in the Linux
developer base over the past decade has shown
that packaging systems do not scale well to
multiple repositories with conflicting content,
and can make it difficult for large numbers of
developers to coordinate package releases.

Conary provides flexible branching, which en-
ables it to find both binaries and sources any-
where on the Internet, and allows the local ad-
ministrator to preserve local changes and cre-
ate local development branches of those pack-
ages. By providing a name space separator as
part of the branch names, Conary allows many
groups to use the same tool while building a
single distributed version tree, without any for-
mal collaboration between the groups.

Innovations such as shadows and versioning
groups of packages and files (allowing those
container objects themselves to be branched
and shadowed) significantly reduce the diffi-
culty of maintaining customized Linux distri-
butions. Instead of being forced to accept com-
plete responsibility for all aspects of the dis-
tribution, developers can now concentrate on
maintaining just their changes. Those changes
are represented in a concise way that can track
upstream changes to the entire distribution.

Conary is designed to enable a loosely-
coupled, Internet-based collaborative approach
to building Linux distributions. By making
branching and shadowing inexpensive opera-
tions that can change almost any aspect of a
Linux system, we hope members of the Linux
community will be able to build the Linux dis-
tribution they want, rather than use one that is
merely close enough.

572 • Linux Symposium 2004 • Volume Two

Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

