
Increasing the Appeal of Open Source Projects
Experiences from the LSB Project

Mats Wichmann
Intel Corporation / LSB Project
mats.d.wichmann@intel.com

Abstract

It is often said that open source projects will
"win" or "lose" based purely on technical
merit. Experiences from the LSB Project’s
interface standardization efforts indicate there
are some concrete steps an open-source project
producing interface libraries for general use
can take to make the project more usable for
a wider audience, leading to greater chance
of widespread acceptance. Such projects have
a reasonable chance of becoming standards,
whether de-facto or by inclusion in formal
specifications such as the LSB.

The evidence is that projects ready for large-
scale use typically meet most of a set of criteria
that include: demand; stable, well-documented
interfaces; comprehensive interface and regres-
sion tests; an easily-deployed (portable) work-
ing implementation; and an appropriate choice
of license. With the exception of demand, most
of these criteria can be consciously worked to-
wards. The paper will present some case stud-
ies of libraries that have successfully been in-
corporated into the LSB specification. It will
also discuss some tools the LSB has developed
that may help in describing public interfaces
and developing tests, and discuss some ways
in which portability of the code base can be im-
proved.

1 Introduction

The Free Software and Open Source Software
models present some unique concepts which
seem to work best when the software is widely
used and there’s an active feedback loop to de-
bug and improve the software. In order for this
to be possible, it’s important that some core
requirements that apply to all software are at-
tended to in this space as well: consistency and
compatibility, documentation, and ease of use.
If the software is to hard to deploy or make
use of, the user base will remain small and the
synergy which is so important to these projects
will be harder to achieve.

While ease of use is a concept that is hard to
measure for the developer as it means different
things to different users, for an individual user
it’s pretty easy to tell when an application or
library is not easy enough to use—it’s painful
to install, get running, or program to, making
it hard to use it to solve the problem at hand.
Where money did not change hands to obtain
the software, the likely response will be to give
up and look for a different solution, while what
we as developers would rather have is feed-
back about the problems and suggestions for
improvement. Often lacking a “marketing de-
partment” to drive requirements (whatever one
may think of such a situation), this feedback is
crucial to the open source process.

The Linux Standard Base (LSB) project

548 • Linux Symposium 2004 • Volume Two

(http://www.linuxbase.org) aims to
drive the creation of a consistent runtime en-
vironment for applications. Drawing from the
experiences of the LSB project, we will ex-
amine a pair of issues, one on either side of
the “runtime environment” boundary: building
better libraries, and making applications (and
libraries) easier to deploy.

2 Building Better Libraries

Libraries are an effective mechanism to pro-
vide for code reuse.

In Linux, libraries are normally provided as
shared objects, although they may also be pro-
vided as static archives. Some libraries are
foundational in that they are expected to be
used by a broad variety of applications, such
as the GNU C library, which is used by all
programs; or the GNOME glib, which is used
(directly or indirectly) by all graphical applica-
tions written to GNOME. Other libraries may
export a programming interface specific to one
application family such as libMagick for Im-
ageMagick.

If a project produces libraries which are to be
usable by others there are some particular is-
sues that apply.

2.1 Stable Interfaces

A library provides certain programming inter-
faces which are available to programs to use
(external), and probably also contains inter-
faces which are not intended to be used out-
side the library (internal). The set of external
interfaces provides the Application Program-
ming Interface (API). As programmers become
familiar with the library, they will want the API
to provide some stability so that they don’t al-
ways have to recode their programs when the
library is revised.

When a program is linked with a shared library,
it will contain references to library interfaces
which are resolved at runtime by the dynamic
linker. The runtime instantiation of the library
interface set provides the Application Binary
Interface (ABI), and programmers will want
the ABI to remain stable as well, or their pro-
grams may work incorrectly run against a dif-
ferent version of the shared library then it was
originally linked against.

The dilemma for the library developer is that
it’s hard to get it (completely) right the first
time. Bugs will be found, often the design will
be found to be limiting or even incorrect, or the
library may simply need to evolve to meet new
needs. It would be terribly limiting to never be
able to evolve the library just because users and
developers demand stability. Fortunately, there
are some techniques that can be used to make
life a little easier.

A useful step is to identify the intended API
and make sure that is all the library exports to
programmers. If the API is designed as an ab-
straction layer distinct from the internal imple-
mentation, considerable freedom will be avail-
able to modify the library “under the covers”
while still keeping the ABI stable. It’s worth
taking the time to design the API in this man-
ner. It is also very useful if programmers can-
not reach the internal routines which may need
to change—experience has shown that if an in-
terface can be found, someone will find a way
to use it. A linker script can be used to export
the desired symbols, hiding the others:

{
global:

lsbfoo;
local:

foo*;
};

A linker script is used when build-

Linux Symposium 2004 • Volume Two • 549

ing a shared library by including the
-version-script= scriptname direc-
tive in the gcc link line.

It’s quite possible, however, that some interface
in the ABI will need to change in an incompat-
ible way. To provide for this, the symbols mak-
ing up the ABI can be assigned versions, leav-
ing the possibility of changing the version. The
following example shows the use of a linker
script which exports two routines and assigns
them versionLSBLIB_1.0 :

LSBLIB_1.0 {
global:

lsbfoo;
lsbbar;

local:
foo*;

};

If the symbol version is changed, old binaries
won’t run against the new library as the sym-
bol version in those binaries will not be found;
while binaries compiled against the new library
will pick up the new symbol version. It is
also possible—and may be desirable—to pro-
vide both the old and the new version of the
interface in the newer library, this way old bi-
naries can continue to run, while new binaries
will be linked against the newer version of the
interface by default, but could also be explicitly
linked against the old version. The following
example shows creating a new symbol version
set which is inclusive of the previous one, only
the lsbfoo interface will get the version tag
LSBLIB_1.1 .

LSBLIB_1.0 {
lsbfoo;
lsbbar;

};
LSBLIB_1.1 {

lsbfoo;

} LSBLIB_1.0;

To make this work, the GNU linker is
needed, and some special directives
(__asm__(".symver realname,
alias, version"); are needed in the
code, so that the old routine can be bound to
the old version and the new code to the new
version. The GNU linker documentation has
more details on this.

If a lot of interfaces need to change incompat-
ibly, it is better to change the major version of
the library. The library version will be bound
into binaries compiled against it. With major
changes, multiple versions of the library can be
provided, giving compatibility for old and new
code.

In the LSB project, symbol versioning is used
for those libraries which are already normally
built that way, essentially the GNU libc set.
Adding symbol versioning is a nice way to
avoid breaking compatibility if a small num-
ber of interfaces have to be changed in incom-
patible ways. The LSB specification calls out
specific library versions which must be pro-
vided by a conforming runtime, and where
the symbols are versioned, the specific symbol
versions. As conforming runtimes may have
evolved the interfaces in the manner described,
a trick is used for linking LSB conforming ap-
plications: a set of stub libraries has been con-
structed which contains only the LSB inter-
faces, with the versions required by the spec,
and these are used for link-time symbol resolu-
tion.

2.2 API Documentation

A factor in how useful a library is is the qual-
ity of api documentation The documentation
must describe in detail the programming inter-
faces available, with function calling and re-
turn conventions, boundaries, and error con-

550 • Linux Symposium 2004 • Volume Two

ditions. This is the kind of information tra-
ditionally captured in the “manpage.” The
best measure of the quality of API documenta-
tion seems to be whether assertion-based tests
(see next section) can be developed completely
from the documentation, or whether the source
code must be referred to fill in the details.

It is especially useful to use a tool to au-
tomate a part of this process. There are a
number of tools that understand how to pro-
duce documentation from commented source
code, one example would bedoxygen(http:
//www.doxygen.org) although documen-
tation generators seem to be more commonly
used with higher-level languages (e.g. Javadoc
for Java, Pydoc for Python, etc.)

The advantages of a generator approach is that
the interface descriptions in the documenta-
tion don’t depend on human transcription to
get them right in the first place, and then don’t
go out of skew if the interfaces in the code
ever change. It’s particularly galling to try to
code to an interface that does not work as doc-
umented.

The LSB specification has to date included
mostly libraries which are already standard-
ized at the API level—for example, the GNU
C library is designed to be compatible with
POSIX specification, so the LSB specification
for the C library is able to reference this ex-
isting specification for almost all of the func-
tional descriptions. As the LSB seeks to ex-
pand the base to other important libraries found
on Linux systems, the API documentation will
have to be imported by copy or by reference
into the specification, so the existence of such
documentation has become an LSB selection
criteria.

The LSB itself has a slightly different doc-
umentation problem, as it has to capture an
ABI description to describe the binary inter-
face programs will see. A single API proto-

type or structure definition has been captured
the way it will be seen on each of the (cur-
rently seven) architectures the LSB supports,
based on things like data model (sizes of inte-
gers and pointers, for example). The symbol
versions matching the interfaces must also be
captured. All of this information is represented
in a MySQL database which is browsable on
the web (http://www.linuxbase.org/
dbadmin) but which is also used to generate
LSB header files, the stub libraries mentioned
in the previous section, and the portion of the
LSB specification that contains library listings,
interface listings, and data definitions.

The database is also used to generate test code.
Of particular note, the LSB generates two test
programs, one to test the presence of the li-
braries and interfaces on a runtime, and another
to test that an application uses only the libraries
and interfaces in the specification. The data for
these two programs is generated directly out of
the specification database.

The LSB database schema and tools to extract
data and build code (essentially a set of Perl
scripts) are freely available for use by other
projects, although they are probably mostly ap-
plicable to projects that support a large number
of libraries and want to build similar test tools.
They can be browsed from the LSB CVS tree
(cvs.gforge.freestandards.org).

The summary is that while there’s no magic to
producing good documentation, it’s important
in producing a stable library that can be widely
used. It’s worth the time to see if some level of
automation can help with the tasks, particularly
if there are several areas that need to be kept in
sync.

2.3 Interface Tests

Another area for consideration is detailed in-
terface testing. Good tests allow checking

Linux Symposium 2004 • Volume Two • 551

that interfaces perform as intended. The
POSIX testing standard calls for such tests
to be assertion-based, which means a writ-
ten description of an intended behavior is
produced, this is then used to develop the
test case. The following example of an
assertion is taken from the Open POSIX
Test Suite (http://sourceforge.net/
projects/posixtest :

mmap assertion 9 When MAP_FIXED is set
in the flags argument, the implementation is in-
formed that the value of pa shall be addr, ex-
actly. If MAP_FIXED is set, mmap() may re-
turn MAP_FAILED and set errno to [EINVAL].
If a MAP_FIXED request is successful, the map-
ping established by mmap() replaces any previ-
ous mappings for the process’ pages in the range
[pa,pa+len].

Tests intended to operate at the source code
level can be built and executed as part of the
product build and are an effective way to catch
regressions introduced during regular mainte-
nance and development activity.

Binary level tests operate against an already
built library, and are a way to test that a partic-
ular library is compatible with a particular API
definition. Such tests increase the confidence
of developers in the stability of the library.

In the LSB project, interface testing is the most
important way of measuring a runtime against
the LSB specification. However, the process of
writing assertions and developing tests is not
easy. It depends on a quality interface specifi-
cation, good choice of testing methodologies,
etc. There is little doubt that the most effec-
tive place for this work to take place is within
the project itself. The source code file de-
scribing an interface can contain the interface,
documentation, test assertions, and test code.
All can be developed together without the kind
of extra overhead incurred if each of the four
items is developed separately by separate per-

sons. The author is not aware of an existing
toolkit which could automatically generate all
of the necessary pieces from a single source file
so endowed, but this would certainly make an
interesting open source project of its own!

2.4 License Choice

The choice of license under which to release
a library makes a considerable difference in
who can use the libraries and how. This paper
does not attempt a license recommendation as
only the developer can know their own targets,
needs and desires, which will guide the choice
of license.

A Free Software license along the lines of
the well-known GPL effectively restricts us-
age to programs under the same or compat-
ible licenses. Such code cannot be used in
closed source programs, even through dynamic
linking, and also cannot be used by code un-
der certain open source licenses that are not
considered compatible, perhaps because they
place some restriction on the user (one exam-
ple might be a license that restricts usage to
academic or personal use and disallows com-
mercial use). The related LGPL license al-
lows the use of the library by code of any sort
through dynamic linking, but makes no similar
provision for static linking. There are a variety
of other licenses which grant greater or lesser
freedoms in the ways the code may be used.

Some applications release code under dual li-
censes, for example a GPL-like license for
those who can use it, and a separate license
with commercial terms for those who cannot.
It is also possible to release a package consist-
ing of program code and library code with sep-
arate licenses for each.

As noted above, some licenses have compat-
ibility clauses relating to how to code may be
mingled with code under certain other licenses.

552 • Linux Symposium 2004 • Volume Two

Various potential users of the code may have
their own selection criteria that includes license
choice. For example, the Debian project has
a particular definition of “free” and consigns
code which does not meet these criteria to the
“nonfree” area.

Continuing with the use of LSB project expe-
riences to illustrate, the LSB is concerned with
functional interface descriptions, not with spe-
cific implementations. So the license of an
implementationis not crucial—unless it’s ef-
fectively the only implementation available, in
which case it becomes a determining factor in
practical use of the interface set.

An example may help clarify: the popular Qt
toolkit was for a while the subject of some con-
troversy in the open source community over its
license terms, and a project was started to cre-
ate an open source reimplementation of the Qt
interface specification. When Qt licensing was
changed to a dual license (one GPL-like, with
a separate license for commercial developers)
the open source reimplementation project was
dropped as the problem people had with the
previous license was resolved. However, the
LSB project favors a “no strings attached” se-
lection policy which suggestsagainst the in-
clusion of a library where the only implemen-
tation doesn’t allow a certain class of develop-
ers to just make use of the library in their code
without arranging a commercial license.

The upshot is that choice of license needs to be
considered very carefully.

3 Software Packaging and Deploy-
ment

The other major consideration this paper will
examine is improving the accessibility of the
software through producing a package that is
easy to put into use. This discussion applies to

both libraries and to complete applications.

The most common way to install software on
Linux must be to install a distribution-specific
package that has already been prepared. This
has many advantages, as it’s configured, com-
piled, and tested for that distribution, and the
package will be tagged with dependencies so
the user can determine what else needs to be
installed to make it work. It will normally have
security update patches made available should
such become necessary.

Of course, not every package can be chosen for
distribution packaging, and it’s quite possible
that an interested user for your software may
find that a package is not available at all, or
just not available for her distribution of choice.
This should pose no problem since by defini-
tion the source code is available, and the soft-
ware can simply be built from source. Unfortu-
nately, in many cases thesimplyis a misnomer
since there may be dependencies on other soft-
ware, toolchain versions, etc. that may prove
to be impediments.

3.1 How Not to Install Software

Although probably everyone reading this paper
has had some negative experiences of their own
with software installation, by way of example
here is a condensed version of a situation that
befell the author, and indirectly provided the
motivation for recording these thoughts here:

At one point, I became interested in doing
some transpositions on a piece of music, and
I thought there must be a piece of software that
would help with this. There are certainly com-
mercial PC-centric applications that do this
very well but there must be something open
source as well. Some searching turned up a
promising application namednoteedit. Sur-
prisingly, rpmfind told me that the one distri-
bution for which a current version was pack-

Linux Symposium 2004 • Volume Two • 553

aged was Mandrake, luckily my distribution
of choice. The package did indicate Cooker,
which is Mandrake’s early-access build tree,
but since it was only a couple of weeks after
that last release, I assumed the Cooker could
not have migrated too far and it would proba-
bly work.

After obtaining and installing the package, plus
an attendant library package as well as another
library (libtse) also needed, I installed and tried
to run the package. Alas, it had been linked
against a different C++ library version and so
had references to some symbols that were not
in my C++ library and thus was not runnable.

My next effort was to download the noteedit
and tse library tarballs and attempt to build
them from source. This was not a great success
either, as the configuration scripts kept report-
ing fatal problems due to missing build headers
and libraries, of course I had to correlate these
back to the packages they would be installed by
and install those. After several cycles I aban-
doned this approach and went to the third try,
going back to rpmfind and pulling down the
source, rather than binary, rpms and trying to
build from source that way. This ultimately
yielded a runnable binary although not without
some further pain which involved tweaking the
rpm specfiles. And this success still came be-
cause some Mandrake user contributed a build
to the Cooker, which although it was for the
wrong version (from my point of view) could
be adjusted at the source level to work. What
if I were running something different?

3.2 Binary Software Distribution

A project can certainly make their software
easier to check out if there’s a binary package
available. Even if packaged by some distri-
butions (and for many projects even this does
not happen, especially early on), there’s still
the question of reaching users of other distri-

butions.

The difficulty with a project building binary
packages is deciding what to build for: there
are an endless number of combinations of dis-
tributions and versions, and only a small frac-
tion could be targeted. Further, this potentially
puts the project into a “distro support” mode,
that is worrying about oddities on the particu-
lar distro/version they have chosen to build for.
A better solution seems to be to build a portable
(distro-neutral) version.

Producing a portable binary package as an ex-
ample has many advantages for a project:

• One package works on multiple kinds of
systems

• Users interested in the software can get it
running quickly

• Bugreports don’t have to worry about the
user’s build environment

• Bugreports will be against a known set of
configure and build options

There’s still plenty of use for users building
from source as well, including trying out com-
binations the developers have not tried, but the
opportunity to come up quickly should broaden
the base of potential users since not everybody
wants to go through building from source.

Of course a really good build procedure
from source—which clearly identifies depen-
dencies, is also very valuable. Configure
scripts have the unfortunate habit of quit-
ting on the first “fatal error,” which means
after you satisfy that build dependency you
try again and occasionally run into another,
and then another. In frustration, the author
once coded a configure script which issues
warnings (AC_MSG_WARN) instead of er-
rors (AC_MSG_FAIL), setting a flag which

554 • Linux Symposium 2004 • Volume Two

is used to signal a fatal error at the end of the
script. The author is not sure this hack is a “re-
ally good build procedure” however!

3.3 Using the LSB to Build Binary Packages

If a portable binary package is a target, the LSB
provides a good model. The LSB specifica-
tion describes a runtime platform, and also de-
scribes some things about how the package is
delivered.

To build a portable binary, a relatively short set
of rules needs to be followed:

• Link with the LSB runtime linker

• Use only LSB-specified libraries with the
correct version

• Use only LSB-specified interfaces and
symbol versions from those libraries

• All other interfaces must be supplied with
the application

The runtime linker has a distinct name for
LSB programs. For example, on the IA32 ar-
chitecture,ld-lsb.so.1 is used instead of
ld-linux.so.2 . This allows an implemen-
tation to do something different for LSB pro-
grams, such as resolving against libraries in
a different directory. This capability is rarely
used: most runtimes simply make the LSB
linker name a symbolic link to the regular
linker.

An application may only count on LSB li-
braries to be present on a conforming run-
time, thus the restriction to link only with
those libraries. If other libraries are needed,
they can be statically linked, or provided
in an application-supplied shared library. It
is also possible to depend onanother LSB-
conforming package which supplies a shared

library. Any such libraries must be constructed
LSB conforming, which in practice means they
need to watch their own dependencies on other
libraries.

Some libraries may have more public inter-
faces than are described in the LSB specifica-
tion. The most notable example is GNU libc.
Even though these interfaces are likely to be
present on every conforming system’s version
of those libraries, this is not required by the
specification, and thus a conforming runtime
may not count on them. For libraries which are
symbol versioned, the binary must be linked
against the symbol versions described in the
specification.

While these rules are not terribly complex, it
would be painful to modify build trees with
many makefiles to apply them, so the LSB
project supplies a compiler wrapper program
lsbcc (as well as lsbc++ for C++ pro-
grams) which applies the rules by fiddling with
the compiler line before handing it off to the
regular compiler, usuallygcc .

If we get lucky, an LSB build can be as simple
as:

CC=lsbcc ./configure
make

Of course it’s not always this easy, and usually
the problem is the use of libraries which are
not in the LSB. The wrapper will actually turn
references to non-LSB libraries into static links
(the tool can be told to warn about this behavior
as it’s often useful to know what’s happening
behind your back). Sometimes static linking is
a reasonable solution, sometimes packaging up
the missing library in LSB mode is workable,
and sometimes nothing will help but to lobby
the LSB project to add the library—which will
undoubtedly result in a polite request for help!
The LSB still has quite a bit of evolving to do

Linux Symposium 2004 • Volume Two • 555

and it’s hoped that exposing it here will help
identify the features which need to be added to
future versions.

The other helpful aspect the LSB covers has to
do with delivery of the software. Again, there
are several areas:

• Portable format for the package

• Rules for where the package may place
files

• Rules about names of packages to avoid
clashes

• Special features such an an installer for
startup scripts

The package format called out in the LSB
specification is that used by the rpm package
manager. This is a relatively portable for-
mat in that tools such asalien can convert
these packages into other formats which can
be handled by a system’s package manager.
There’s no requirement that a runtime be rpm-
based itself, and the only thing a package needs
to (or is allowed to) depend on are provides
for LSB modules (currentlylsb-core and
lsb-graphics) or other LSB packages.

It’s also possible to deliver a package in other
formats; in this case the rule is that the installer
must be an LSB-conforming binary or an LSB-
required command. A combination of a shell
script and a tarball actually meet this require-
ment as both commands are required by the
LSB specification. The use of other than the
LSB package format is discouraged, however,
as it makes it hard for system administrators
to keep a view of what has been installed as
would be the case if all software used the same
package manager.

The File Hierarchy Standard (FHS) is im-
ported into the LSB by reference and de-
scribes where an application may place files.

To state these rules imprecisely, the pack-
age name serves as a tag, and it may in-
stall files into /opt/ tag, /etc/opt/ tag,
and /var/opt/ tag. This avoids clashes
with distribution-provided packages and lo-
cally added software.

The naming of the package is also described
by the LSB; essentially the rule is to register
either a single package name, or a provider
name, with the Linux Assigned Names and
Numbers Authority or LANANA (http://
www.lanana.org).

Finally, there are some provisions for things
which don’t fit into the above picture. For
example, startup (“init”) scripts and cron en-
tries have to go in specific places. The LSB
describes a special installer which may be in-
voked to create the links in the/etc/rcX.d
directories.

With the specified behavior and tools, the LSB
makes possible the creation of portable binary
packages.

4 Summary

There are many considerations towards making
software projects more popular. This paper has
concentrated on only a small portion of those.

We have examined some issues towards mak-
ing shared libraries useful. The assertion is that
as a library becomes more Standard, whether
that be a self-published standard or one pro-
moted by a larger group or even a standards
organization, it becomes easier for a wider
audience to depend on it, software that uses
it can be free of compatibility fears, and the
larger community will lead to more and better
feedback to continue to improve. Some steps
that could help move a project towards such a
state include developing solid interface speci-
fications; stabilizing the interfaces as seen by

556 • Linux Symposium 2004 • Volume Two

software through versioning, which leaves the
freedom to continue to innovate while provide
backward compatibility; and through compre-
hensive interface tests. We also looked at how
choice of license plays into the usability of a
library.

Another consideration towards usable software
is lending the ability for potential users to get
“on the air” with the software quickly, so they
can evaluate it and see if it suits their needs
without going through a lot of trouble. To that
end, we looked at some benefits of projects de-
livering binary package in addition to source
packages. The components of the LSB project
which help in producing portable binary pack-
ages were also covered, to show how a project
might be able to build a single binary package
which helps the software become more acces-
sible.

5 Disclaimer

The opinions expressed in this paper are those of
the author and do not necessarily represent the po-
sition of Intel Corporation.

Linux is a registered trademark of Linus Torvalds.
Intel is a registered trademark of Intel Corporation.
All other trademarks mentioned herein are the prop-
erty of their respective owners.

Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

